JP2009101262A - Method and apparatus for water treatment - Google Patents

Method and apparatus for water treatment Download PDF

Info

Publication number
JP2009101262A
JP2009101262A JP2007273296A JP2007273296A JP2009101262A JP 2009101262 A JP2009101262 A JP 2009101262A JP 2007273296 A JP2007273296 A JP 2007273296A JP 2007273296 A JP2007273296 A JP 2007273296A JP 2009101262 A JP2009101262 A JP 2009101262A
Authority
JP
Japan
Prior art keywords
treatment
fenton
water
cod
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007273296A
Other languages
Japanese (ja)
Inventor
Hiroaki Meguro
裕章 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2007273296A priority Critical patent/JP2009101262A/en
Publication of JP2009101262A publication Critical patent/JP2009101262A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment method which employs a small amount of activated carbon, and can treat raw water containing COD components while suppressing the amount of generated sludge. <P>SOLUTION: The water treatment method comprises a first Fenton treatment process performing a first Fenton treatment of the raw water containing COD components, a biological treatment process performing biological treatment of the treated water subjected to the first Fenton treatment, and a second Fenton treatment process performing second Fenton treatment of the biologically treated water, and reduces the COD concentration of the treated water to equal to or lower than 20 mg/L. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、COD成分を含む原水を酸化分解処理する水処理方法及び水処理装置に関するものである。   The present invention relates to a water treatment method and a water treatment apparatus for oxidizing and decomposing raw water containing a COD component.

COD成分を含む難生物分解性高濃度COD含有排水の処理方法としては、多くの場合、廃液として濃縮等の操作を経て産業廃棄物として処分されている。その場合、処理コストが高いことが欠点として挙げられる。   In many cases, the wastewater containing highly COD-containing wastewater containing COD components is disposed as industrial waste through operations such as concentration as waste liquid. In that case, a high processing cost is cited as a drawback.

一方、排水としての処理方法は、オゾン酸化やフェントン処理等を組み合わせることで排水中のCOD成分を易生物分解化させ、それを生物処理する方法が提案されている。ここで、フェントン処理とは、過酸化水素(H22)、Fe2+を酸性条件下で反応させて発生するヒドロキシラジカルにより、有機物を酸化分解する方法である。 On the other hand, as a wastewater treatment method, a method of biodegrading COD components in wastewater by biodegradation by combining ozone oxidation and Fenton treatment has been proposed. Here, the Fenton treatment is a method in which organic substances are oxidatively decomposed by hydroxy radicals generated by reacting hydrogen peroxide (H 2 O 2 ) and Fe 2+ under acidic conditions.

近年、このように排水として処理する場合は、COD総量規制により、高濃度COD成分を含む原水に対してでも最終処理水中のCOD濃度を10〜20mg/L以下とするニーズが増大している。   In recent years, when treated as wastewater in this way, due to the COD total amount regulation, there is an increasing need for the COD concentration in the final treated water to be 10 to 20 mg / L or less even for raw water containing high-concentration COD components.

特許3139337号公報Japanese Patent No. 3139337 特公平4−080758号公報Japanese Patent Publication No. 4-080758 特開昭59−000375号公報JP 59-000375 A

しかしながら従来のフェントン処理−生物処理の方法では、最終処理水中のCOD濃度を10〜20mg/L以下とすることは難しい。すなわち従来の技術における生物処理においては、理想的に処理できても、流入する原水のCOD濃度に対して約10%程度のCOD成分が処理水に残存することが経験的に知られており、例えばCOD濃度1000mg/L以上の原水をフェントン処理により易生物分解化させてCOD成分を50〜95%程度処理した後に生物処理をした場合、通常は50mg/L〜300mg/L程度のCOD成分が残存してしまうため、最終処理水中のCOD濃度を10〜20mg/L以下とするためには、得られた処理水をさらに活性炭塔による吸着などで処理しなくてはならず、使用する活性炭量が増加し、処理コストが膨大となる欠点がある。   However, in the conventional Fenton treatment-biological treatment method, it is difficult to set the COD concentration in the final treated water to 10 to 20 mg / L or less. That is, it is empirically known that in the biological treatment in the conventional technology, even if it can be ideally treated, about 10% of the COD component remains in the treated water with respect to the COD concentration of the inflowing raw water. For example, when raw water having a COD concentration of 1000 mg / L or more is easily biodegraded by Fenton treatment and treated with about 50 to 95% of the COD component, the COD component of about 50 mg / L to 300 mg / L is usually present. In order to reduce the COD concentration in the final treated water to 10 to 20 mg / L or less, the treated water thus obtained must be further treated by adsorption with an activated carbon tower, and the amount of activated carbon used. Increases the processing cost.

本発明は、使用する活性炭量が少なく、発生汚泥量を抑制してCOD成分を含む原水を処理することが可能な水処理方法及び水処理装置である。   The present invention is a water treatment method and a water treatment apparatus capable of treating raw water containing a COD component while suppressing the amount of generated sludge while using a small amount of activated carbon.

本発明は、COD成分を含有する原水に対して第1のフェントン処理を行う第1フェントン処理工程と、前記第1のフェントン処理を行った第1フェントン処理水に対して生物処理を行う生物処理工程と、前記生物処理を行った生物処理水に対して、さらに第2のフェントン処理を行う第2フェントン処理工程と、を含み、処理水のCOD濃度を20mg/L以下にする水処理方法である。   The present invention provides a first Fenton treatment step in which a first Fenton treatment is performed on raw water containing a COD component, and a biological treatment in which a biological treatment is performed on the first Fenton treated water that has been subjected to the first Fenton treatment. And a second Fenton treatment step of performing a second Fenton treatment on the biologically treated water that has been subjected to the biological treatment, wherein the COD concentration of the treated water is 20 mg / L or less. is there.

また、前記水処理方法において、前記原水のCOD濃度が1000mg/L以上6000mg/L以下であるときに本発明がより好適に適用でき効果が高い。   Moreover, in the said water treatment method, when the COD density | concentration of the said raw | natural water is 1000 mg / L or more and 6000 mg / L or less, this invention can be applied more suitably and an effect is high.

また、前記水処理方法の少なくとも前記第1フェントン処理工程において、活性炭を添加して処理を行うことが好ましい。   In addition, it is preferable to perform the treatment by adding activated carbon in at least the first Fenton treatment step of the water treatment method.

また、前記水処理方法の前記第2フェントン処理工程において、活性炭を添加して処理を行い、発生した汚泥を前記第1フェントン処理工程に返送することが好ましい。   Moreover, in the said 2nd Fenton process process of the said water treatment method, it is preferable to add activated carbon and process and to return the generated sludge to the said 1st Fenton process process.

また、前記水処理方法において、前記生物処理が、浮遊式生物処理または固定床式生物処理であることが好ましい。   In the water treatment method, the biological treatment is preferably a floating biological treatment or a fixed bed biological treatment.

また、前記水処理方法の前記第1のフェントン処理において、バッチ処理を行うことが好ましい。   Moreover, it is preferable to perform a batch process in the first Fenton process of the water treatment method.

また、本発明は、COD成分を含有する原水に対して第1のフェントン処理を行うための第1フェントン処理手段と、前記第1のフェントン処理を行った第1フェントン処理水に対して生物処理を行うための生物処理手段と、前記生物処理を行った生物処理水に対して、さらに第2のフェントン処理を行うための第2フェントン処理手段と、を備える水処理装置である。   The present invention also provides a first Fenton treatment means for performing a first Fenton treatment on raw water containing a COD component, and a biological treatment on the first Fenton treated water subjected to the first Fenton treatment. And a second Fenton treatment means for performing a second Fenton treatment on the biologically treated water subjected to the biological treatment.

本発明では、COD成分を含有する原水に対して、フェントン処理を行った後に生物処理を行い、その後さらにフェントン処理を行うことにより、それらの処理の後段で使用する活性炭量が少なく、発生汚泥量を抑制してCOD成分を含む原水を処理することが可能な水処理方法及び水処理装置を提供することができる。   In the present invention, the raw water containing the COD component is subjected to biological treatment after performing Fenton treatment, and then further Fenton treatment, so that the amount of activated carbon used in the subsequent stage of those treatments is small, and the amount of generated sludge It is possible to provide a water treatment method and a water treatment apparatus capable of treating raw water containing a COD component while suppressing the above.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

従来、難生物分解性高濃度COD含有原水をフェントン処理した後に生物処理を行った場合に残留するCOD成分は、「前段のフェントン処理でも分解できなかった難分解性COD成分」と考えられてきた。そのため、フェントン処理した後に生物処理を行った原水中のCODをさらに低減させる場合はフェントン処理では不適と考えられていた。さらにフェントン処理は産業廃棄が必要となる汚泥の生成が比較的多いために、フェントン処理を一つの処理システムの中で個別に二回行うことは敬遠されてきた。従って前述した通り、最終処理水に対して活性炭塔による吸着処理が主に提案されてきたが、COD50〜300mg/L程度の原水を20mg/L以下に処理するためには活性炭の交換頻度が高く、処理コストが膨大となっていた。   Conventionally, the COD component remaining when the raw biodegradable raw water containing highly biodegradable high-concentration COD is treated with Fenton has been considered as “a hardly decomposable COD component that could not be decomposed even in the previous Fenton treatment”. . Therefore, when further reducing COD in raw water that has been subjected to biological treatment after Fenton treatment, it has been considered unsuitable for Fenton treatment. Furthermore, since the production of sludge that requires industrial disposal is relatively large, the Fenton treatment has been refrained from performing the Fenton treatment twice individually in one treatment system. Therefore, as described above, adsorption treatment using an activated carbon tower has been mainly proposed for the final treated water. However, in order to treat raw water having a COD of about 50 to 300 mg / L to 20 mg / L or less, the replacement frequency of activated carbon is high. The processing cost was enormous.

発明者は鋭意検討の結果、難生物分解性高濃度COD含有原水をフェントン処理した後に生物処理を行った場合に残留するCOD成分が、生物処理により性状が変化することにより、さらにフェントン処理により分解可能であることを見出し、生物処理の後に再度フェントン処理を行うことで、最終処理水中のCODを20mg/L以下にできることを明らかとした。   As a result of intensive studies, the inventors have determined that the residual COD component when the biological treatment is performed after the non-biodegradable high-concentration COD-containing raw water is subjected to the biological treatment is further degraded by the Fenton treatment due to the change in properties due to the biological treatment. It was found that the COD in the final treated water could be reduced to 20 mg / L or less by performing the Fenton treatment again after the biological treatment.

また、このときの汚泥の発生量に関しては、一見するとフェントン処理を二度適用することでかなりの量が増大すると思われるが、フェントン処理で発生する汚泥量は主に処理対象COD濃度に比例するので、フェントン処理−生物処理を経た後段での比較的低濃度のCOD成分に対するフェントン処理において発生する汚泥量は、前段でのフェントン処理での高濃度のCOD成分に対して発生する汚泥量と比較すると十数%程度に過ぎず、従来のフェントン処理−生物処理システムと大差ないことがわかり、本発明に至った。   In addition, regarding the amount of sludge generated at this time, it seems that the amount of sludge generated by Fenton treatment is increased considerably by applying the Fenton treatment twice, but the amount of sludge generated by Fenton treatment is mainly proportional to the COD concentration to be treated. Therefore, the amount of sludge generated in the Fenton treatment for the relatively low concentration COD component in the latter stage after the Fenton treatment-biological treatment is compared with the amount of sludge generated for the high concentration COD component in the Fenton treatment in the former stage. Then, it is only about a dozen percent, and it was found that there was no significant difference from the conventional Fenton treatment-biological treatment system, and the present invention was achieved.

本実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。水処理装置1は、第1フェントン処理手段である第1フェントン処理装置10と、生物処理手段である生物処理装置12と、第2フェントン処理手段である第2フェントン処理装置14と、を備える。   An outline of an example of the water treatment apparatus according to the present embodiment is shown in FIG. 1 and the configuration thereof will be described. The water treatment apparatus 1 includes a first Fenton treatment apparatus 10 that is a first Fenton treatment means, a biological treatment apparatus 12 that is a biological treatment means, and a second Fenton treatment apparatus 14 that is a second Fenton treatment means.

水処理装置1において、まずCOD成分を含有する原水に対して第1のフェントン処理が行われる(第1フェントン処理工程)。次に第1のフェントン処理が行われた第1フェントン処理水に対して生物処理が行われる(生物処理工程)。そして、生物処理が行われた生物処理水に対して、さらに第2のフェントン処理が行われる(第2フェントン処理工程)。これにより、最終処理水のCOD濃度を20mg/L以下にすることができる。   In the water treatment apparatus 1, first, the first Fenton treatment is performed on the raw water containing the COD component (first Fenton treatment step). Next, biological treatment is performed on the first Fenton treated water that has been subjected to the first Fenton treatment (biological treatment step). Then, a second Fenton treatment is further performed on the biologically treated water that has been subjected to the biological treatment (second Fenton treatment step). Thereby, the COD concentration of the final treated water can be reduced to 20 mg / L or less.

また、図2に示すように活性炭処理手段である活性炭処理装置16を第2フェントン処理装置14の後段に備えて、最終処理水に対して安全を考慮して活性炭処理が行われてもよい。活性炭処理手段としては活性炭塔等が挙げられる。当然ながら、活性炭の交換頻度は、従来のフェントン処理−生物処理−活性炭処理の方法と比較して格段に小さい。   Moreover, as shown in FIG. 2, the activated carbon treatment apparatus 16 which is an activated carbon treatment means is provided in the back | latter stage of the 2nd Fenton treatment apparatus 14, and activated carbon treatment may be performed in consideration of safety with respect to the final treated water. Examples of the activated carbon treatment means include an activated carbon tower. Naturally, the replacement frequency of the activated carbon is much smaller than the conventional method of Fenton treatment-biological treatment-activated carbon treatment.

以下、各装置及び各工程について説明する。図3に第1フェントン処理装置10及び第2フェントン処理装置14の一例の概略構成図を示す。なお、第1フェントン処理装置10及び第2フェントン処理装置14の構成はこれに限られず、また同じ構成であっても異なる構成であってもよい。第1フェントン処理装置10及び第2フェントン処理装置14は、反応槽18(第2フェントン処理装置14においては反応槽28)と、中和槽20(同中和槽30)と、還元槽22(同還元槽32)と、凝集槽24(同凝集槽34)と、固液分離手段である沈殿槽26(同沈殿槽36)とを備える。第1フェントン処理装置10及び第2フェントン処理装置14において、反応槽18(28)の出口と中和槽20(30)の入口、中和槽20(30)の出口と還元槽22(32)の入口、還元槽22(32)の出口と凝集槽24(34)の入口、凝集槽24(34)の出口と沈殿槽26(36)の入口がそれぞれ配管等により接続されている。   Hereinafter, each device and each process will be described. FIG. 3 shows a schematic configuration diagram of an example of the first Fenton processing device 10 and the second Fenton processing device 14. In addition, the structure of the 1st Fenton processing apparatus 10 and the 2nd Fenton processing apparatus 14 is not restricted to this, Moreover, the same structure or a different structure may be sufficient. The 1st Fenton processing apparatus 10 and the 2nd Fenton processing apparatus 14 are the reaction tank 18 (the reaction tank 28 in the 2nd Fenton processing apparatus 14), the neutralization tank 20 (the neutralization tank 30), and the reduction tank 22 ( The reduction tank 32), the coagulation tank 24 (the coagulation tank 34), and the precipitation tank 26 (the same precipitation tank 36) which is a solid-liquid separation means are provided. In the first Fenton treatment apparatus 10 and the second Fenton treatment apparatus 14, the outlet of the reaction tank 18 (28) and the inlet of the neutralization tank 20 (30), the outlet of the neutralization tank 20 (30) and the reduction tank 22 (32) , The outlet of the reduction tank 22 (32) and the inlet of the agglomeration tank 24 (34), and the outlet of the agglomeration tank 24 (34) and the inlet of the sedimentation tank 26 (36) are connected by piping or the like.

第1フェントン処理装置10において、COD成分を含有する原水(被処理水)が反応槽18に送液され、反応槽18において、過酸化水素、少なくとも第一鉄塩を含む分解触媒等が添加され、COD成分が酸化により分解される(分解工程)。このとき、硫酸等の酸により酸性条件に調整される。酸化処理後、反応液は中和槽20に送液され、中和槽20においてアルカリ剤が添加され、pHが6〜10.5に調整される(中和工程)。その後、中和された中和液は還元槽22に送液され、還元剤が添加されて残留過酸化水素が還元され(還元工程)、残留過酸化水素が除去される。残留過酸化水素が除去された還元液は凝集槽24へ送液され、凝集剤が添加されてフロックを成長させ、凝集される(凝集工程)。成長したフロックを含む凝集液は沈殿槽26へ送液され、自然沈降分離により、第二鉄イオン(Fe3+)等を含む汚泥と処理水とに固液分離される(固液分離工程)。汚泥のうち少なくとも一部は図示しない返送手段により反応槽18へ返送され、過酸化水素、分解触媒等と共に再び反応槽18へ添加されてもよい。また、汚泥のうち少なくとも一部は引き抜き汚泥として系外へ排出してもよい。一方、固液分離された第1フェントン処理水は易生物分解化されたCOD成分を含み、次の生物処理装置12へ送液される。 In the first Fenton treatment apparatus 10, raw water (treated water) containing a COD component is sent to the reaction tank 18, and hydrogen peroxide, a decomposition catalyst containing at least a ferrous salt, and the like are added to the reaction tank 18. The COD component is decomposed by oxidation (decomposition step). At this time, the acid condition is adjusted with an acid such as sulfuric acid. After the oxidation treatment, the reaction solution is sent to the neutralization tank 20, where an alkali agent is added in the neutralization tank 20, and the pH is adjusted to 6 to 10.5 (neutralization step). Thereafter, the neutralized neutralized liquid is sent to the reduction tank 22, a reducing agent is added to reduce the residual hydrogen peroxide (reduction process), and the residual hydrogen peroxide is removed. The reducing solution from which the residual hydrogen peroxide has been removed is sent to the agglomeration tank 24 where a flocculant is added to grow flocs and agglomerate (aggregation step). The agglomerated liquid containing the grown floc is sent to the precipitation tank 26, and is solid-liquid separated into sludge containing ferric ions (Fe 3+ ) and the treated water by natural sedimentation separation (solid-liquid separation step). . At least a part of the sludge may be returned to the reaction tank 18 by a return means (not shown) and added again to the reaction tank 18 together with hydrogen peroxide, a decomposition catalyst, and the like. Further, at least a part of the sludge may be extracted and discharged out of the system as sludge. On the other hand, the first Fenton-treated water that has been subjected to solid-liquid separation contains a readily biodegradable COD component, and is sent to the next biological treatment apparatus 12.

生物処理装置12における生物処理は一般的な生物処理が用いられ、浮遊式や担体を添加して効率を高めた流動床式、充填物へ通水する固定床式などが用いられる。その後、再度フェントン処理を行うことで、COD濃度が20mg/L以下の最終処理水が得られる。   As the biological treatment in the biological treatment apparatus 12, a general biological treatment is used, and a floating type, a fluidized bed type in which efficiency is increased by adding a carrier, a fixed bed type in which water is supplied to the packing, and the like are used. Thereafter, by performing the Fenton treatment again, final treated water having a COD concentration of 20 mg / L or less is obtained.

図4に、生物処理装置12の一般的な概略構成を示す。生物処理装置12は、生物処理槽38と、沈殿槽40とを備える。第1フェントン処理水は、生物処理槽(曝気槽)38に送液される。この生物処理槽38には、返送汚泥が供給されるとともに、ブロア42からの空気により槽内が曝気撹拌され、好気条件下におかれている。そこで、汚泥中の好気性微生物により第1フェントン処理水中の有機物が分解される。生物処理槽38からの生物反応水は、沈殿槽40に流入され、ここで汚泥が沈降分離され、上澄みが生物処理水として次の第2フェントン処理装置14へ送液される。また、沈殿槽40の沈殿汚泥の少なくとも一部は、返送汚泥ポンプ44によって、生物処理槽38に返送汚泥として返送されてもよい。沈殿汚泥の少なくとも一部は余剰汚泥として排出されてもよい。なお、図4の示す構成は一例であって、これに限定されるものではない。   FIG. 4 shows a general schematic configuration of the biological treatment apparatus 12. The biological treatment apparatus 12 includes a biological treatment tank 38 and a sedimentation tank 40. The first Fenton-treated water is sent to a biological treatment tank (aeration tank) 38. The biological treatment tank 38 is supplied with return sludge, and the inside of the tank is aerated and agitated by the air from the blower 42 to be in an aerobic condition. Therefore, organic substances in the first Fenton-treated water are decomposed by aerobic microorganisms in the sludge. The biological reaction water from the biological treatment tank 38 flows into the sedimentation tank 40, where the sludge is settled and separated, and the supernatant is sent to the second Fenton treatment apparatus 14 as biological treatment water. Further, at least a part of the sedimented sludge in the sedimentation tank 40 may be returned to the biological treatment tank 38 as the returned sludge by the return sludge pump 44. At least a part of the precipitated sludge may be discharged as excess sludge. The configuration shown in FIG. 4 is an example, and the present invention is not limited to this.

次に、図3の第2フェントン処理装置14において、生物処理装置12からの生物処理水が反応槽28に送液され、反応槽28において、過酸化水素、少なくとも第一鉄塩を含む分解触媒等が添加され、残存COD成分が酸化により分解される(分解工程)。このとき、硫酸等の酸により酸性条件に調整される。酸化処理後、反応液は中和槽30に送液され、中和槽30においてアルカリ剤が添加され、pHが6〜10.5に調整される(中和工程)。その後、中和された中和液は還元槽32に送液され、還元剤が添加されて残留過酸化水素が還元され(還元工程)、残留過酸化水素が除去される。残留過酸化水素が除去された還元液は凝集槽34へ送液され、凝集剤が添加されてフロックを成長させ、凝集される(凝集工程)。成長したフロックを含む凝集液は沈殿槽36へ送液され、自然沈降分離により、第二鉄イオン(Fe3+)等を含む汚泥と処理水とに固液分離される(固液分離工程)。汚泥のうち少なくとも一部は図示しない返送手段により反応槽28へ返送され、過酸化水素、分解触媒等と共に再び反応槽28へ添加されてもよい。また、後述するように汚泥のうち少なくとも一部は第1フェントン処理装置10の反応槽18へ返送されてもよい。また、汚泥のうち少なくとも一部は引き抜き汚泥として系外へ排出してもよい。一方、固液分離された第2フェントン処理水は最終処理水として系外へ排出される。 Next, in the second Fenton treatment device 14 of FIG. 3, the biologically treated water from the biological treatment device 12 is sent to the reaction vessel 28, and in the reaction vessel 28, a decomposition catalyst containing hydrogen peroxide and at least a ferrous salt. Etc. are added, and the remaining COD components are decomposed by oxidation (decomposition step). At this time, the acid condition is adjusted with an acid such as sulfuric acid. After the oxidation treatment, the reaction solution is sent to the neutralization tank 30, where an alkali agent is added in the neutralization tank 30, and the pH is adjusted to 6 to 10.5 (neutralization step). Thereafter, the neutralized neutralized solution is sent to the reduction tank 32, a reducing agent is added to reduce the residual hydrogen peroxide (reduction step), and the residual hydrogen peroxide is removed. The reducing solution from which the residual hydrogen peroxide has been removed is sent to the agglomeration tank 34 where a flocculant is added to grow flocs and agglomerate (aggregation step). The agglomerated liquid containing the grown floc is sent to the precipitation tank 36, and is solid-liquid separated into sludge containing ferric ions (Fe 3+ ) and the treated water by natural sedimentation separation (solid-liquid separation step). . At least a part of the sludge may be returned to the reaction tank 28 by a return means (not shown) and added to the reaction tank 28 together with hydrogen peroxide, a decomposition catalyst, and the like. Further, as described later, at least a part of the sludge may be returned to the reaction tank 18 of the first Fenton treatment apparatus 10. Further, at least a part of the sludge may be extracted and discharged out of the system as sludge. On the other hand, the second Fenton treated water subjected to the solid-liquid separation is discharged out of the system as final treated water.

本実施形態に係る水処理方法は、有機物、例えばジメチルスルホキシド(DMSO)、エチレンジアミン四酢酸(EDTA)、フェノール類、有機塩素化合物、環境ホルモン、生物処理水、揚水した汚染地下水、界面活性剤等の難生物分解性有機物の酸化分解、又は易生物分解化等に使用される。原水中のCOD成分の濃度としては、どのような濃度であっても薬剤濃度の最適化等により効果はあるが、CODで1000mg/L以上6000mg/L以下の原水に対して本実施形態に係る水処理装置及び水処理方法を適用することが好ましい。原水のCODが1000mg/L未満の場合、フェントン処理−生物処理後でCOD10〜20mg/L以下が達成される場合が多い。また、原水のCODが6000mg/Lを越える場合は、過酸化水素等の薬剤コストを考慮すると、コスト高になる場合がある。   The water treatment method according to this embodiment includes organic substances such as dimethyl sulfoxide (DMSO), ethylenediaminetetraacetic acid (EDTA), phenols, organochlorine compounds, environmental hormones, biologically treated water, pumped contaminated groundwater, surfactants, and the like. Used for oxidative degradation or biodegradation of hardly biodegradable organic substances. The concentration of the COD component in the raw water is effective by optimizing the drug concentration at any concentration, but this embodiment relates to the raw water having a COD of 1000 mg / L or more and 6000 mg / L or less. It is preferable to apply a water treatment apparatus and a water treatment method. When the COD of raw water is less than 1000 mg / L, COD of 10 to 20 mg / L or less is often achieved after Fenton treatment-biological treatment. In addition, when the COD of raw water exceeds 6000 mg / L, the cost may increase due to the cost of chemicals such as hydrogen peroxide.

また、原水のBOD/CODの値が好ましくは0.4以下、さらに好ましくは0.1以下である難生物分解性高濃度COD含有原水に対して、本実施形態に係る水処理装置及び水処理方法を適用することが好ましい。原水のBOD/CODの値が0.4を超えると、生物処理−活性炭処理により分解処理を行う方が効率がよい場合がある。原水のBOD/CODの値が0.4以下で、かつ原水のCODが1000mg/L未満の場合、フェントン処理−生物処理後でCOD10〜20mg/L以下が達成される場合が多い。したがって、本実施形態に係る水処理方法は原水のBOD/CODの値が0.4以下で、かつ原水のCODが1000mg/L以上の場合に特に好適に適用することができる。このような難生物分解性高濃度COD含有原水に対して、フェントン処理を行った後に生物処理を行い、さらにその生物処理水に対してフェントン処理を行うことにより、CODとして20mg/L以下の処理水質を得ることができる。このような難生物分解性高濃度COD含有原水としては、電子産業における基板の洗浄排水、塗料や染色排水などが挙げられる。   Moreover, the water treatment apparatus and water treatment according to the present embodiment for the raw water containing hardly biodegradable high-concentration COD having a BOD / COD value of raw water of preferably 0.4 or less, more preferably 0.1 or less It is preferable to apply the method. When the value of BOD / COD of raw water exceeds 0.4, it may be more efficient to perform a decomposition treatment by biological treatment-activated carbon treatment. When the value of BOD / COD of raw water is 0.4 or less and the COD of raw water is less than 1000 mg / L, COD of 10 to 20 mg / L or less is often achieved after Fenton treatment-biological treatment. Therefore, the water treatment method according to this embodiment can be particularly suitably applied when the raw water BOD / COD value is 0.4 or less and the raw water COD is 1000 mg / L or more. By performing Fenton treatment on such hardly biodegradable high-concentration COD-containing raw water, and further performing Fenton treatment on the biologically treated water, a COD of 20 mg / L or less is obtained. Water quality can be obtained. Examples of such raw water containing hardly biodegradable high-concentration COD include substrate waste water, paint and dye waste water in the electronics industry.

ここで、COD値はJIS−K0102(1998)−17に従って、BOD値はJIS−K0102(1998)−21に従って分析することができる。   Here, the COD value can be analyzed according to JIS-K0102 (1998) -17, and the BOD value can be analyzed according to JIS-K0102 (1998) -21.

第1フェントン処理工程及び第2フェントン処理工程において、反応槽18(28)では少なくとも第一鉄塩を含む分解触媒から発生する第一鉄イオン及び過酸化水素が同時に存在すればよい。ここで、少なくとも第1フェントン処理工程において、反応槽18に活性炭を添加して処理を行うことが好ましい。活性炭を添加するとフェントン反応自体の効率が向上し、さらにはヒドロキシラジカルで分解しにくい疎水性の難生物分解性物質を吸着により除去することもできるので、難生物分解性高濃度COD含有原水に適用する場合は特に二重の望ましい効果をもたらす。もちろん第2フェントン処理工程においても活性炭を添加して処理を行ってもよい。   In the first Fenton treatment step and the second Fenton treatment step, ferrous ions and hydrogen peroxide generated from the decomposition catalyst containing at least a ferrous salt may be simultaneously present in the reaction tank 18 (28). Here, at least in the first Fenton treatment step, it is preferable to perform the treatment by adding activated carbon to the reaction tank 18. Addition of activated carbon improves the efficiency of the Fenton reaction itself, and can also remove hydrophobic non-biodegradable substances that are difficult to decompose with hydroxy radicals by adsorption, so it is applicable to raw water containing highly biodegradable high-concentration COD. If you do so, you will have a double desired effect. Of course, in the second Fenton treatment step, the treatment may be performed by adding activated carbon.

本実施形態で用いられる活性炭は、特に限定されるものではないが、比表面積を確保するために粉炭であることが好ましい。活性炭は、分解工程において発生する第二鉄イオン(Fe3+)の触媒活性を上昇させ、分解反応を促進する役割を主に行う。活性炭の反応促進効果は、活性炭の原料によってある程度は左右されるが著しい差はなく、コスト及び汎用性を考慮すると石炭系又は木質系の活性炭が好適に使用される。活性炭によるフェントン法の促進効果は、反応系中に存在するFe3+を活性化させる作用によるものなので、添加する鉄塩は、第一鉄塩の他に、通常のフェントン法では使用に適さない第二鉄塩も使用することができる。第一鉄塩及び第二鉄塩としては、それらの硫酸塩、塩酸塩、硝酸塩などが使用できるが、硫酸鉄や塩化鉄が特に好適に使用される。 The activated carbon used in the present embodiment is not particularly limited, but is preferably pulverized coal in order to ensure a specific surface area. Activated carbon mainly plays a role of increasing the catalytic activity of ferric ions (Fe 3+ ) generated in the decomposition step and promoting the decomposition reaction. The reaction promoting effect of the activated carbon depends to some extent on the activated carbon raw material, but there is no significant difference. In view of cost and versatility, coal-based or wood-based activated carbon is preferably used. The activated effect of the Fenton method with activated carbon is due to the action of activating Fe 3+ present in the reaction system, so the iron salt to be added is not suitable for use in the normal Fenton method in addition to the ferrous salt A ferric salt can also be used. As the ferrous salt and ferric salt, sulfates, hydrochlorides, nitrates and the like thereof can be used, and iron sulfate and iron chloride are particularly preferably used.

フェントン処理におけるその他の処理条件については、第1フェントン処理工程及び第2フェントン処理工程においてほとんど同じでかまわない。   Other processing conditions in the Fenton treatment may be almost the same in the first Fenton treatment step and the second Fenton treatment step.

反応槽18(28)におけるpHは酸性条件であれば良いが、系内の溶存鉄濃度を保つことを考慮すると、pH2〜3の範囲、特にpH2.4〜2.6の範囲(2.5付近)が反応に好適である。pHの調整には硫酸、塩酸、酢酸、リン酸、硝酸等の酸が用いられるが、硫酸を使用することが好ましい。硝酸は高価であり且つ後段の窒素負荷上昇につながり、塩酸は塩化物イオンによる反応がラジカルスカベンジャーとして作用するため好ましくない。   The pH in the reaction tank 18 (28) may be an acidic condition. However, in consideration of maintaining the dissolved iron concentration in the system, the pH is in the range of 2 to 3, particularly in the range of pH 2.4 to 2.6 (2.5 Near) is suitable for the reaction. Acids such as sulfuric acid, hydrochloric acid, acetic acid, phosphoric acid and nitric acid are used to adjust the pH, but it is preferable to use sulfuric acid. Nitric acid is expensive and leads to a subsequent increase in nitrogen load, and hydrochloric acid is not preferred because the reaction with chloride ions acts as a radical scavenger.

反応槽18(28)における薬剤の添加濃度は、処理対象となる原水のCOD濃度によって異なるが、概ねFe2+の添加量は原水のCOD濃度に対して化学当量比で0.05〜0.25倍(すなわち、Fe2+/COD(化学当量比)=0.05〜0.25)であることが好ましい。Fe2+の添加量が原水のCOD濃度に対して0.25倍を超える範囲では、多くの汚泥が発生してしまう場合がある。また、Fe2+の添加量が原水のCOD濃度に対して0.05倍未満であると良好なCOD分解率が得られない場合がある。Fe2+/COD(化学当量比)=0.05〜0.15の範囲であることがより好ましい。また、Fe2+の添加量は、概ね過酸化水素の添加量に対して化学当量比で0.05〜1倍であることが好ましい。 The addition concentration of the chemical in the reaction tank 18 (28) varies depending on the COD concentration of the raw water to be treated, but the addition amount of Fe 2+ is generally 0.05 to 0. 0 in terms of the chemical equivalent to the COD concentration of the raw water. It is preferably 25 times (that is, Fe 2+ / COD (chemical equivalent ratio) = 0.05 to 0.25). When the amount of Fe 2+ added exceeds 0.25 times the COD concentration of raw water, a large amount of sludge may be generated. Moreover, when the added amount of Fe 2+ is less than 0.05 times the COD concentration of raw water, a good COD decomposition rate may not be obtained. Fe 2+ / COD (chemical equivalent ratio) is more preferably in the range of 0.05 to 0.15. Further, the addition amount of Fe 2+ is preferably 0.05 to 1 times as much as the chemical equivalent ratio with respect to the addition amount of hydrogen peroxide.

過酸化水素の添加量は概ね原水のCODに対して化学当量比で0.8〜3倍(すなわち、過酸化水素/COD(化学当量比)=0.8〜3)であることが好ましい。過酸化水素の添加量が原水のCODに対して3倍を超えると、残留過酸化水素濃度が高くなり過酸化水素の還元処理のコストが増大してしまう場合がある。過酸化水素の添加量が原水のCODに対して0.8倍未満であると、良好なCOD分解率が得られない場合がある。また、過酸化水素/COD(化学当量比)=1〜2の範囲であることがより好ましい。   The amount of hydrogen peroxide added is preferably about 0.8 to 3 times the chemical equivalent ratio of the raw water COD (that is, hydrogen peroxide / COD (chemical equivalent ratio) = 0.8 to 3). If the amount of hydrogen peroxide added exceeds 3 times the COD of the raw water, the residual hydrogen peroxide concentration may increase and the cost of hydrogen peroxide reduction may increase. If the amount of hydrogen peroxide added is less than 0.8 times the COD of raw water, a good COD decomposition rate may not be obtained. Further, hydrogen peroxide / COD (chemical equivalent ratio) = 1 to 2 is more preferable.

活性炭の添加量は、反応槽18(28)において添加する第一鉄塩のFe2+に対して重量比で1〜20倍(すなわち、活性炭/Fe2+(重量比)=1〜20)であることが好ましい。活性炭の添加量がFe2+に対して20倍を超えてもCOD分解率は大きく向上せず、また凝集不良が起きやすくなる。活性炭の添加量がFe2+に対して1倍未満であると良好なCOD分解率が得られない場合がある。また、活性炭/Fe2+(重量比)=1〜10の範囲であることがより好ましい。 The addition amount of the activated carbon is 1 to 20 times by weight with respect to Fe 2+ of the ferrous salt added in the reaction tank 18 (28) (that is, activated carbon / Fe 2+ (weight ratio) = 1 to 20). It is preferable that Even if the addition amount of the activated carbon exceeds 20 times with respect to Fe 2+ , the COD decomposition rate does not greatly improve, and agglomeration failure tends to occur. When the added amount of activated carbon is less than 1 time with respect to Fe 2+ , a good COD decomposition rate may not be obtained. Further, activated carbon / Fe 2+ (weight ratio) = 1 to 10 is more preferable.

また、活性炭の添加量は、反応槽18(28)において添加する過酸化水素に対して重量比で0.1〜1倍(すなわち、活性炭/過酸化水素(重量比)=0.1〜1)であることが好ましい。活性炭の添加量が過酸化水素に対して1倍を超えてもCOD分解率は大きく向上せず、0.1倍未満であると良好なCOD分解率が得られない場合がある。また、活性炭/過酸化水素(重量比)=0.1〜0.5の範囲であることがより好ましい。   Moreover, the addition amount of activated carbon is 0.1-1 times by weight ratio with respect to the hydrogen peroxide added in the reaction tank 18 (28) (that is, activated carbon / hydrogen peroxide (weight ratio) = 0.1-1). ) Is preferable. Even if the addition amount of activated carbon exceeds 1 time with respect to hydrogen peroxide, the COD decomposition rate is not greatly improved, and if it is less than 0.1 times, a good COD decomposition rate may not be obtained. Moreover, it is more preferable that the range is activated carbon / hydrogen peroxide (weight ratio) = 0.1 to 0.5.

処理対象物質であるCOD成分が活性炭に吸着する物質である場合は、添加する活性炭に吸着する分のCOD値を、初期COD値に加算した濃度について、前記Fe2+/COD(化学当量比)の範囲内を適用すればよい。 When the COD component, which is the substance to be treated, is a substance that is adsorbed on activated carbon, the Fe 2+ / COD (chemical equivalent ratio) for the concentration obtained by adding the COD value adsorbed on the activated carbon to be added to the initial COD value It is sufficient to apply within the range.

反応槽18(28)における反応方法としては、バッチ処理、連続処理のどちらでも可能である。バッチ処理の場合、反応槽18(28)系内のpHを酸性にした後、分解触媒、活性炭、返送汚泥等を添加し、過酸化水素を所定の反応時間内で所定の添加量になるまで除々に添加していくことが過酸化水素の自己分解を抑制できる点で好ましい。さらに、過酸化水素について、初期段階でFe2+と当モル量添加し、その後残りの量を所定の反応時間内で除々に添加していくことが過酸化水素の自己分解を抑制できる点で好ましい。また、過酸化水素を添加後、概ね反応時間の10〜20%程度、薬剤を添加せずに撹拌する時間を設けることが過酸化水素を分解させ、処理水中の過酸化水素濃度を低減できる点で好ましい。また、このような撹拌時間を設けることによって、固液分離工程において、残留している過酸化水素の自己分解により発生した酸素が一旦沈降した汚泥を浮上させることを防止することもできる。 As a reaction method in the reaction tank 18 (28), either batch processing or continuous processing is possible. In the case of batch processing, after acidifying the pH in the reaction tank 18 (28) system, a decomposition catalyst, activated carbon, return sludge, etc. are added until hydrogen peroxide reaches a predetermined addition amount within a predetermined reaction time. It is preferable to gradually add hydrogen in terms of suppressing the self-decomposition of hydrogen peroxide. Furthermore, with respect to hydrogen peroxide, an equimolar amount of Fe 2+ is added in the initial stage, and then the remaining amount is gradually added within a predetermined reaction time in that the self-decomposition of hydrogen peroxide can be suppressed. preferable. In addition, it is possible to reduce the concentration of hydrogen peroxide in the treated water by decomposing hydrogen peroxide by adding about 10-20% of the reaction time and adding the stirring time without adding chemicals after adding hydrogen peroxide. Is preferable. Further, by providing such a stirring time, it is possible to prevent the sludge once precipitated by the oxygen generated by the self-decomposition of the remaining hydrogen peroxide in the solid-liquid separation step.

連続処理の場合、本実施形態における反応槽18(28)は、反応速度論の観点から2つ以上に分割して直列に配置してもよい。反応槽18(28)の数は特に制限はないが、反応速度論の観点から2個〜10個に分割することが好ましく、2個〜4個に分割することがより好ましい。また、反応槽18(28)を分割した場合の各薬剤の添加は、各槽へ分割添加することもできる。このとき、過酸化水素の添加は、反応槽18(28)を分割した場合には各槽へそれぞれ分割して添加すると過酸化水素の自己分解を抑制できるという望ましい効果をもたらす。活性炭及び分解触媒、循環した汚泥の分割した反応槽への添加方法に特に限定はないが、コスト及び装置形状の簡便さの観点から、直列に配置した槽のうち第一の反応槽に添加することが好ましい。また、反応槽18(28)は、2つ以上に分割して並列に配置してもよい。   In the case of continuous processing, the reaction tank 18 (28) in this embodiment may be divided into two or more and arranged in series from the viewpoint of reaction kinetics. The number of reaction vessels 18 (28) is not particularly limited, but is preferably divided into 2 to 10 from the viewpoint of reaction kinetics, and more preferably divided into 2 to 4. Moreover, the addition of each chemical when the reaction tank 18 (28) is divided may be divided and added to each tank. At this time, the addition of hydrogen peroxide brings about a desirable effect that the self-decomposition of hydrogen peroxide can be suppressed if the reaction tank 18 (28) is divided and added to each tank. There is no particular limitation on the method of adding activated carbon, decomposition catalyst, and circulated sludge to the divided reaction tank, but from the viewpoint of cost and simplicity of the apparatus shape, it is added to the first reaction tank among the tanks arranged in series. It is preferable. The reaction tank 18 (28) may be divided into two or more and arranged in parallel.

また、過酸化水素を直列に配置した各反応槽へそれぞれ分割して添加し、分割した反応槽1段目に分解触媒、反応槽2段目に活性炭及び返送汚泥を添加するとさらに分解率が向上するという望ましい効果をもたらす。これは、反応槽1段目においてFe2+により分解反応を行い、反応槽2段目において生成したFe3+を活性炭により活性化する方が効率的に分解反応が進行するからである。このように反応槽1段目に分解触媒、反応槽2段目に活性炭及び返送汚泥を添加する場合、2段目以降の容積を1段目の反応槽よりも大きくして、反応液に対するFe3+の存在量を多くしてもよいし、1段目の反応槽の容積を2段目以降よりも大きくして1段目の反応槽におけるFe2+の滞留時間を長くしてもよい。これらにより、さらに分解率を向上することができる。 Hydrogen peroxide is added separately to each reaction tank arranged in series, and the decomposition rate is further improved by adding a decomposition catalyst to the first stage of the divided reaction tank and activated carbon and return sludge to the second stage of the reaction tank. It has the desired effect. This is because the decomposition reaction proceeds more efficiently when the decomposition reaction is performed with Fe 2+ in the first stage of the reaction tank and the Fe 3+ generated in the second stage of the reaction tank is activated with activated carbon. Thus, when adding the decomposition catalyst to the first stage of the reaction tank and the activated carbon and the return sludge to the second stage of the reaction tank, the volume after the second stage is made larger than that of the first stage reaction tank, The abundance of 3+ may be increased, or the volume of the first-stage reaction tank may be made larger than the second and subsequent stages to increase the residence time of Fe 2+ in the first-stage reaction tank. . By these, the decomposition rate can be further improved.

本実施形態において第1フェントン処理工程におけるフェントン処理はバッチ処理にて行われることが好ましい。これにより高濃度の難生物分解性COD成分を効率良く分解することができる。第2フェントン処理工程においては、低濃度であるのでフェントン処理は連続処理にて行うことができる。   In the present embodiment, the Fenton treatment in the first Fenton treatment step is preferably performed by batch processing. Thereby, it is possible to efficiently decompose a high concentration of the hardly biodegradable COD component. In the second Fenton treatment step, since the concentration is low, the Fenton treatment can be performed by continuous treatment.

凝集工程で用いられる凝集剤としては、高分子凝集剤等が用いられる。このときの高分子凝集剤の種類には特に限定はなく、アニオン系、ノニオン系のものが好適に使用される。   As the flocculant used in the flocculation step, a polymer flocculant or the like is used. The kind of the polymer flocculant at this time is not particularly limited, and anionic and nonionic ones are preferably used.

固液分離工程における固液分離は沈降分離の他に、膜分離、加圧浮上等の分離方法により行われてもよい。   The solid-liquid separation in the solid-liquid separation step may be performed by a separation method such as membrane separation or pressurized flotation in addition to sedimentation separation.

本実施形態において、後段の第2フェントン処理工程において活性炭の添加を行った場合は、図5に示すように第2フェントン処理工程において発生した汚泥を前段の第1フェントン処理工程へ返送手段により返送して再利用することで、前段の第1フェントン処理の性能が向上するため好ましい。このときの返送汚泥は、鉄及び活性炭以外の不純物が少ない方が好ましく、そのため、生物処理工程から後段の第2フェントン処理工程へ流入する生物処理水中のSS成分は少ない方が好ましい。このような生物処理水中のSS成分が少ない生物処理の方法としては、沈殿槽を設けた浮遊式、膜分離活性汚泥の処理水、充填物にSSが捕捉される繊維状充填物やプラスチック充填剤を充填した固定床式が挙げられる。沈殿槽を設置しない流動床式は比較的流出SSが高くなる傾向にある。   In the present embodiment, when activated carbon is added in the second Fenton treatment step, the sludge generated in the second Fenton treatment step is returned to the first Fenton treatment step by the return means as shown in FIG. It is preferable to reuse the first Fenton treatment because the performance of the first Fenton treatment is improved. The return sludge at this time is preferably free from impurities other than iron and activated carbon, and therefore, it is preferred that the SS component in the biologically treated water flowing from the biological treatment step to the second Fenton treatment step is small. Biological treatment methods that have a small amount of SS components in the biologically treated water include: a floating type provided with a sedimentation tank; treated water for membrane-separated activated sludge; a fibrous filler and a plastic filler in which SS is captured by the filler. Fixed bed type filled with The fluidized bed type without a settling tank tends to have a relatively high outflow SS.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1〜4)
JIS−K0102(1998)−17に従い分析したCOD値及びJIS−K0102(1998)−21に従い分析したBOD値が、COD 1890mg/L、BOD 2mg/L以下である塗料排水(BOD/COD=約0.001)に対して、第1のフェントン処理−生物処理−第2のフェントン処理を行った。
(Examples 1-4)
COD value analyzed according to JIS-K0102 (1998) -17 and BOD value analyzed according to JIS-K0102 (1998) -21 are COD of 1890 mg / L and BOD of 2 mg / L or less (BOD / COD = about 0) .001), the first Fenton treatment-biological treatment-second Fenton treatment was performed.

第1のフェントン処理はセミバッチ処理にて行った。処置対象原水8Lに対し、条件(1)としてFeSO4・7H2O 26000mg/L、条件(2)としてFeSO4・7H2O 2200mg/L及び木質系粉末活性炭2200mg/Lをそれぞれ添加し、硫酸によりpH2.5±0.5とした後、撹拌しながらそれぞれにH22を1時間かけて6700mg/Lとなるように連続添加し、その後0.5時間撹拌した。反応終了後、pHを水酸化ナトリウムにて中性(pH6〜8)に調整し、高分子凝集剤(OA−23、オルガノ社製)を10mg/L添加してフロックを形成させて沈降させ、それぞれの上澄みのCOD濃度をJIS−K0102(1998)−17に従い分析したところ、条件(1)は340mg/L、条件(2)は103mg/Lであった。また、SSの発生量は、処理後の懸濁溶液をサンプリングし、JIS−K0102(1998)−14.2に従い測定したところ、それぞれ条件(1)17000mg/L、条件(2)4800mg/Lであった。 The 1st Fenton process was performed by the semibatch process. To be treated raw water 8L, was added FeSO 4 · 7H 2 O 26000mg / L condition (1), as the condition (2) FeSO 4 · 7H 2 O 2200mg / L and wood-based powdered activated carbon 2200 mg / L, respectively, sulfate After adjusting the pH to 2.5 ± 0.5, H 2 O 2 was continuously added to each to be 6700 mg / L over 1 hour with stirring, and then stirred for 0.5 hour. After completion of the reaction, the pH was adjusted to neutral (pH 6-8) with sodium hydroxide, 10 mg / L of a polymer flocculant (OA-23, manufactured by Organo) was added to form a floc and sedimented. When the COD concentration of each supernatant was analyzed according to JIS-K0102 (1998) -17, the condition (1) was 340 mg / L and the condition (2) was 103 mg / L. Further, the amount of SS generated was measured by sampling the suspension solution after treatment and measuring according to JIS-K0102 (1998) -14.2, under conditions (1) 17000 mg / L and (2) 4800 mg / L, respectively. there were.

次に、条件(1)及び(2)の処理後の上澄み(第1フェントン処理水)について、バッチ処理にて生物処理を行った。生物処理としては、肉エキス−ペプトンにより馴養した種汚泥を用い、各条件のフェントン処理水5Lに対して3000mg/Lとなるように添加し、バッチ処理にてDO(溶存酸素)が4mg/Lを保つように24時間曝気処理した。処理中のpHは7.0±0.5を保つように水酸化ナトリウムとpHコントローラを用いて管理した。処理後、処理水を濾紙5Aによりろ過してCOD濃度をJIS−K0102(1998)−17に従い分析したところ、条件(1)は120mg/L、条件(2)は55mg/Lであった。   Next, the biological treatment was performed by batch processing about the supernatant (1st Fenton treated water) after the process of conditions (1) and (2). As biological treatment, using seed sludge conditioned by meat extract-peptone, it is added to 3000 mg / L with respect to 5 L of Fenton treated water of each condition, and DO (dissolved oxygen) is 4 mg / L in batch treatment. For 24 hours. The pH during the treatment was controlled using sodium hydroxide and a pH controller so as to maintain 7.0 ± 0.5. After the treatment, the treated water was filtered through filter paper 5A and the COD concentration was analyzed according to JIS-K0102 (1998) -17. As a result, condition (1) was 120 mg / L and condition (2) was 55 mg / L.

第1のフェントン処理及び生物処理を実施した条件(1)及び条件(2)の濾紙5Aによりろ過した生物処理水を用いて、第2のフェントン処理を行った(実施例1〜4)。フェントン処理はバッチ処理にて行い、硫酸によりpH2.5±0.5として、処理対象水300mLに対し、所定量のFeSO4・7H2O及び木質系粉末活性炭を添加して撹拌した後、過酸化水素を所定量添加し、1時間撹拌した。反応終了後、pHを水酸化ナトリウムにて中性(pH6〜8)に調整し、高分子凝集剤(OA−23、オルガノ社製)を1mg/L添加してフロックを形成させて沈降させ、それぞれの上澄みのCOD濃度をJIS−K0102(1998)−17に従い分析した。また、SSの発生量を測定した。結果を表1に示す。 The 2nd Fenton process was performed using the biological treatment water filtered with the filter paper 5A of the conditions (1) and conditions (2) which implemented the 1st Fenton process and the biological process (Examples 1-4). The Fenton treatment is carried out as a batch treatment. The pH is adjusted to 2.5 ± 0.5 with sulfuric acid, and a predetermined amount of FeSO 4 .7H 2 O and wood-based powdered activated carbon are added to 300 mL of the water to be treated and stirred. A predetermined amount of hydrogen oxide was added and stirred for 1 hour. After completion of the reaction, the pH was adjusted to neutral (pH 6-8) with sodium hydroxide, 1 mg / L of a polymer flocculant (OA-23, manufactured by Organo) was added to form a floc and settled. The COD concentration of each supernatant was analyzed according to JIS-K0102 (1998) -17. In addition, the amount of SS generated was measured. The results are shown in Table 1.

(比較例1〜5)
実施例1〜4と同じ条件(2)の濾紙5Aによりろ過した生物処理水を用いて、活性炭による吸着処理との比較試験を行った。活性炭による吸着処理は、処理対象水300mLに対し、木質系粉末活性炭を所定量添加して24時間撹拌した後、0.1μmフィルタでろ過したろ液のCOD濃度をJIS−K0102(1998)−17に従い分析した。活性炭の使用量を60mg/L(比較例1),100mg/L(比較例2),550mg/L(比較例3),1000mg/L(比較例4),2000mg/L(比較例5)として実験を行った。結果を表1に示す。
(Comparative Examples 1-5)
Using biologically treated water filtered with the filter paper 5A under the same conditions (2) as in Examples 1 to 4, a comparison test with the adsorption treatment with activated carbon was performed. In the adsorption treatment with activated carbon, a predetermined amount of wood-based powdered activated carbon is added to 300 mL of water to be treated and stirred for 24 hours, and then the COD concentration of the filtrate filtered through a 0.1 μm filter is JIS-K0102 (1998) -17. According to the analysis. The amount of activated carbon used is 60 mg / L (Comparative Example 1), 100 mg / L (Comparative Example 2), 550 mg / L (Comparative Example 3), 1000 mg / L (Comparative Example 4), and 2000 mg / L (Comparative Example 5). The experiment was conducted. The results are shown in Table 1.

(比較例6)
実施例1〜4と同じ条件(2)の濾紙5Aによりろ過した生物処理水を用いて、酸性凝集処理との比較試験を行った。凝集処理は、処理対象水300mLに対し、38%FeCl3 700mg/Lを硫酸によりpH4±0.1とした一定の条件下で添加して5分間撹拌した後、水酸化ナトリウムでpH7±0.5に設定し、高分子凝集剤(OA−23、オルガノ社製)を1mg/L添加してフロックを形成させて沈降させ、それぞれの上澄みのCOD濃度をJIS−K0102(1998)−17に従い分析した。また、SSの発生量を測定した。結果を表1に示す。
(Comparative Example 6)
Using biologically treated water filtered by the filter paper 5A under the same conditions (2) as in Examples 1 to 4, a comparative test with an acidic flocculation treatment was performed. In the flocculation treatment, 700 mg / L of 38% FeCl 3 was added to 300 mL of the water to be treated under a fixed condition of pH 4 ± 0.1 with sulfuric acid and stirred for 5 minutes, and then pH 7 ± 0. Set to 5, 1 mg / L of a polymer flocculant (OA-23, manufactured by Organo Co., Ltd.) was added to form a floc and sedimented, and the COD concentration of each supernatant was analyzed according to JIS-K0102 (1998) -17 did. In addition, the amount of SS generated was measured. The results are shown in Table 1.

Figure 2009101262
Figure 2009101262

表1より、実施例1〜4と比較例1〜5との比較から、最終処理水のCODを10mg/L以下とするためには、活性炭吸着処理では2000mg/L以上もの活性炭の添加が必要であり、消費される活性炭量が非常に多いことが容易に推察され、第2のフェントン処理が有効であることがわかる。また比較例6より、本処理対処水は酸性凝集処理ではほとんどCOD成分を除去できないことがわかる。さらに処理フロー全体におけるフェントン処理由来の発生SS量は、フェントン処理−生物処理が17000mg/Lに対して、実施例1,2に示した本処理方法では約19000mg/L(17000mg/L+1730mg/L,1650mg/L)であり、活性炭を添加したフェントン処理−生物処理が4800mg/Lに対して、実施例3,4に示した本処理方法は約5800mg/L(4800mg/L+880mg/L,840mg/L)であることから、本処理方法にて発生する汚泥量はフェントン処理−生物処理と大差ないことがわかる。さらに、実施例1,2と実施例3,4を比較することで、前段の第1のフェントン処理において活性炭を添加することで、システム全体の発生SS及び処理水COD値が低下することがわかる。   From the comparison of Examples 1 to 4 and Comparative Examples 1 to 5, it is necessary to add 2000 mg / L or more of activated carbon in the activated carbon adsorption treatment in order to make the COD of the final treated water 10 mg / L or less. Therefore, it is easily guessed that the amount of activated carbon consumed is very large, and it can be seen that the second Fenton treatment is effective. Further, it can be seen from Comparative Example 6 that the treated water can hardly remove the COD component by the acidic coagulation treatment. Furthermore, the amount of SS generated from the Fenton treatment in the entire treatment flow is about 19000 mg / L (17000 mg / L + 1730 mg / L, in the present treatment method shown in Examples 1 and 2 while Fenton treatment-biological treatment is 17000 mg / L, The Fenton treatment with activated charcoal added to the biological treatment was 4800 mg / L, whereas the treatment method shown in Examples 3 and 4 was about 5800 mg / L (4800 mg / L + 880 mg / L, 840 mg / L). Therefore, it can be seen that the amount of sludge generated by this treatment method is not significantly different from the Fenton treatment-biological treatment. Further, by comparing Examples 1 and 2 with Examples 3 and 4, it can be seen that by adding activated carbon in the first Fenton treatment in the previous stage, the generated SS and the treated water COD value of the entire system are lowered. .

本発明の実施形態に係る水処理装置の一例を示す概略構成図である。It is a schematic structure figure showing an example of the water treatment equipment concerning the embodiment of the present invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るフェントン処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the Fenton processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る生物処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the biological treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the water treatment apparatus which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 水処理装置、10 第1フェントン処理装置、12 生物処理装置、14 第2フェントン処理装置、16 活性炭処理装置、18,28 反応槽、20,30 中和槽、22,32 還元槽、24,34 凝集槽、26,36 沈殿槽、38 生物処理槽、40 沈殿槽、42 ブロア、44 返送汚泥ポンプ。   DESCRIPTION OF SYMBOLS 1 Water treatment apparatus, 10 1st Fenton treatment apparatus, 12 Biological treatment apparatus, 14 2nd Fenton treatment apparatus, 16 Activated carbon treatment apparatus, 18, 28 Reaction tank, 20,30 Neutralization tank, 22,32 Reduction tank, 24, 34 Coagulation tank, 26, 36 Sedimentation tank, 38 Biological treatment tank, 40 Sedimentation tank, 42 Blower, 44 Return sludge pump.

Claims (7)

COD成分を含有する原水に対して第1のフェントン処理を行う第1フェントン処理工程と、
前記第1のフェントン処理を行った第1フェントン処理水に対して生物処理を行う生物処理工程と、
前記生物処理を行った生物処理水に対して、さらに第2のフェントン処理を行う第2フェントン処理工程と、
を含み、
処理水のCOD濃度を20mg/L以下にすることを特徴とする水処理方法。
A first Fenton treatment step of performing a first Fenton treatment on raw water containing a COD component;
A biological treatment step of performing biological treatment on the first Fenton-treated water that has undergone the first Fenton treatment;
A second Fenton treatment step of performing a second Fenton treatment on the biologically treated water subjected to the biological treatment;
Including
A water treatment method, wherein the COD concentration of treated water is 20 mg / L or less.
請求項1に記載の水処理方法であって、
前記原水のCOD濃度が1000mg/L以上6000mg/L以下であることを特徴とする水処理方法。
The water treatment method according to claim 1,
A COD concentration of the raw water is 1000 mg / L or more and 6000 mg / L or less.
請求項1または2に記載の水処理方法であって、
少なくとも前記第1フェントン処理工程において、活性炭を添加して処理を行うことを特徴とする水処理方法。
The water treatment method according to claim 1 or 2,
At least in the first Fenton treatment step, treatment is performed by adding activated carbon.
請求項3に記載の水処理方法であって、
前記第2フェントン処理工程において、活性炭を添加して処理を行い、発生した汚泥を前記第1フェントン処理工程に返送することを特徴とする水処理方法。
The water treatment method according to claim 3,
In the second Fenton treatment step, activated water is added for treatment, and the generated sludge is returned to the first Fenton treatment step.
請求項4に記載の水処理方法であって、
前記生物処理が、浮遊式生物処理または固定床式生物処理であることを特徴とする水処理方法。
The water treatment method according to claim 4,
The water treatment method, wherein the biological treatment is a floating biological treatment or a fixed bed biological treatment.
請求項1〜5のいずれか1項に記載の水処理方法であって、
前記第1のフェントン処理において、バッチ処理を行うことを特徴とする水処理方法。
The water treatment method according to any one of claims 1 to 5,
In the first Fenton treatment, a batch treatment is performed.
COD成分を含有する原水に対して第1のフェントン処理を行うための第1フェントン処理手段と、
前記第1のフェントン処理を行った第1フェントン処理水に対して生物処理を行うための生物処理手段と、
前記生物処理を行った生物処理水に対して、さらに第2のフェントン処理を行うための第2フェントン処理手段と、
を備えることを特徴とする水処理装置。
A first Fenton treatment means for performing a first Fenton treatment on raw water containing a COD component;
Biological treatment means for performing biological treatment on the first Fenton treated water that has undergone the first Fenton treatment;
A second Fenton treatment means for performing a second Fenton treatment on the biologically treated water subjected to the biological treatment;
A water treatment apparatus comprising:
JP2007273296A 2007-10-22 2007-10-22 Method and apparatus for water treatment Pending JP2009101262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273296A JP2009101262A (en) 2007-10-22 2007-10-22 Method and apparatus for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273296A JP2009101262A (en) 2007-10-22 2007-10-22 Method and apparatus for water treatment

Publications (1)

Publication Number Publication Date
JP2009101262A true JP2009101262A (en) 2009-05-14

Family

ID=40703605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273296A Pending JP2009101262A (en) 2007-10-22 2007-10-22 Method and apparatus for water treatment

Country Status (1)

Country Link
JP (1) JP2009101262A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045801A (en) * 2009-08-25 2011-03-10 Fuji Xerox Co Ltd Water treatment apparatus and method
JP2011050899A (en) * 2009-09-03 2011-03-17 Fuji Xerox Co Ltd Water treatment apparatus and method
JP2011050815A (en) * 2009-08-31 2011-03-17 Fuji Xerox Co Ltd Water treatment apparatus and water treatment method
CN102941091A (en) * 2012-11-20 2013-02-27 山东建筑大学 Nano-catalyst for photo-aided Fenton oxidation and preparation method thereof
JP2014221449A (en) * 2013-05-13 2014-11-27 オルガノ株式会社 Method and apparatus for processing water containing organic hardly-decomposable substance
WO2014196477A1 (en) * 2013-06-04 2014-12-11 栗田工業株式会社 Method and device for treating water containing hardly biodegradable organic substances
CN107162332A (en) * 2017-06-16 2017-09-15 广东莞绿环保工程有限公司 A kind of textile printing and dyeing wastewater processing system and method
KR101837731B1 (en) 2016-06-29 2018-03-13 주식회사 수처리월드 The Disposal system of dyeing wastewater
CN111153557A (en) * 2020-01-20 2020-05-15 上海泓济环保科技股份有限公司 Integrated treatment device and treatment process for pickling and phosphating production wastewater

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045801A (en) * 2009-08-25 2011-03-10 Fuji Xerox Co Ltd Water treatment apparatus and method
JP2011050815A (en) * 2009-08-31 2011-03-17 Fuji Xerox Co Ltd Water treatment apparatus and water treatment method
JP2011050899A (en) * 2009-09-03 2011-03-17 Fuji Xerox Co Ltd Water treatment apparatus and method
CN102941091A (en) * 2012-11-20 2013-02-27 山东建筑大学 Nano-catalyst for photo-aided Fenton oxidation and preparation method thereof
JP2014221449A (en) * 2013-05-13 2014-11-27 オルガノ株式会社 Method and apparatus for processing water containing organic hardly-decomposable substance
WO2014196477A1 (en) * 2013-06-04 2014-12-11 栗田工業株式会社 Method and device for treating water containing hardly biodegradable organic substances
JP2014233692A (en) * 2013-06-04 2014-12-15 栗田工業株式会社 Treatment method and treatment device for hard-biodegradable organic matter-containing water
CN105246840A (en) * 2013-06-04 2016-01-13 栗田工业株式会社 Method and device for treating water containing hardly biodegradable organic substances
CN105246840B (en) * 2013-06-04 2017-08-08 栗田工业株式会社 The processing method and processing unit of water containing biological hard-decomposed organic
KR101837731B1 (en) 2016-06-29 2018-03-13 주식회사 수처리월드 The Disposal system of dyeing wastewater
CN107162332A (en) * 2017-06-16 2017-09-15 广东莞绿环保工程有限公司 A kind of textile printing and dyeing wastewater processing system and method
CN111153557A (en) * 2020-01-20 2020-05-15 上海泓济环保科技股份有限公司 Integrated treatment device and treatment process for pickling and phosphating production wastewater

Similar Documents

Publication Publication Date Title
JP2009101262A (en) Method and apparatus for water treatment
JP5215578B2 (en) Water treatment method and water treatment apparatus
US11377374B2 (en) System and process for treating water
KR101671751B1 (en) Remediation system of groundwater contaminants by oxidation treatment
JP2007029826A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
JP3491328B2 (en) Ultrapure water production equipment
JP2007029825A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
JP5444684B2 (en) Organic wastewater treatment method and treatment equipment
JP6635444B1 (en) Final treatment device for wastewater of high-concentration hardly decomposable organic matter, system using the device, and final treatment method for wastewater of high-concentration hardly decomposable organic matter
JP4542764B2 (en) Organic wastewater treatment equipment
JPH04349997A (en) Treatment of organic waste water
WO2009099209A1 (en) Apparatus and method for treatment of radioactive nitrate salt liquid waste
JP2008126125A (en) Polluted water treatment apparatus and method
KR100718070B1 (en) Recycling device and the method of wastewater
JP4787814B2 (en) Organic wastewater purification method and apparatus
JP5526640B2 (en) Method and apparatus for treating water containing biologically indegradable organic matter
KR101208683B1 (en) Water Re-Cycling System and method thereof
JP2014198288A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
CN113184972B (en) Method for removing organic pollutants in wastewater by sequencing batch reaction
JP2007098279A (en) Apparatus and method for treating waste water by using microbe
JP3961246B2 (en) Method and apparatus for treating organic wastewater
CN213924402U (en) Pesticide chemical industry garden sewage degree of depth processing system
JP4854706B2 (en) Organic wastewater treatment method and treatment apparatus
KR100225693B1 (en) Nonbiodegradable organic material treatment process
JP3373138B2 (en) Organic wastewater treatment method and apparatus