JP4827876B2 - Method for treating boron-containing water - Google Patents

Method for treating boron-containing water Download PDF

Info

Publication number
JP4827876B2
JP4827876B2 JP2008086796A JP2008086796A JP4827876B2 JP 4827876 B2 JP4827876 B2 JP 4827876B2 JP 2008086796 A JP2008086796 A JP 2008086796A JP 2008086796 A JP2008086796 A JP 2008086796A JP 4827876 B2 JP4827876 B2 JP 4827876B2
Authority
JP
Japan
Prior art keywords
boron
containing water
solution
concentration
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008086796A
Other languages
Japanese (ja)
Other versions
JP2009233640A (en
Inventor
善弘 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2008086796A priority Critical patent/JP4827876B2/en
Publication of JP2009233640A publication Critical patent/JP2009233640A/en
Application granted granted Critical
Publication of JP4827876B2 publication Critical patent/JP4827876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ホウ素含有水の処理方法に関し、特に、アルミニウム化合物、硫酸含有物質及びカルシウム化合物を添加し、アルカリ性に調整して固液分離するホウ素含有水の処理方法に関する。   The present invention relates to a method for treating boron-containing water, and in particular, relates to a method for treating boron-containing water in which an aluminum compound, a sulfuric acid-containing substance, and a calcium compound are added, adjusted to be alkaline, and solid-liquid separated.

ホウ素(B)は、例えば、ガラス製品、医薬品、化粧品、半導体、めっき製品の製造に使われ、その製造排水中に含まれ、また、石炭火力発電所の排煙脱硫排水やごみ焼却場洗煙排水、ニッケルめっき工場排水などにも含まれている。ホウ素は、ヒトが大量に摂取した場合、中枢及び末梢神経系統や消化器官への障害、腎臓障害、精巣の委縮などが起こることが知られている。そのため、ホウ素(B)は、排水基準値が10ppmと定められ、ホウ素排水の処理が重要視されている。   Boron (B) is used, for example, in the manufacture of glass products, pharmaceuticals, cosmetics, semiconductors, and plating products, and is included in the manufacturing wastewater. It is also included in wastewater and nickel plating factory wastewater. Boron is known to cause damage to the central and peripheral nervous system and digestive organs, kidney damage, testicular atrophy, etc. when taken in large amounts by humans. Therefore, boron (B) has a drainage standard value of 10 ppm, and treatment of boron wastewater is regarded as important.

排水中のホウ素を除去する方法として、例えば、イオン交換樹脂やキレート樹脂にホウ素を吸着させて除去する方法や、アルミニウム化合物及びカルシウム化合物を使用して不溶性の析出物を生成させて、ホウ素を除去する凝集沈澱法(例えば、特許文献1)などが一般的である。   Examples of methods for removing boron in wastewater include removing boron by adsorbing boron on ion exchange resins and chelate resins, and generating insoluble precipitates using aluminum and calcium compounds to remove boron. A coagulating precipitation method (for example, Patent Document 1) is generally used.

特開2007−38171号公報JP 2007-38171 A

しかし、イオン交換樹脂やキレート樹脂に吸着させてホウ素を除去する方法は、大量の樹脂を必要とし、再生処理を行う必要があり、再生処理のコストが高くなるため、高濃度のホウ素排水処理には不向きであった。また、再生処理によって生成されたホウ素濃縮液の処理が必要となるなどの問題点があった。   However, the method of removing boron by adsorbing to an ion exchange resin or chelate resin requires a large amount of resin and requires regeneration treatment, which increases the cost of regeneration treatment. Was unsuitable. In addition, there is a problem that it is necessary to treat the boron concentrate produced by the regeneration treatment.

また、アルミニウム化合物及びカルシウム化合物を使用してホウ素を除去する方法は、硫酸バンド、消石灰を使用する場合以外では、ホウ素の吸着能力が不十分であり、硫酸バンド、消石灰を使用した場合においても、排水中のホウ素化合物を排水基準値以下まで除去するためには多量の薬剤添加が必要であること、沈降分離が困難となることなどの問題点があった。また、凝集沈澱法は、入手しやすい薬剤を用いるので、安定して操業が可能であるものの、より多量のホウ素含有排水を処理するためには、設備の増強が強いられるため、建設費など投資金額が増大していた。   In addition, the method of removing boron using an aluminum compound and a calcium compound is not sufficient for adsorbing boron except when using a sulfuric acid band and slaked lime. In order to remove the boron compound in the wastewater to below the wastewater standard value, there are problems such as a large amount of chemicals being added and sedimentation separation becoming difficult. In addition, the coagulation precipitation method uses a readily available chemical and can be operated stably. However, in order to treat a larger amount of boron-containing wastewater, the equipment must be strengthened, so investment in construction costs, etc. The amount was increasing.

また、高濃度のホウ素を処理する方法には、ホウ素以外の物質を吸着し、濃縮して回収する方法があるが、濃縮の際に多量のエネルギーを必要とし、初期投資、ランニングコストの点で問題があった。   In addition, as a method of treating high concentration boron, there is a method in which a substance other than boron is adsorbed and concentrated and recovered. However, a large amount of energy is required for concentration, and in terms of initial investment and running cost. There was a problem.

このような現状から、ホウ素処理、特に高濃度ホウ素含有水の処理において、ホウ素含有沈澱物のかさ量を抑制し、より効率的にホウ素を除去することができる処理方法の開発が望まれている。   From such a current situation, in the treatment of boron, particularly in the treatment of high-concentration boron-containing water, it is desired to develop a treatment method that can suppress the bulk of the boron-containing precipitate and remove boron more efficiently. .

本発明は、従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、ホウ素含有沈澱物のかさ量を抑制し、より効率的にホウ素を除去することができるホウ素含有水の処理方法を提供することを目的とする。   An object of the present invention is to solve various problems in the prior art and achieve the following objects. That is, an object of the present invention is to provide a method for treating boron-containing water, which can suppress the bulk of boron-containing precipitates and more efficiently remove boron.

前記課題を解決する手段としては、以下の通りである。即ち、
<1> ホウ素含有水に、アルミニウム化合物及び硫酸含有物質を添加し、酸溶液を調整する酸溶液調整工程と、ホウ素含有水に、カルシウム化合物を添加し、アルカリ溶液を調整するアルカリ溶液調整工程と、前記調整された酸溶液と、前記調整されたアルカリ溶液とを混合して、ホウ素含有沈澱物を生成させる混合工程と、前記生成されたホウ素含有沈澱物を除去する除去工程とを含むことを特徴とするホウ素含有水の処理方法である。
<2> 混合工程において、モータを用いて攪拌し、前記モータの負荷電力P(kW)と被攪拌液の容積V(m)とが、P/V≧0.175kW/mの関係を満たす前記<1>に記載のホウ素含有水の処理方法である。
<3> 被攪拌液を貯留する容器が、内側に邪魔板を備える前記<1>から<2>のいずれかに記載のホウ素含有水の処理方法である。
<4> ホウ素含有水のホウ素濃度が1,000mg/L以上である前記<1>から<3>のいずれかに記載のホウ素含有水の処理方法である。
<5> アルカリ溶液調整工程において、pH調整剤をさらに添加する前記<1>から<4>のいずれかに記載のホウ素含有水の処理方法である。
<6> 酸溶液調整工程とアルカリ溶液調整工程のいずれか一つ以上の工程において、pH調整剤を添加する前記<1>から<5>のいずれかに記載のホウ素含有水の処理方法である。
Means for solving the above problems are as follows. That is,
<1> An acid solution adjusting step for adjusting an acid solution by adding an aluminum compound and a sulfuric acid-containing substance to boron-containing water; and an alkali solution adjusting step for adjusting an alkaline solution by adding a calcium compound to boron-containing water. A mixing step of mixing the adjusted acid solution and the adjusted alkaline solution to produce a boron-containing precipitate, and a removing step of removing the generated boron-containing precipitate. It is the processing method of the boron containing water characterized.
<2> In the mixing step, stirring is performed using a motor, and the load power P (kW) of the motor and the volume V (m 3 ) of the liquid to be stirred have a relationship of P / V ≧ 0.175 kW / m 3 . It is the processing method of the boron containing water as described in said <1> to satisfy | fill.
<3> The method for treating boron-containing water according to any one of <1> to <2>, wherein the container for storing the liquid to be stirred is provided with a baffle plate inside.
<4> The boron-containing water treatment method according to any one of <1> to <3>, wherein a boron concentration of the boron-containing water is 1,000 mg / L or more.
<5> The method for treating boron-containing water according to any one of <1> to <4>, wherein a pH adjuster is further added in the alkaline solution adjustment step.
<6> The method for treating boron-containing water according to any one of <1> to <5>, wherein a pH adjuster is added in any one or more of the acid solution adjustment step and the alkali solution adjustment step. .

本発明の方法によれば、前記従来における諸問題を解決し、前記目的を達成することができ、ホウ素含有沈澱物のかさ量を抑制し、より効率的にホウ素を除去することができるホウ素含有水の処理方法を提供することができる。   According to the method of the present invention, it is possible to solve the conventional problems, achieve the object, suppress the bulk of the boron-containing precipitate, and remove boron more efficiently. A method for treating water can be provided.

(ホウ素含有水の処理方法)
本発明のホウ素含有水の処理方法は、酸溶液調整工程と、アルカリ溶液調整工程と、混合工程と、除去工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
(Method of treating boron-containing water)
The method for treating boron-containing water of the present invention includes at least an acid solution adjustment step, an alkali solution adjustment step, a mixing step, and a removal step, and further includes other steps as necessary.

−酸溶液調整工程−
前記酸溶液調整工程は、ホウ素含有水に、アルミニウム化合物及び硫酸含有物質を添加し、酸溶液を調整する工程である。具体的には、ホウ素含有水にアルミニウム化合物及び硫酸含有物質を溶解させ、pH1〜5の硫酸酸性溶液を調整する工程である。前記酸溶液調整工程では、pH調整剤をさらに添加してもよい。また、前記酸溶液調整工程では、攪拌を行ってもよい。
-Acid solution adjustment process-
The acid solution adjusting step is a step of adjusting the acid solution by adding an aluminum compound and a sulfuric acid-containing substance to boron-containing water. Specifically, it is a step of dissolving an aluminum compound and a sulfuric acid-containing substance in boron-containing water to adjust a pH 1-5 sulfuric acid acidic solution. In the acid solution adjusting step, a pH adjusting agent may be further added. In the acid solution adjustment step, stirring may be performed.

前記酸溶液調整工程に用いるホウ素含有水としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス製品、医薬品、化粧品、半導体、めっき製品の製造工場排水、石炭火力発電所の排煙脱硫排水、ごみ焼却場洗煙排水、ニッケルめっき工場排水、その他の工場や研究施設の排水、一般家庭からの排水などが挙げられる。
なお、前記酸溶液調整工程で用いるホウ素含有水は、後述するアルカリ溶液調整工程で用いるホウ素含有水と異なるものでもよいが、同一のほうが、アルミニウム化合物等の添加量のバランスがとりやすい点で、好ましい。
There is no restriction | limiting in particular as boron containing water used for the said acid solution adjustment process, According to the objective, it can select suitably, For example, glassware, a pharmaceutical, cosmetics, a semiconductor, the manufacture factory drainage of a plating product, coal thermal power generation Sewage desulfurization effluent, waste incineration sewage effluent, nickel plating factory effluent, other factory and research facility effluent, and general household effluent.
The boron-containing water used in the acid solution adjustment step may be different from the boron-containing water used in the alkali solution adjustment step described later, but the same is easier to balance the addition amount of the aluminum compound and the like. preferable.

前記アルミニウム化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫酸バンド、ポリ塩化アルミニウム、塩化アルミニウム、アルミン酸ナトリウムなどが挙げられる。   There is no restriction | limiting in particular as said aluminum compound, According to the objective, it can select suitably, For example, a sulfuric acid band, polyaluminum chloride, aluminum chloride, sodium aluminate etc. are mentioned.

一回の処理における、前記アルミニウム化合物の濃度としては、特に制限はなく、目的に応じて適宜選択することができるが、アルミニウム濃度として50mg/L〜2,000mg/Lが好ましい。ホウ素含有水のホウ素濃度、他のイオン濃度にもよるが、アルミニウム濃度として2,000mg/Lを超えると、後述する混合工程で生成するホウ素含有沈澱物の沈降分離が困難となることがある。
また、アルミニウム化合物と後述するアルカリ溶液調整工程において添加されるカルシウム化合物の添加比率は、特に制限はなく、目的に応じて適宜選択することができるが、アルミニウム1質量部に対してカルシウムが2〜10質量部が好ましく、アルミニウム1質量部に対してカルシウムが3〜6質量部がより好ましい。
There is no restriction | limiting in particular as the density | concentration of the said aluminum compound in one process, Although it can select suitably according to the objective, 50 mg / L-2,000 mg / L is preferable as aluminum concentration. Although depending on the boron concentration of boron-containing water and other ion concentrations, if the aluminum concentration exceeds 2,000 mg / L, it may be difficult to precipitate and separate the boron-containing precipitate produced in the mixing step described later.
Further, the addition ratio of the aluminum compound and the calcium compound added in the alkali solution adjusting step described later is not particularly limited and can be appropriately selected according to the purpose. 10 mass parts is preferable, and 3-6 mass parts of calcium is more preferable with respect to 1 mass part of aluminum.

前記硫酸含有物質としては、溶解して硫酸イオンを生じる物質であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫酸バンド、硫酸、硫酸ナトリウム、硫酸カリウム、硫酸バリウムなどが挙げられる。   The sulfuric acid-containing substance is not particularly limited as long as it is a substance that dissolves to generate sulfate ions, and can be appropriately selected according to the purpose. For example, sulfuric acid band, sulfuric acid, sodium sulfate, potassium sulfate, barium sulfate Etc.

一回の処理における、前記硫酸含有物質の濃度としては、特に制限はなく、目的に応じて適宜選択することができるが、硫酸濃度としてアルミニウムに対して1モル以上が好ましい。   There is no restriction | limiting in particular as a density | concentration of the said sulfuric acid containing substance in one process, Although it can select suitably according to the objective, As a sulfuric acid concentration, 1 mol or more with respect to aluminum is preferable.

前記アルミニウム化合物及び前記硫酸含有物質としては、硫酸バンドが、ホウ素含有水の処理に必要な、アルミニウム及び硫酸を有している点で、好ましい。   As the aluminum compound and the sulfuric acid-containing substance, a sulfuric acid band is preferable in that it has aluminum and sulfuric acid necessary for the treatment of boron-containing water.

前記酸溶液調整工程において添加されるpH調整剤としては、前記酸溶液のpHを1〜5の範囲に調整することができれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、アンモニア、硝酸、硫酸、塩酸などが挙げられる。   The pH adjuster added in the acid solution adjusting step is not particularly limited as long as the pH of the acid solution can be adjusted in the range of 1 to 5, and can be appropriately selected according to the purpose. Sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, ammonia, nitric acid, sulfuric acid, hydrochloric acid and the like.

−アルカリ溶液調整工程−
前記アルカリ溶液調整工程は、ホウ素含有水に、カルシウム化合物を添加し、アルカリ溶液を調整する工程である。具体的には、ホウ素含有水にカルシウムを溶解させ、pH8〜14のアルカリ溶液を調整する工程である。前記アルカリ溶液調整工程では、pH調整剤をさらに添加してもよい。また、前記アルカリ溶液調整工程では、攪拌を行ってもよい。
-Alkaline solution adjustment process-
The alkaline solution adjusting step is a step of adjusting the alkaline solution by adding a calcium compound to boron-containing water. Specifically, it is a step of preparing an alkaline solution having a pH of 8 to 14 by dissolving calcium in boron-containing water. In the alkaline solution adjusting step, a pH adjusting agent may be further added. Moreover, you may stir in the said alkaline solution adjustment process.

前記アルカリ溶液調整工程に用いるホウ素含有水としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス製品、医薬品、化粧品、半導体、めっき製品の製造工場排水、石炭火力発電所の排煙脱硫排水、ごみ焼却場洗煙排水、ニッケルめっき工場排水、その他の工場や研究施設の排水、一般家庭からの排水などが挙げられる。
なお、前記アルカリ溶液調整工程で用いるホウ素含有水は、前記酸溶液調整工程で用いるホウ素含有水と異なるものでもよいが、同一のほうが、カルシウム化合物の添加量のバランスがとりやすい点で、好ましい。
There is no restriction | limiting in particular as boron containing water used for the said alkaline solution adjustment process, According to the objective, it can select suitably, For example, glassware, a pharmaceutical, cosmetics, a semiconductor, the manufacture factory drainage of a plating product, coal thermal power generation Sewage desulfurization effluent, waste incineration sewage effluent, nickel plating factory effluent, other factory and research facility effluent, and general household effluent.
In addition, although the boron containing water used at the said alkali solution adjustment process may differ from the boron containing water used at the said acid solution adjustment process, the same one is preferable at the point which is easy to balance the addition amount of a calcium compound.

前記カルシウム化合物としては、アルミニウムや硫酸イオンと反応して不溶性析出物を生成する化合物であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、水酸化カルシウム(消石灰)、酸化カルシウム(生石灰)、塩化カルシウム、硫酸カルシウム、炭酸カルシウムなどが挙げられる。中でも、消石灰が、アルミニウムや硫酸イオンと反応して不溶性析出物を生成しやすい点で、好ましい。   The calcium compound is not particularly limited as long as it is a compound that reacts with aluminum or sulfate ions to form an insoluble precipitate, and can be appropriately selected according to the purpose. For example, calcium hydroxide (slaked lime), Examples include calcium oxide (quick lime), calcium chloride, calcium sulfate, and calcium carbonate. Of these, slaked lime is preferable in that it easily reacts with aluminum or sulfate ions to generate insoluble precipitates.

一回の処理における、前記カルシウム化合物の濃度としては、特に制限はなく、目的に応じて適宜選択することができるが、カルシウム濃度として250mg/L〜20,000mg/Lが好ましい。ホウ素含有水のホウ素濃度、他のイオン濃度にもよるが、カルシウム濃度として20,000mg/Lを超えると、後述する混合工程で生成するホウ素含有沈澱物の沈降分離が困難となることがある。また、アルミニウム化合物とカルシウム化合物の添加比率は、前述したとおりである。   There is no restriction | limiting in particular as a density | concentration of the said calcium compound in one process, Although it can select suitably according to the objective, 250 mg / L-20,000 mg / L is preferable as calcium concentration. Although depending on the boron concentration of boron-containing water and other ion concentrations, if the calcium concentration exceeds 20,000 mg / L, it may be difficult to precipitate and separate the boron-containing precipitate produced in the mixing step described later. Moreover, the addition ratio of the aluminum compound and the calcium compound is as described above.

前記アルカリ溶液調整工程において添加されるpH調整剤としては、前記アルカリ溶液のpHを8〜14の範囲に調整することができれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、アンモニア、硝酸、硫酸、塩酸などが挙げられる。   The pH adjusting agent added in the alkaline solution adjusting step is not particularly limited as long as the pH of the alkaline solution can be adjusted in the range of 8 to 14, and can be appropriately selected according to the purpose. Sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, ammonia, nitric acid, sulfuric acid, hydrochloric acid and the like.

−混合工程−
前記混合工程は、前記調整された酸溶液と、前記調整されたアルカリ溶液とを混合して、ホウ素含有沈澱物を生成させる工程である。具体的には、前記調整された酸溶液と、前記調整されたアルカリ溶液とを混合することにより生成した沈澱物に、ホウ素含有水中のホウ素を取り込ませ、ホウ素含有沈澱物を生成させる工程である。
前記混合工程では、攪拌を行ってもよい。また、前記混合工程では、pH調整剤を添加してもよい。
-Mixing process-
The mixing step is a step of mixing the adjusted acid solution and the adjusted alkaline solution to generate a boron-containing precipitate. Specifically, it is a step of incorporating boron in boron-containing water into a precipitate generated by mixing the adjusted acid solution and the adjusted alkaline solution to generate a boron-containing precipitate. .
In the mixing step, stirring may be performed. In the mixing step, a pH adjuster may be added.

前記混合の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、一つの容器に、前記調整された酸溶液と、前記調整されたアルカリ溶液とを投入する方法などが挙げられる。   The mixing method is not particularly limited and may be appropriately selected depending on the purpose. For example, a method in which the adjusted acid solution and the adjusted alkaline solution are put into one container, etc. Is mentioned.

前記混合工程において、モータを用いて攪拌し、前記モータの負荷電力P(kW)と被攪拌液の容積V(m)とが、P/V≧0.175kW/mの関係を満たすことが好ましい。前記混合工程において、攪拌を行うことで、前記調整された酸溶液と前記調整されたアルカリ溶液が短時間で混合される。そのため、沈澱物の発生量(体積)を抑えつつ、ホウ素を除去することができる。即ち、より小体積の沈澱物に、より多くのホウ素を取り込むことができる。 In the mixing step, stirring is performed using a motor, and the load power P (kW) of the motor and the volume V (m 3 ) of the liquid to be stirred satisfy a relationship of P / V ≧ 0.175 kW / m 3. Is preferred. In the mixing step, the adjusted acid solution and the adjusted alkali solution are mixed in a short time by stirring. Therefore, boron can be removed while suppressing the generation amount (volume) of precipitates. That is, more boron can be incorporated into a smaller volume of precipitate.

前記モータとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば電動モータなどが挙げられる。
前記P/V値は、0.175kW/m以上である限り、特に制限はなく、目的に応じて適宜選択することができるが、0.175kW/m以上8kW/m以下が好ましい。ここで、P/V値とは、攪拌時のモータ負荷(消費)電力P(kW)を被攪拌液の容積V(m)で除算したものである。
There is no restriction | limiting in particular as said motor, According to the objective, it can select suitably, For example, an electric motor etc. are mentioned.
The P / V value, as long as 0.175kW / m 3 or more is not particularly limited, may be appropriately selected depending on the intended purpose, 0.175kW / m 3 or more 8kW / m 3 or less. Here, the P / V value is obtained by dividing the motor load (consumption) power P (kW) during stirring by the volume V (m 3 ) of the liquid to be stirred.

また、前記攪拌は、より効率的にホウ素含有水を処理することができる点で、乱流による攪拌が好ましい。前記乱流による攪拌に用いる翼は、攪拌動力を上げることでせん断性や攪拌効率を向上できれば、特に制限はなく、目的に応じて適宜選択することができる。また、攪拌の効率を上げる方法としては、例えば、ラインミキサ−を用いる、もしくは併用するなどが挙げられる。   Moreover, the stirring by turbulent flow is preferable in that the boron-containing water can be more efficiently treated. The blades used for stirring by the turbulent flow are not particularly limited as long as the shearing power and stirring efficiency can be improved by increasing the stirring power, and can be appropriately selected according to the purpose. Moreover, as a method for increasing the efficiency of stirring, for example, a line mixer may be used or used in combination.

前記攪拌の時間としては、特に制限はなく、ホウ素含有沈澱物の生成状況により決定することができ、例えば、ホウ素含有沈澱物が生成し、容器の底部から抜き出せる程度、ろ過機に供せる程度などにより決定することができる。   The stirring time is not particularly limited and can be determined according to the production status of the boron-containing precipitate. For example, the boron-containing precipitate is produced and can be extracted from the bottom of the container, and can be used in a filter. Etc. can be determined.

被攪拌液を貯留する容器としては、特に制限はなく、目的に応じて適宜選択することができるが、攪拌の効率を上げるために、容器の内側に邪魔板を有することが好ましい。
前記邪魔板の設置方法としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、邪魔板を容器の高さ方向の側壁に沿い内側に設置する方法、邪魔板が複数の板から連接するように設置する方法、邪魔板を断続的に設置する方法、邪魔板を攪拌機の回転軸を中心に対象となるように設置する方法などである。
前記邪魔板の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、板状が好ましい。
前記邪魔板の枚数としては、特に制限はなく、目的に応じて適宜選択することができるが、2枚以上が好ましい。なお、前記邪魔板の枚数が偶数であると、攪拌効率が良い点で、好ましい。
なお、前記邪魔板は、拡散板、バッフル板とも言われるものである。
There is no restriction | limiting in particular as a container which stores a to-be-stirred liquid, According to the objective, it can select suitably, However, In order to raise the efficiency of stirring, it is preferable to have a baffle plate inside a container.
There is no restriction | limiting in particular as the installation method of the said baffle plate, According to the objective, it can select suitably. For example, a method of installing the baffle plate along the side wall in the height direction of the container, a method of installing the baffle plate to be connected from a plurality of plates, a method of intermittently installing the baffle plate, a baffle plate of the stirrer For example, it may be installed so as to be a target around the rotation axis.
There is no restriction | limiting in particular as a shape of the said baffle plate, Although it can select suitably according to the objective, Plate shape is preferable.
There is no restriction | limiting in particular as the number of said baffle plates, Although it can select suitably according to the objective, Two or more are preferable. In addition, it is preferable that the number of the baffle plates is an even number from the viewpoint of good stirring efficiency.
The baffle plate is also called a diffusion plate or a baffle plate.

前記ホウ素含有沈澱物を生成するためのpHとしては、8以上であれば、特に制限はなく、目的に応じて適宜選択することができるが、pH10〜12が好ましい。pH10〜12の範囲外では、ホウ素を含有した不溶性析出物の沈降性やホウ素の除去性が悪化する可能性がある。   The pH for producing the boron-containing precipitate is not particularly limited as long as it is 8 or more, and can be appropriately selected according to the purpose, but is preferably pH 10-12. If the pH is outside the range of 10 to 12, the sedimentation property of boron-containing insoluble precipitates and the boron removal property may be deteriorated.

前記混合工程において添加されるpH調整剤としては、前記調整された酸溶液と、前記調整されたアルカリ溶液とを混合した溶液のpHを8以上の範囲に調整することができれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、アンモニア、硝酸、硫酸、塩酸などが挙げられる。   The pH adjusting agent added in the mixing step is not particularly limited as long as the pH of a solution obtained by mixing the adjusted acid solution and the adjusted alkaline solution can be adjusted to a range of 8 or more. Can be appropriately selected according to the purpose, for example, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, ammonia, nitric acid, sulfuric acid, hydrochloric acid, etc. It is done.

−除去工程−
前記除去工程は、前記生成されたホウ素含有沈澱物を除去する工程である。
-Removal process-
The removing step is a step of removing the generated boron-containing precipitate.

前記除去の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、被攪拌液を貯留する容器の底部から、ホウ素含有沈澱物を抜き出す方法、ホウ素含有沈澱物を含む被攪拌液をろ過機に供する方法などが挙げられる。   The removal method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method of extracting a boron-containing precipitate from the bottom of a container for storing a liquid to be stirred, and a boron-containing precipitate. The method of using a to-be-stirred liquid for a filter is mentioned.

−その他の工程−
前記その他の工程としては、本発明の効果を害しない限り、特に制限はなく、目的に応じて適宜選択することができる。
-Other processes-
There is no restriction | limiting in particular as long as the said other process does not impair the effect of this invention, According to the objective, it can select suitably.

−多段処理−
前記多段処理は、上述したホウ素含有水の処理を複数段行うことである。また、特定の工程を複数段行うものであってもよい。
-Multistage processing-
The said multistage process is performing the process of the boron containing water mentioned above in multiple steps. Moreover, a specific process may be performed in multiple stages.

前記多段処理の段数としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ホウ素濃度1,000mg/Lの排水では、3〜4段とするなどが挙げられる。   There is no restriction | limiting in particular as a stage number of the said multistage process, According to the objective, it can select suitably, For example, in a waste_water | drain with a boron density | concentration of 1,000 mg / L, it is set as 3-4 stages.

連続的にホウ素含有水を処理する場合、前記混合工程を複数の容器で行う、多段処理にて行うこともできる。このような場合、後段の容器内にある沈澱物を前段の容器に戻し、沈澱物の成長、熟成を促してもよい。
前記混合工程を多段処理で行う場合、最初の容器を1段目とし、2、3、4、n段容器とする。1段目においては、前記酸溶液と前記アルカリ溶液とを別々の容器から投入し、混合する。2段目以降においては、後段容器の沈澱物を前段容器に返送(投入)する。例えば、3段目容器の沈澱物を2段目容器に返送(投入)するなどである。この際、さらに沈澱物の成長、熟成を促して、ホウ素を除去するために、前記酸溶液調整工程や前記アルカリ溶液調整工程で添加した化合物等をさらに添加してもよい。なお、添加する化合物等の種類としては、アルミニウム化合物、硫酸含有物質、カルシウム化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。例えば、2段目の容器に添加する化合物を1段目の容器含まれる添加物と異なるものとすることもできる。
In the case of continuously treating boron-containing water, the mixing step can be performed by a multistage treatment in which a plurality of containers are used. In such a case, the precipitate in the latter container may be returned to the former container to promote the growth and aging of the precipitate.
When the mixing step is performed in a multistage process, the first container is the first stage, and 2, 3, 4, n-stage containers are used. In the first stage, the acid solution and the alkaline solution are charged from separate containers and mixed. In the second and subsequent stages, the precipitate in the latter container is returned (introduced) to the former container. For example, the precipitate in the third-stage container is returned (input) to the second-stage container. At this time, in order to further promote the growth and aging of the precipitate and remove boron, the compound added in the acid solution adjusting step or the alkali solution adjusting step may be further added. In addition, as a kind of the compound etc. to add, if it is an aluminum compound, a sulfuric acid containing substance, and a calcium compound, there will be no restriction | limiting in particular, According to the objective, it can select suitably. For example, the compound added to the second stage container may be different from the additive contained in the first stage container.

以下、本発明の実施例について説明するが、本発明はこれらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
ホウ酸をイオン交換水に溶解させ、ホウ素濃度100mg/Lに調整し、模擬排水とした。アルミニウム化合物及び硫酸含有物質として、工業用硫酸バンドを用いた。カルシウム化合物として、消石灰にイオン交換水を加えて20重量%とし、スラリー状の消石灰を調整した。
前記模擬排水1,000mLを各500mLに分け、一方の模擬排水500mLに、硫酸バンドをアルミニウム濃度が模擬排水500mLに対して1,000mg/Lとなるように添加したものを酸溶液とした。
もう一方の模擬排水500mLに、消石灰をカルシウム濃度が模擬排水500mLに対して4,000mg/Lとなるように添加したものをアルカリ溶液とした。なお、後述する混合工程で、前記酸溶液と混合した後のpHが11.5〜12.0となるように、あらかじめアルカリ溶液にpH調整剤として、水酸化ナトリウムを添加した。
前記酸溶液と前記アルカリ溶液とを合流させ、20分間、攪拌混合した。攪拌の方法としては、P/V値が7.36kW/mとなるようにタービン翼を用いて攪拌した。
その後、高分子凝集剤A−95(MTアクアポリマー株式会社製、弱アニオン系ポリマー)を1mg/Lとなるように添加し、緩やかに攪拌して、不溶性析出物を凝集沈澱させた。30分沈降させた時の模擬排水全体の容積(mL)に対する不溶性析出物の沈澱物(沈降した汚泥)容積(mL)の割合(以下、SV30という。)を計測した。
このとき得られた上澄水を0.45μmメンブレンフィルターでろ過し、ICP発光分析装置(日本ジャーレル・アッシュ株式会社製、ICAP−575II)によりホウ素濃度を測定した。その後、模擬排水全体(沈降した汚泥を含む)の20%を返送汚泥として、次の試験(返送一回目)に用いた。
返送一回目の試験として、前記模擬排水800mLを各400mLに分け、一方の模擬排水400mLに、硫酸バンドをアルミニウム濃度が模擬排水400mLに対して1,000mg/Lとなるように添加したものを酸溶液とした。
もう一方の模擬排水400mLに、消石灰をカルシウム濃度が模擬排水400mLに対して4,000mg/Lとなるように添加したものをアルカリ溶液とした。なお、後述する混合工程で、前記酸溶液と混合した後のpHが11.5〜12.0となるように、あらかじめアルカリ溶液にpH調整剤として、水酸化ナトリウムを添加した。
前記酸溶液、前記アルカリ溶液、及び返送汚泥200mLを合流させ、20分間、攪拌混合した。攪拌の方法としては、P/V値が7.36kW/mとなるようにタービン翼を用いて攪拌した。
その後は、上述したのと同様にして、SV30と処理水ホウ素濃度を測定し、返送汚泥を得た。
返送一回目から得られた返送汚泥を用いて、返送二回目の試験を返送一回目と同様に行った。これを繰り返し、四回の試験を行った。
なお、前記汚泥は、模擬排水の容積に対して20%(200mL)を返送分とし、残りは使用しないこととした。
実施例1の結果を表1、図1、及び図2に示す。返送四回目において得られた処理水のホウ素濃度は15.3mg/Lであり、SV30は18%であった。
Example 1
Boric acid was dissolved in ion-exchanged water, adjusted to a boron concentration of 100 mg / L, and used as simulated waste water. An industrial sulfuric acid band was used as the aluminum compound and the sulfuric acid-containing material. As a calcium compound, ion-exchanged water was added to slaked lime to give 20% by weight to prepare slurry-like slaked lime.
1,000 mL of the simulated waste water was divided into 500 mL, and an acid solution was prepared by adding a sulfuric acid band to 500 mL of one simulated waste water so that the aluminum concentration was 1,000 mg / L with respect to 500 mL of simulated waste water.
A solution obtained by adding slaked lime to another 500 mL of simulated waste water so that the calcium concentration was 4,000 mg / L with respect to 500 mL of simulated waste water was used as an alkaline solution. In addition, sodium hydroxide was previously added to the alkaline solution as a pH adjuster so that the pH after mixing with the acid solution was 11.5 to 12.0 in the mixing step described later.
The acid solution and the alkali solution were combined and stirred and mixed for 20 minutes. As a stirring method, stirring was performed using a turbine blade so that the P / V value was 7.36 kW / m 3 .
Thereafter, polymer flocculant A-95 (manufactured by MT Aqua Polymer Co., Ltd., weak anionic polymer) was added to 1 mg / L, and the mixture was gently stirred to coagulate and precipitate insoluble precipitates. The ratio (hereinafter referred to as SV30) of the volume (mL) of the sediment (sedimented sludge) of the insoluble precipitate to the volume (mL) of the entire simulated drainage when settling for 30 minutes was measured.
The supernatant water obtained at this time was filtered through a 0.45 μm membrane filter, and the boron concentration was measured with an ICP emission analyzer (manufactured by Nippon Jarrell-Ash Co., Ltd., ICAP-575II). Thereafter, 20% of the entire simulated wastewater (including the settled sludge) was used as return sludge and used for the next test (first return).
As a first test for return, 800 mL of the simulated waste water is divided into 400 mL, and 400 mL of one simulated waste water is added with a sulfuric acid band so that the aluminum concentration is 1,000 mg / L with respect to 400 mL of simulated waste water. It was set as the solution.
A solution obtained by adding slaked lime to the other simulated wastewater 400 mL so that the calcium concentration is 4,000 mg / L with respect to the simulated wastewater 400 mL was used as an alkaline solution. In addition, sodium hydroxide was previously added to the alkaline solution as a pH adjuster so that the pH after mixing with the acid solution was 11.5 to 12.0 in the mixing step described later.
The acid solution, the alkaline solution, and 200 mL of return sludge were combined and stirred and mixed for 20 minutes. As a stirring method, stirring was performed using a turbine blade so that the P / V value was 7.36 kW / m 3 .
Thereafter, in the same manner as described above, SV30 and treated water boron concentrations were measured, and returned sludge was obtained.
Using the return sludge obtained from the first return, the second test of the return was performed in the same manner as the first return. This was repeated and four tests were performed.
It should be noted that 20% (200 mL) of the sludge is returned for the simulated waste water volume, and the rest is not used.
The results of Example 1 are shown in Table 1, FIG. 1 and FIG. The boron concentration of the treated water obtained in the fourth return was 15.3 mg / L, and SV30 was 18%.

(比較例1)
汚泥の返送なしの場合では、模擬排水1,000mLに、硫酸バンドをアルミニウム濃度が模擬排水1,000mLに対して500mg/Lとなるように添加し、消石灰をカルシウム濃度が模擬排水1,000mLに対して2,000mg/Lとなるように添加し、pHが11.5〜12.0になるように水酸化ナトリウム溶液を添加した点、P/V値が1.37kW/mとなるようにタービン翼を用いて攪拌した点以外は、実施例1と同様に行った。
また、汚泥の返送ありの場合では、模擬排水800mLに、返送された汚泥を200mL加え、硫酸バンドをアルミニウム濃度が模擬排水800mLに対して500mg/Lとなるように添加し、消石灰をカルシウム濃度が模擬排水800mLに対して2,000mg/Lとなるように添加し、pHが11.5〜12.0になるように水酸化ナトリウム溶液を添加した点、P/V値が1.37kW/mとなるようにタービン翼を用いて攪拌した点以外は、実施例1と同様に行った。
比較例1の結果を表2、図1、及び図2に示す。返送四回目において得られた処理水のホウ素濃度は26.6mg/Lであり、SV30は22.5%であった。
(Comparative Example 1)
In the case of no return of sludge, sulfuric acid band is added to 1,000 mL of simulated waste water so that the aluminum concentration is 500 mg / L with respect to 1,000 mL of simulated waste water, and slaked lime is added to 1,000 mL of simulated waste water. The sodium hydroxide solution was added so that the pH was 11.5 to 12.0, and the P / V value was 1.37 kW / m 3. The same procedure as in Example 1 was performed except that the agitation was performed using a turbine blade.
In the case where sludge is returned, 200 mL of the returned sludge is added to 800 mL of simulated waste water, and a sulfuric acid band is added so that the aluminum concentration is 500 mg / L with respect to 800 mL of simulated waste water. It added so that it might become 2,000 mg / L with respect to 800 mL of simulated waste water, the point which added sodium hydroxide solution so that pH might become 11.5-12.0, P / V value is 1.37 kW / m. The same procedure as in Example 1 was performed except that stirring was performed using a turbine blade so as to be 3 .
The results of Comparative Example 1 are shown in Table 2, FIG. 1 and FIG. The boron concentration of the treated water obtained in the fourth return was 26.6 mg / L, and SV30 was 22.5%.

(比較例2)
汚泥の返送なしの場合では、P/V値が7.36kW/mとなるようにタービン翼を用いて攪拌した点以外は、比較例1と同様に行った。
また、汚泥の返送ありの場合では、P/V値が7.36kW/mとなるようにタービン翼を用いて攪拌した点以外は、比較例1と同様に行った。
比較例2の結果を表3、図1、及び図2に示す。返送四回目において得られた処理水のホウ素濃度は6.52mg/Lであり、SV30は25%であった。
(Comparative Example 2)
In the case where the sludge was not returned, the same procedure as in Comparative Example 1 was performed, except that stirring was performed using a turbine blade so that the P / V value was 7.36 kW / m 3 .
Further, in the case where sludge was returned, the same procedure as in Comparative Example 1 was performed except that stirring was performed using a turbine blade so that the P / V value was 7.36 kW / m 3 .
The results of Comparative Example 2 are shown in Table 3, FIG. 1 and FIG. The boron concentration of the treated water obtained in the fourth return was 6.52 mg / L, and SV30 was 25%.

図1に示されるように、実施例1では、SV30の値が比較例よりも低く、汚泥(沈澱物)の沈降性が良いことが判った。実施例1の汚泥は、かさ量が少なく良好な汚泥であった。
図2に示されるように、返送四回目において、P/V値の大きい実施例1、比較例2では、処理水ホウ素濃度が低いことが判った。攪拌の強度を増すことで処理水中のホウ素濃度が下がり、ホウ素の除去率が向上することが判った。
実施例1では沈澱物の沈降性を向上させることができ、また、ホウ素の除去率を向上することができた。
As shown in FIG. 1, in Example 1, the value of SV30 was lower than that of the comparative example, and it was found that the sedimentation property of sludge (precipitate) was good. The sludge of Example 1 was a good sludge with a small amount of bulk.
As shown in FIG. 2, in the fourth return, it was found that the treated water boron concentration was low in Example 1 and Comparative Example 2 having a large P / V value. It has been found that increasing the strength of stirring reduces the boron concentration in the treated water and improves the boron removal rate.
In Example 1, the sedimentation property of the precipitate could be improved, and the boron removal rate could be improved.

(実施例2)
ホウ酸をイオン交換水に溶解させ、ホウ素濃度1,000mg/Lに調整し、模擬排水とした。工業用硫酸バンド及び消石灰は、実施例1と同様に調整した。
前記模擬排水1,000mLを各500mLに分け、一方の模擬排水500mLに、硫酸バンドをアルミニウム濃度が模擬排水500mLに対して1,000mg/Lとなるように添加したものを酸溶液とした。
もう一方の模擬排水500mLに、消石灰をカルシウム濃度が模擬排水500mLに対して5,180mg/Lとなるように添加したものをアルカリ溶液とした。なお、後述する混合工程で、前記酸溶液と混合した後のpHが11.5〜12.0となるように、あらかじめアルカリ溶液にpH調整剤として、水酸化ナトリウムを添加した。
前記酸溶液と前記アルカリ溶液とを合流させ、20分間、攪拌混合した。攪拌の方法としては、P/V値が7.36kW/mとなるようにタービン翼を用いて攪拌した。
その後、実施例1と同様にして、処理水のホウ素濃度を測定した。
(Example 2)
Boric acid was dissolved in ion-exchanged water, adjusted to a boron concentration of 1,000 mg / L, and used as simulated waste water. The industrial sulfuric acid band and slaked lime were prepared in the same manner as in Example 1.
1,000 mL of the simulated waste water was divided into 500 mL, and an acid solution was prepared by adding a sulfuric acid band to 500 mL of one simulated waste water so that the aluminum concentration was 1,000 mg / L with respect to 500 mL of simulated waste water.
An alkaline solution was prepared by adding slaked lime to 500 mL of the simulated waste water so that the calcium concentration was 5,180 mg / L with respect to 500 mL of the simulated waste water. In addition, sodium hydroxide was previously added to the alkaline solution as a pH adjuster so that the pH after mixing with the acid solution was 11.5 to 12.0 in the mixing step described later.
The acid solution and the alkali solution were combined and stirred and mixed for 20 minutes. As a stirring method, stirring was performed using a turbine blade so that the P / V value was 7.36 kW / m 3 .
Thereafter, the boron concentration of the treated water was measured in the same manner as in Example 1.

(比較例3)
模擬排水1,000mLに、硫酸バンドをアルミニウム濃度が模擬排水1,000mLに対して500mg/Lとなるように添加し、消石灰をカルシウム濃度が模擬排水1,000mLに対して2,590mg/Lとなるように添加し、pHが11.5〜12.0になるように水酸化ナトリウム溶液を添加した点以外は、実施例2と同様に行った。
(Comparative Example 3)
Sulfuric acid band is added to 1,000 mL of simulated waste water so that the aluminum concentration is 500 mg / L with respect to 1,000 mL of simulated waste water, and slaked lime is 2,590 mg / L with respect to 1,000 mL of simulated waste water. This was performed in the same manner as in Example 2 except that the sodium hydroxide solution was added so that the pH was 11.5 to 12.0.

実施例2及び比較例3の結果を表3に示す。表3に示されるように、ホウ素濃度が1,000mg/Lと高濃度のホウ素含有水であっても処理可能であった。ホウ素濃度が1,000mg/Lと高い場合、前記酸溶液と、前記アルカリ溶液を事前に調整した後、両者を合流させ、混合することでホウ素除去性が向上した。
なお、実施例2の条件で、多段処理を行うことによりホウ素除去率は約100%となった。
The results of Example 2 and Comparative Example 3 are shown in Table 3. As shown in Table 3, even a boron-containing water having a boron concentration as high as 1,000 mg / L could be treated. When the boron concentration was as high as 1,000 mg / L, the acid removal solution and the alkaline solution were adjusted in advance, and then the two were merged and mixed to improve boron removability.
In addition, the boron removal rate became about 100% by performing multistage processing on the conditions of Example 2. FIG.

表4中、「pH」は模擬排水のpHを示す。また、「反応pH」は、薬品添加後の攪拌時のpHを示す。 In Table 4, “pH” indicates the pH of the simulated waste water. “Reaction pH” indicates the pH at the time of stirring after the addition of the chemical.

図1は、汚泥の返送回数に伴うSV30の推移を示したグラフである。FIG. 1 is a graph showing the transition of SV30 with the number of sludge returns. 図2は、汚泥の返送回数に伴う処理水ホウ素濃度の推移を示したグラフである。FIG. 2 is a graph showing the transition of the treated water boron concentration with the number of sludge returns. 図3は、本発明のホウ素含有水の処理方法のフローを示す図である。FIG. 3 is a diagram showing a flow of the method for treating boron-containing water according to the present invention.

Claims (6)

ホウ素含有水に、アルミニウム化合物及び硫酸含有物質を添加し、酸溶液を調整する酸溶液調整工程と、ホウ素含有水に、カルシウム化合物を添加し、アルカリ溶液を調整するアルカリ溶液調整工程と、前記調整された酸溶液と、前記調整されたアルカリ溶液とを混合して、ホウ素含有沈澱物を生成させる混合工程と、前記生成されたホウ素含有沈澱物を除去する除去工程とを含むことを特徴とするホウ素含有水の処理方法。   Addition of an aluminum compound and a sulfuric acid-containing substance to the boron-containing water to adjust the acid solution, an alkali solution adjustment step to adjust the alkaline solution by adding a calcium compound to the boron-containing water, and the adjustment A mixing step of mixing the prepared acid solution with the adjusted alkaline solution to form a boron-containing precipitate, and a removing step of removing the generated boron-containing precipitate. A method for treating boron-containing water. 混合工程において、モータを用いて攪拌し、前記モータの負荷電力P(kW)と被攪拌液の容積V(m)とが、P/V≧0.175kW/mの関係を満たす請求項1に記載のホウ素含有水の処理方法。 In the mixing step, stirring is performed using a motor, and the load power P (kW) of the motor and the volume V (m 3 ) of the liquid to be stirred satisfy a relationship of P / V ≧ 0.175 kW / m 3. 2. The method for treating boron-containing water according to 1. 被攪拌液を貯留する容器が、内側に邪魔板を備える請求項1から2のいずれかに記載のホウ素含有水の処理方法。   The method for treating boron-containing water according to claim 1, wherein the container for storing the liquid to be stirred is provided with a baffle plate inside. ホウ素含有水のホウ素濃度が1,000mg/L以上である請求項1から3のいずれかに記載のホウ素含有水の処理方法。   The method for treating boron-containing water according to any one of claims 1 to 3, wherein the boron concentration of the boron-containing water is 1,000 mg / L or more. アルカリ溶液調整工程において、pH調整剤をさらに添加する請求項1から4のいずれかに記載のホウ素含有水の処理方法。   The method for treating boron-containing water according to any one of claims 1 to 4, wherein a pH adjusting agent is further added in the alkaline solution adjusting step. 酸溶液調整工程とアルカリ溶液調整工程のいずれか一つ以上の工程において、pH調整剤を添加する請求項1から5のいずれかに記載のホウ素含有水の処理方法。   The method for treating boron-containing water according to any one of claims 1 to 5, wherein a pH adjuster is added in any one or more of the acid solution adjustment step and the alkali solution adjustment step.
JP2008086796A 2008-03-28 2008-03-28 Method for treating boron-containing water Active JP4827876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086796A JP4827876B2 (en) 2008-03-28 2008-03-28 Method for treating boron-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086796A JP4827876B2 (en) 2008-03-28 2008-03-28 Method for treating boron-containing water

Publications (2)

Publication Number Publication Date
JP2009233640A JP2009233640A (en) 2009-10-15
JP4827876B2 true JP4827876B2 (en) 2011-11-30

Family

ID=41248284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086796A Active JP4827876B2 (en) 2008-03-28 2008-03-28 Method for treating boron-containing water

Country Status (1)

Country Link
JP (1) JP4827876B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5451323B2 (en) * 2009-11-10 2014-03-26 学校法人早稲田大学 Water treatment method
JP5483431B2 (en) * 2010-04-14 2014-05-07 Necファシリティーズ株式会社 Method for removing boron from boron-containing wastewater

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108557A (en) * 1995-10-16 1997-04-28 Sumitomo Heavy Ind Ltd Agitation treatment method
JP3333483B2 (en) * 1999-12-13 2002-10-15 独立行政法人産業技術総合研究所 Treatment method and treatment agent for boron-containing water
JP4543478B2 (en) * 2000-02-21 2010-09-15 栗田工業株式会社 Method for treating boron-containing water
JP2002003505A (en) * 2000-06-20 2002-01-09 Japan Polychem Corp METHOD FOR PRODUCING alpha-OLEFIN POLYMER
JP2002233881A (en) * 2001-02-06 2002-08-20 Miyama Kk Method for treating boron-containing water
JP2002346574A (en) * 2001-05-23 2002-12-03 Kurita Water Ind Ltd Boron-containing water treatment method
JP4972827B2 (en) * 2001-05-23 2012-07-11 栗田工業株式会社 Treatment method of flue gas desulfurization waste water
JP4583786B2 (en) * 2004-03-22 2010-11-17 Necファシリティーズ株式会社 Treatment method for boron-containing wastewater
JP4860201B2 (en) * 2005-08-04 2012-01-25 Necファシリティーズ株式会社 Method and apparatus for treating wastewater containing boron
JP4584185B2 (en) * 2006-05-10 2010-11-17 Necファシリティーズ株式会社 Method and apparatus for treating wastewater containing boron

Also Published As

Publication number Publication date
JP2009233640A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP2008188479A (en) Method and apparatus for treating waste acid liquid
CN105084589A (en) Treatment method and system for wet magnesium desulphurization wastewater
CN105217836B (en) A kind of method using desulfurization wastewater removal phosphor in sewage
WO2004110940A1 (en) Wastewater treatment process
JP2013202582A (en) Treatment method and treatment apparatus of water containing calcium and magnesium
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP4954131B2 (en) Treatment method of water containing borofluoride
JP4827876B2 (en) Method for treating boron-containing water
CN102145946A (en) Method for treating trace amount of cadmium in wastewater by chelation, coagulation and ultrafiltration combination
JP4860201B2 (en) Method and apparatus for treating wastewater containing boron
CN103011360A (en) Treatment method for industrial wastewater generated by copper wet-process smelting
CN107698059A (en) A kind of phosphorus-containing wastewater contamination precipitation processing method
JP2009233641A (en) Method for treating boron-containing water
JP4396965B2 (en) Heavy metal removal method and apparatus
CN1837082A (en) Treatment process for removing ammonia nitrogen in waste water
JP2017159194A (en) Treatment equipment and treatment method for heavy metal-containing water
JP2013119081A (en) Treatment method and treatment apparatus for phosphorus-containing wastewater
JP2018130717A (en) Processing method and system for treatment of desulfurization waste water
Lin et al. Role of phase transformation of barium perborates in the effective removal of boron from aqueous solution via chemical oxo-precipitation
JP2000117265A (en) Treatment for molybdenum-containing waste water
JP2007283216A (en) Boron-containing wastewater treatment method
JP2014113540A (en) Waste water treatment method, and waste water treatment apparatus
CN105906098B (en) A method of processing industrial wastewater containing nickel complex
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
CN105084943A (en) Low-cost waste water phosphorus fertilizer production technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4827876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250