JP2014221449A - Method and apparatus for processing water containing organic hardly-decomposable substance - Google Patents

Method and apparatus for processing water containing organic hardly-decomposable substance Download PDF

Info

Publication number
JP2014221449A
JP2014221449A JP2013101312A JP2013101312A JP2014221449A JP 2014221449 A JP2014221449 A JP 2014221449A JP 2013101312 A JP2013101312 A JP 2013101312A JP 2013101312 A JP2013101312 A JP 2013101312A JP 2014221449 A JP2014221449 A JP 2014221449A
Authority
JP
Japan
Prior art keywords
oxidation treatment
slaked lime
hardly
organic substance
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013101312A
Other languages
Japanese (ja)
Other versions
JP6062797B2 (en
Inventor
江口 正浩
Masahiro Eguchi
正浩 江口
寿子 八木
Toshiko Yagi
寿子 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2013101312A priority Critical patent/JP6062797B2/en
Publication of JP2014221449A publication Critical patent/JP2014221449A/en
Application granted granted Critical
Publication of JP6062797B2 publication Critical patent/JP6062797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for processing water containing organic hardly-decomposable substances that can reduce COD concentration derived from organic hardly-decomposable substances such as PVA and deposition products, in Fenton treatment (oxidation treatment) of water containing the organic hardly-decomposable substances of high concentration.SOLUTION: A method for processing water containing organic hardly-decomposable substances includes an oxidation step for oxidizing the water containing organic hardly-decomposable substances having a concentration of 1,500 mg/L or more in an oxidation tank 12 by adding hydrogen peroxide from a hydrogen peroxide feed line 16 and an iron compound from an iron compound feed line 20, and a slaked lime adding step for adding slaked lime from a slaked lime feed line 24 to the oxidized water in the oxidation tank 12.

Description

本発明は、ポリビニルアルコール等の難分解性有機物を含有す水の処理方法及び処理装置の技術に関する。   The present invention relates to a technique for treating a water containing a hardly decomposable organic substance such as polyvinyl alcohol and a treatment apparatus.

ポリビニルアルコール(以下、PVAと称する場合がある)は合成繊維ビニロンの原料として世界的に使用されているが、近年では、優れた安定性と物理特性により、乳化安定剤、繊維加工、フィルム、包装材等の用途として利用されている。このため、上記製品を製造する化学工場や染色加工工場等でPVAが使用されており、その一部が工場排水、廃液等のポリビニルアルコール含有水として排出されている。   Polyvinyl alcohol (hereinafter sometimes referred to as PVA) is used worldwide as a raw material for synthetic fiber vinylon, but in recent years, due to excellent stability and physical properties, emulsion stabilizers, fiber processing, film, packaging It is used as a material. For this reason, PVA is used in chemical factories and dyeing factories that manufacture the above products, and some of them are discharged as polyvinyl alcohol-containing water such as factory effluents and waste liquids.

通常、PVAは一般的な微生物では分解が困難な難分解性有機物として知られているが、活性汚泥を十分に馴養することで生物分解できることが報告されている。   Usually, PVA is known as a hardly decomposable organic substance that is difficult to be decomposed by general microorganisms. However, it has been reported that PVA can be biodegraded by fully acclimatizing activated sludge.

また、難分解性有機物に酸化剤を添加して酸化処理(フェントン処理)することも提案されている(例えば、特許文献1及び2参照)。   In addition, it has been proposed to add an oxidizing agent to a hardly decomposable organic substance and perform oxidation treatment (Fenton treatment) (see, for example, Patent Documents 1 and 2).

また、難分解性有機物のその他の処理方法としては、特殊な凝集剤やメタクリル酸を用いて凝集沈殿処理する方法や、電気分解により処理する方法等が提案されている。   In addition, as other treatment methods for hardly decomposable organic substances, a method of coagulating and precipitating using a special coagulant or methacrylic acid, a method of treating by electrolysis, and the like have been proposed.

特開2011−50887号公報JP2011-50887A 特開2004−89854号公報JP 2004-89854 A

しかし、難分解性有機物の生物処理に関しては、その活性汚泥の分解速度が非常に低く処理時間に20日以上かかるとも言われている。また、排水処理装置の設置面積が大きくなること、特殊な分解菌を活性汚泥の中に維持することが困難であること等の問題もあり、処理水質の維持や排水処理の運転管理等の課題がある。   However, regarding biological treatment of persistent organic substances, it is said that the activated sludge has a very low decomposition rate and takes 20 days or more for the treatment time. In addition, there are problems such as an increase in the installation area of the wastewater treatment device and difficulty in maintaining special degrading bacteria in the activated sludge. There is.

また、前述の生物処理は、低濃度の難分解性有機物を対象とするものであり、高濃度の難分解性有機物の処理は確立されていない。高濃度の難分解性有機物を生物処理する場合には、後段に焼却処理や物理化学処理、生物処理、活性炭などの複数の工程を含む処理が必要であり、実用的でない。   Moreover, the above-mentioned biological treatment is intended for low-concentration hardly decomposable organic matter, and treatment of high concentration hardly-degradable organic matter has not been established. In the case of biologically treating a highly-concentrated organic substance having a high concentration, a treatment including a plurality of steps such as incineration, physicochemical treatment, biological treatment, and activated carbon is necessary in the subsequent stage, which is not practical.

また、酸化剤を用いたフェントン処理(酸化処理)は、実用的な分解処理法として期待されているが、PVA等の難分解性有機物含有水をフェントン処理しても分解し切れずに残留したり、分解生成物由来のCODが残留したりするという問題がある。特に、1500mg/L以上の高濃度の難分解性有機物含有水の場合、処理後のCOD濃度が1000mg/L以上残存するため、後段に生物処理、活性炭処理など複数の処理設備を設置する必要があり、経済的にもスペース的にも実用的ではない。したがって、高濃度の難分解性有機物含有水におけるフェントン処理(酸化処理)の適用は、従来困難であると考えられてきた。   In addition, Fenton treatment (oxidation treatment) using an oxidizing agent is expected as a practical decomposition treatment method, but it remains without being completely decomposed even when water containing a hardly decomposable organic substance such as PVA is treated with Fenton. Or the COD derived from the decomposition products remains. In particular, in the case of water containing highly degradable organic substances having a high concentration of 1500 mg / L or more, the COD concentration after treatment remains 1000 mg / L or more, so it is necessary to install a plurality of treatment facilities such as biological treatment and activated carbon treatment in the subsequent stage. Yes, it is neither economical nor space practical. Therefore, it has been conventionally considered difficult to apply Fenton treatment (oxidation treatment) in water containing highly degradable organic matter.

なお、特殊な凝集剤やメタクリル酸を用い凝集沈殿処理する方法は、凝集に用いる薬剤コストが高く、汚泥発生量が多いこと等の課題があり、また、電気分解による処理方法は、難分解性有機物の分解率が十分でない等の課題がある。   In addition, the method of coagulating and precipitating using a special coagulant or methacrylic acid has problems such as high chemical cost for coagulation and a large amount of sludge generation. In addition, the electrolysis method is difficult to decompose. There are problems such as insufficient decomposition rate of organic matter.

そこで、本発明の目的は、高濃度の難分解性有機物含有水のフェントン処理(酸化処理)において、PVA等の難分解性有機物や分解生成物由来のCODの濃度を低減することができる難分解性有機物含有水の処理方法及び処理装置を提供することである。   Accordingly, an object of the present invention is to provide a hardly decomposed substance capable of reducing the concentration of COD derived from a hardly decomposed organic substance such as PVA or a decomposition product in the Fenton treatment (oxidation treatment) of water containing a highly concentrated hardly decomposed organic substance. It is providing the processing method and processing apparatus of water containing volatile organic substance.

本発明の実施形態に係る難分解性有機物含有水の処理方法は、1500mg/L以上の難分解性有機物含有水に、鉄化合物及び過酸化水素を添加して酸化処理する酸化処理工程と、前記酸化処理を行った処理水に消石灰を添加する消石灰添加工程と、を備える方法である。   The method for treating difficult-to-decompose organic substance-containing water according to an embodiment of the present invention includes an oxidation treatment step in which an iron compound and hydrogen peroxide are added to a hardly-degradable organic substance-containing water of 1500 mg / L or more to oxidize, A slaked lime addition step of adding slaked lime to the treated water subjected to oxidation treatment.

前記難分解性有機物含有水の処理方法において、前記難分解性有機物含有水は、ポリビニルアルコール含有水であることが好ましい。   In the method for treating difficult-to-decompose organic substance-containing water, the hardly-degradable organic substance-containing water is preferably polyvinyl alcohol-containing water.

前記難分解性有機物含有水の処理方法において、前記鉄化合物は硫酸第1鉄を含むことが好ましい。   In the method for treating difficult-to-decompose organic matter-containing water, the iron compound preferably contains ferrous sulfate.

前記難分解性有機物含有水の処理方法において、前記酸化処理は、単一の反応槽で行うことが好ましい。   In the method for treating difficult-to-decompose organic substance-containing water, the oxidation treatment is preferably performed in a single reaction tank.

また、本実施形態の難分解性有機物含有水の処理装置は、1500mg/L以上の難分解性有機物含有水に、鉄化合物及び過酸化水素を添加して酸化処理する酸化処理手段と、前記酸化処理を行った処理水に消石灰を添加する消石灰添加と、を備える装置である。   Moreover, the treatment apparatus of the hardly decomposable organic substance-containing water according to the present embodiment includes an oxidation treatment means for performing an oxidation treatment by adding an iron compound and hydrogen peroxide to 1500 mg / L or more of the hardly decomposable organic substance-containing water, and the oxidation It is an apparatus provided with the slaked lime addition which adds slaked lime to the treated water which processed.

また、前記難分解性有機物含有水の処理装置は、前記難分解性有機物含有水は、ポリビニルアルコール含有水であることが好ましい。   Moreover, it is preferable that the said hard-to-decompose organic substance containing water is a polyvinyl alcohol containing water as for the processing apparatus of the said hard-to-decompose organic substance containing water.

また、前記難分解性有機物含有水の処理装置は、前記鉄化合物は硫酸第1鉄を含むことが好ましい。   Moreover, it is preferable that the said iron compound contains ferrous sulfate in the processing apparatus of the said hardly decomposable organic substance containing water.

また、前記難分解性有機物含有水の処理装置において、前記酸化処理手段は、単一の反応槽であることが好ましい。   Moreover, in the said processing apparatus of the hardly decomposable organic substance containing water, it is preferable that the said oxidation treatment means is a single reaction tank.

本発明によれば、高濃度の難分解性有機物含有水のフェントン処理(酸化処理)において、分解生成物由来のCODの濃度を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the density | concentration of COD derived from a decomposition product can be reduced in the Fenton process (oxidation process) of highly concentrated organic substance-containing water.

本実施形態に係る難分解性有機物含有水の処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the processing apparatus of the hardly decomposable organic substance containing water which concerns on this embodiment. 本実施形態に係る難分解性有機物含有水の処理装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the processing apparatus of the hardly decomposable organic substance containing water which concerns on this embodiment.

以下、本発明の実施の形態について説明する。なお、本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る難分解性有機物含有水の処理装置の構成の一例を示す模式図である。図1に示す処理装置1は、バッチ式処理装置であり、流入ライン10、酸化処理反応槽12、過酸化水素を収容する過酸化水素貯留槽14、過酸化水素添加手段としての過酸化水素添加ライン16、鉄化合物を収容する鉄化合物貯留槽18、鉄化合物添加手段としての鉄化合物添加ライン20、消石灰を収容する消石灰貯留槽22、消石灰添加手段としての消石灰添加ライン24、高分子凝集剤を収容する凝集剤貯留槽26、凝集剤添加手段としての凝集剤添加ライン28、及び排出ライン30a,30bを備えている。酸化処理反応槽12には、撹拌羽根等の撹拌装置32及び、pH計34等が設置されることが望ましい。過酸化水素添加ライン16、鉄化合物添加ライン20、消石灰添加ライン24、凝集剤添加ライン28等には、各薬剤の流量調整等のためのポンプを設置することが望ましい。   FIG. 1 is a schematic diagram illustrating an example of a configuration of a treatment apparatus for water containing hardly decomposable organic matter according to the present embodiment. The processing apparatus 1 shown in FIG. 1 is a batch type processing apparatus, and includes an inflow line 10, an oxidation treatment reaction tank 12, a hydrogen peroxide storage tank 14 containing hydrogen peroxide, and hydrogen peroxide addition as hydrogen peroxide addition means. Line 16, iron compound storage tank 18 containing iron compound, iron compound addition line 20 as iron compound addition means, slaked lime storage tank 22 containing slaked lime, slaked lime addition line 24 as slaked lime addition means, polymer flocculant A coagulant storage tank 26 to be accommodated, a coagulant addition line 28 as a coagulant addition means, and discharge lines 30a and 30b are provided. The oxidation treatment reaction tank 12 is desirably provided with a stirring device 32 such as a stirring blade, a pH meter 34 and the like. It is desirable to install a pump for adjusting the flow rate of each drug in the hydrogen peroxide addition line 16, the iron compound addition line 20, the slaked lime addition line 24, the flocculant addition line 28, and the like.

図1に示すように、酸化処理反応槽12には流入ライン10及び排出ライン30a,30bが接続されている。また、過酸化水素添加ライン16の一端は過酸化水素貯留槽14に接続され、他端は酸化処理反応槽12に接続されている。また、鉄化合物添加ライン20の一端は、鉄化合物貯留槽18に接続され、他端は酸化処理反応槽12に接続されている。また、消石灰添加ライン24の一端は消石灰貯留槽22に接続され、他端は酸化処理反応槽12に接続されている。また、凝集剤添加ライン28の一端は凝集剤貯留槽26に接続され、他端は酸化処理反応槽12に接続されている。   As shown in FIG. 1, an inflow line 10 and discharge lines 30 a and 30 b are connected to the oxidation treatment reaction tank 12. One end of the hydrogen peroxide addition line 16 is connected to the hydrogen peroxide storage tank 14, and the other end is connected to the oxidation treatment reaction tank 12. One end of the iron compound addition line 20 is connected to the iron compound storage tank 18, and the other end is connected to the oxidation treatment reaction tank 12. One end of the slaked lime addition line 24 is connected to the slaked lime storage tank 22, and the other end is connected to the oxidation treatment reaction tank 12. One end of the flocculant addition line 28 is connected to the flocculant storage tank 26, and the other end is connected to the oxidation treatment reaction tank 12.

鉄化合物貯留槽18に収容される鉄化合物は、過酸化水素を用いた難分解性有機物の酸化処理(フェントン処理)で使用可能な鉄化合物であれば特に制限されるものではないが、例えば、硫酸第1鉄等の硫酸鉄、塩化第1鉄等の塩化鉄、クエン酸鉄、EDTA鉄、鉄粉等が挙げられる。特に、経済性等の点等から、硫酸第1鉄または塩化第1鉄を用いることが好ましい。   The iron compound accommodated in the iron compound storage tank 18 is not particularly limited as long as it is an iron compound that can be used in oxidation treatment (Fenton treatment) of a hardly decomposable organic substance using hydrogen peroxide. Examples thereof include iron sulfate such as ferrous sulfate, iron chloride such as ferrous chloride, iron citrate, EDTA iron, and iron powder. In particular, ferrous sulfate or ferrous chloride is preferably used from the viewpoint of economy and the like.

凝集剤貯留槽26に収容される高分子凝集剤は、アルギン酸またはその塩等のアニオン性高分子有機凝集剤、キトサン、ジメチルアミノエチル(メタ)アクリレートの3級塩および/または4級塩(例えば、塩化メチル4級塩)の重合物等のカチオン性高分子有機凝集剤、ジメチルアミノエチル(メタ)アクリレートの3級塩および/または4級塩(例えば、塩化メチル4級塩)等の両性高分子有機凝集剤等が挙げられる。   The polymer flocculant accommodated in the flocculant storage tank 26 is an anionic polymer organic flocculant such as alginic acid or a salt thereof, chitosan, dimethylaminoethyl (meth) acrylate tertiary salt and / or quaternary salt (for example, , A cationic polymer organic flocculant such as a polymer of methyl chloride quaternary salt), a tertiary salt and / or a quaternary salt of dimethylaminoethyl (meth) acrylate (for example, methyl chloride quaternary salt). Examples thereof include molecular organic flocculants.

本実施形態では、1500mg/L以上、特に5000mg/L以上の難分解性有機物を含有する水を処理対象としている。難分解性有機物含有水は、例えば、化学工場、電子機械部品工場、建材工場、及び塗料工場等から排出される。ここで、難分解性有機物とは、通常、排水処理で用いられている生物学的処理方法では分解困難で、溶液中のCODを高める要因となりうる有機物をいい、例えば、潤滑剤等の原料として使用されるポリエチレングリコール(PEG)、ポリウレタン等の原料として使用されるポリプロピレングリコール(PPG)、ビニロン、フィルム等の原料として使用されるポリビニルアルコール(PVA)、成形品、フィルム等の原料として使用されるポリプロピレン、更にはフィルム、各種成形品等の原料として使用されるポリエチレン、芳香族、ニトロ化合物、クロロ化合物、界面活性剤の原料として使用されるポオキシエチレン系界面活性剤等が挙げられる。   In the present embodiment, water containing a hardly decomposable organic substance of 1500 mg / L or more, particularly 5000 mg / L or more is a treatment target. The hard-to-decompose organic substance-containing water is discharged from, for example, chemical factories, electronic machine component factories, building material factories, paint factories, and the like. Here, the hard-to-decompose organic substance means an organic substance that is difficult to be decomposed by a biological treatment method usually used in wastewater treatment and can increase COD in a solution. For example, as a raw material for a lubricant or the like Polyethylene glycol (PEG) used, Polypropylene glycol (PPG) used as a raw material for polyurethane, etc. Polyvinyl alcohol (PVA) used as a raw material for vinylon, film, etc. Used as a raw material for molded products, films, etc. Polypropylene, further polyethylene, aromatics, nitro compounds, chloro compounds, and poxyethylene surfactants used as a raw material for surfactants are used as raw materials for films and various molded articles.

通常、対象とする水中の難分解性有機物の濃度が1500mg/L以上、特に5000mg/L以上のレベルとなると、難分解性有機物のフェントン処理(酸化処理)において、PVA等の難分解性有機物や酸化分解生成物由来のCODが多量に残留するため、反応槽の後段に生物処理、活性炭処理など複数の処理設備を設置する必要がある。そのため、高濃度の難分解性有機物含有水におけるフェントン処理(酸化処理)単独での適用は困難であると考えられてきた。しかし、本発明者らは、このようなフェントン処理(酸化処理)の適用が困難とされてき高濃度の難分解性有機物含有水対して、後述する本実施形態の処理方法が、COD濃度の低減に有効であることを見出した。特に、ポリビニルアルコールは、各種工場排水等において高濃度に含有され、酸化分解が困難であり、多量のCODが残留しやすいが、このような高濃度のポリビニルアルコール含有水の処理に対しても、本実施形態の処理方法は、COD濃度の低減に有効である。   Usually, when the concentration of the hardly decomposable organic substance in the target water reaches a level of 1500 mg / L or more, particularly 5000 mg / L or more, in the Fenton treatment (oxidation treatment) of the hardly decomposable organic substance, Since a large amount of COD derived from oxidative decomposition products remains, it is necessary to install a plurality of treatment facilities such as biological treatment and activated carbon treatment in the subsequent stage of the reaction tank. For this reason, it has been considered difficult to apply the Fenton treatment (oxidation treatment) alone in a high-concentration hardly-decomposable organic substance-containing water. However, the present inventors have found that it is difficult to apply such a Fenton treatment (oxidation treatment), and the treatment method of the present embodiment described below reduces the COD concentration against high-concentration hardly-decomposable organic substance-containing water. Found to be effective. In particular, polyvinyl alcohol is contained in a high concentration in various factory effluents and the like, is difficult to oxidatively decompose, and a large amount of COD tends to remain, but even for the treatment of such a high concentration of polyvinyl alcohol-containing water, The processing method of this embodiment is effective for reducing the COD concentration.

以下に、図1に示す処理装置1の動作に基づいて、高濃度の難分解性有機物含有水の処理方法について説明する。   Below, based on operation | movement of the processing apparatus 1 shown in FIG. 1, the processing method of highly concentrated hardly decomposable organic substance containing water is demonstrated.

<酸化処理工程>
上記のような高濃度の難分解性有機物含有水(例えば、PVA含有水)が、流入ライン10から酸化処理反応槽12に供給される。また、過酸化水素貯留槽14内の過酸化水素が、過酸化水素添加ライン16から酸化処理反応槽12に供給されると共に、鉄化合物貯留槽18内の鉄化合物(硫酸第1鉄)が鉄化合物添加ライン20から酸化処理反応槽12に供給される。酸化処理反応槽12内では、過酸化水素と鉄化合物の鉄イオンとの反応により生成したヒドロキシラジカルにより、難分解性有機物が酸化分解される、所謂フェントン処理が行われる。このとき、低分子化された分解生成物や有機酸等が生成され、酸化処理後の処理水中にCODとして含まれる。
<Oxidation process>
High concentration hardly decomposed organic substance-containing water (for example, PVA-containing water) as described above is supplied from the inflow line 10 to the oxidation treatment reaction tank 12. Further, the hydrogen peroxide in the hydrogen peroxide storage tank 14 is supplied from the hydrogen peroxide addition line 16 to the oxidation treatment reaction tank 12, and the iron compound (ferrous sulfate) in the iron compound storage tank 18 is iron. It is supplied from the compound addition line 20 to the oxidation treatment reaction tank 12. In the oxidation treatment reaction tank 12, so-called Fenton treatment is performed in which a hardly decomposable organic substance is oxidized and decomposed by hydroxy radicals generated by the reaction between hydrogen peroxide and iron ions of an iron compound. At this time, decomposition products, organic acids, and the like that have been reduced in molecular weight are generated and are included as COD in the treated water after the oxidation treatment.

本実施形態では、酸化処理反応槽12に供給される過酸化水素の添加量は、難分解性有機物含有水中のCODに対して1倍以上のモル比とすることが好ましく、2倍以上のモル比とすることがより好ましい。また、酸化処理反応槽12に供給される鉄化合物の濃度は、500mg/L以上とすることが好ましく、1000mg/L以上とすることがより好ましい。また、難分解性有機物を酸化分解する際のpHは、2〜4の範囲に調整されることが好ましい。   In the present embodiment, the amount of hydrogen peroxide supplied to the oxidation treatment reaction tank 12 is preferably set to a molar ratio of 1 or more with respect to COD in the hardly-decomposable organic substance-containing water, and is preferably 2 or more moles. The ratio is more preferable. Moreover, it is preferable that the density | concentration of the iron compound supplied to the oxidation treatment reaction tank 12 shall be 500 mg / L or more, and it is more preferable to set it as 1000 mg / L or more. Moreover, it is preferable that pH at the time of carrying out the oxidative decomposition of a hardly decomposable organic substance is adjusted to the range of 2-4.

過酸化水素の添加方法については、必要量を一度に添加してもよいが、一度に添加した場合、強力な酸化剤であるヒドロキシルラジカルが発生しても、ラジカル同士が消費され、難分解性有機物を効率的に分解することができない場合があるため、必要量を30分以上、好ましくは1時間程度かけて連続的に添加することが好ましい。   As for the method of adding hydrogen peroxide, the required amount may be added at once. However, if it is added at once, even if hydroxyl radical, which is a strong oxidizing agent, is generated, the radicals are consumed and hardly decomposed. Since the organic matter may not be decomposed efficiently, the necessary amount is preferably added continuously over 30 minutes, preferably about 1 hour.

また、過酸化水素と鉄化合物中の鉄の添加比は、過酸化水素が多いことが望ましいが、多すぎると酸化剤同志の消費が多くなる場合があるため、モル比として1:1〜5:1の範囲が好ましく、1:1〜2:1の範囲がより好ましい。   The addition ratio of hydrogen peroxide to iron in the iron compound is preferably high in hydrogen peroxide, but if it is too large, the consumption of oxidants may increase, so that the molar ratio is 1: 1-5. : 1 range is preferred, and a range of 1: 1 to 2: 1 is more preferred.

酸化処理の反応時間は、特に制限されるものではないが、例えば、5分から4時間の範囲が好ましく、15分から2時間の範囲がより好ましい。   Although the reaction time of the oxidation treatment is not particularly limited, for example, a range of 5 minutes to 4 hours is preferable, and a range of 15 minutes to 2 hours is more preferable.

<消石灰添加工程>
次に、消石灰貯留槽22内の消石灰が、消石灰添加ライン24から酸化処理反応槽12内に供給され、酸化処理後の処理水に添加混合される。前述したように、酸化処理後の処理水中には、CODが残留する。特に、1500mg/L以上の高濃度の難分解性有機物を酸化処理した後の処理水中には高濃度のCODが残留する。しかし、本実施形態のように、酸化処理後の処理水に消石灰を添加することにより、処理水中のCOD濃度を効率よく低減させることが可能となる。その結果、酸化処理反応槽12の後段に生物処理、活性炭処理などの処理設備を削減することが可能となる。消石灰の添加によるCOD濃度の低減メカニズムについては不明であるが、消石灰中のカルシウムが、酸化分解生成物由来のCODと結合、または吸着して、COD濃度低減に寄与すると考えられる。
<Slaked lime addition process>
Next, the slaked lime in the slaked lime storage tank 22 is supplied from the slaked lime addition line 24 into the oxidation treatment reaction tank 12 and added and mixed with the treated water after the oxidation treatment. As described above, COD remains in the treated water after the oxidation treatment. In particular, high-concentration COD remains in the treated water after oxidation treatment of a high-concentration hardly decomposable organic substance of 1500 mg / L or more. However, as in this embodiment, by adding slaked lime to the treated water after the oxidation treatment, the COD concentration in the treated water can be efficiently reduced. As a result, it is possible to reduce treatment facilities such as biological treatment and activated carbon treatment after the oxidation treatment reaction tank 12. Although the reduction mechanism of the COD concentration by the addition of slaked lime is unknown, it is considered that the calcium in the slaked lime binds or adsorbs to the COD derived from the oxidative decomposition product and contributes to the reduction of the COD concentration.

本実施形態では、酸化処理反応槽を多段にしてもよいが、消石灰を添加するだけでCOD濃度を効率的に低減させることができるため、単一の酸化処理反応槽とすることができる。単一の酸化処理反応槽は、経済的、スペース的な観点から、非常に実用的であると言える。   In the present embodiment, the oxidation treatment reaction tank may be multi-staged. However, since the COD concentration can be efficiently reduced only by adding slaked lime, a single oxidation treatment reaction tank can be obtained. A single oxidation treatment reactor can be said to be very practical from an economical and space perspective.

酸化処理後の処理水のpHは、COD濃度を効率的に低減すること、又はその後の高分子凝集剤添加における凝集性を向上させること等の観点から、消石灰等を添加して7〜11の中性からアルカリ側に調整されることが好ましく、9〜11のアルカリ側に調整されることがより好ましい。   The pH of the treated water after the oxidation treatment is 7 to 11 by adding slaked lime or the like from the viewpoint of efficiently reducing the COD concentration or improving the cohesiveness in the subsequent addition of the polymer flocculant. The neutral side is preferably adjusted to the alkali side, and more preferably 9 to 11 side.

<固液分離工程>
次に、凝集剤貯留槽26内の高分子凝集剤が、凝集剤添加ライン28から酸化処理反応槽12内に供給され、消石灰添加後のカルシウム塩含有処理水に添加混合される。このとき、撹拌羽根等の撹拌装置32により、該処理水が高速攪拌、緩速攪拌され、処理水中のフロックを成長させる。そして、所定時間撹拌した後、攪拌を停止して、フロックを沈降させ、フロックを含む汚泥と上澄み水(最終処理水)とに固液分離される。最終処理水は、排出ライン30aから系外へ排出され、フロックを含む汚泥は、排出ライン30bから系外へ排出される。なお、最終処理水は必要に応じてpH調整剤を添加したり、他の排水と混合したりして、pHを中和して放流することが望ましい。
<Solid-liquid separation process>
Next, the polymer flocculant in the flocculant storage tank 26 is supplied from the flocculant addition line 28 into the oxidation treatment reaction tank 12 and added and mixed with the calcium salt-containing treated water after the addition of slaked lime. At this time, the treated water is stirred at a high speed and slowly by the stirring device 32 such as a stirring blade to grow flocs in the treated water. And after stirring for a predetermined time, stirring is stopped, flocs are settled, and solid-liquid separation is carried out into sludge containing flocs and supernatant water (final treated water). Final treated water is discharged from the discharge line 30a to the outside of the system, and sludge containing floc is discharged from the discharge line 30b to the outside of the system. The final treated water is desirably discharged after neutralizing the pH by adding a pH adjuster or mixing with other waste water as necessary.

図2は、本実施形態に係る難分解性有機物含有水の処理装置の構成の他の一例を示す模式図である。図2に示す処理装置2は、連続式処理装置であり、流入ライン10、酸化処理反応槽12、過酸化水素を収容する過酸化水素貯留槽14、過酸化水素添加手段としての過酸化水素添加ライン16、鉄化合物を収容する鉄化合物貯留槽18、鉄化合物添加手段としての鉄化合物添加ライン20、消石灰反応槽36、消石灰を収容する消石灰貯留槽22、消石灰添加手段としての消石灰添加ライン24、凝集反応槽38、高分子凝集剤を収容する凝集剤貯留槽26、凝集剤添加手段としての凝集剤添加ライン28、沈殿槽40、及び排出ライン30a,30bを備えている。各反応槽には、撹拌羽根等の撹拌装置32が設置されることが望ましく、酸化処理反応槽12及び消石灰反応槽36には、pH計34等が設置されることが望ましい。過酸化水素添加ライン16、鉄化合物添加ライン20、消石灰添加ライン24、凝集剤添加ライン28等には、各薬剤の流量調整等のためのポンプを設置することが望ましい。   FIG. 2 is a schematic diagram illustrating another example of the configuration of the treatment apparatus for water containing hardly decomposed organic matter according to the present embodiment. The processing apparatus 2 shown in FIG. 2 is a continuous processing apparatus, and includes an inflow line 10, an oxidation treatment reaction tank 12, a hydrogen peroxide storage tank 14 containing hydrogen peroxide, and hydrogen peroxide addition as a hydrogen peroxide addition means. Line 16, iron compound storage tank 18 containing iron compounds, iron compound addition line 20 as iron compound addition means, slaked lime reaction tank 36, slaked lime storage tank 22 containing slaked lime, slaked lime addition line 24 as slaked lime addition means, A coagulation reaction tank 38, a coagulant storage tank 26 for storing the polymer coagulant, a coagulant addition line 28 as a coagulant addition means, a precipitation tank 40, and discharge lines 30a and 30b are provided. Each reaction tank is desirably provided with a stirring device 32 such as a stirring blade, and the oxidation treatment reaction tank 12 and the slaked lime reaction tank 36 are preferably provided with a pH meter 34 or the like. It is desirable to install a pump for adjusting the flow rate of each drug in the hydrogen peroxide addition line 16, the iron compound addition line 20, the slaked lime addition line 24, the flocculant addition line 28, and the like.

図2に示すように、酸化処理反応槽12には流入ライン10が接続されている。また、過酸化水素添加ライン16の一端は過酸化水素貯留槽14に接続され、他端は酸化処理反応槽12に接続されている。また、鉄化合物添加ライン20の一端は、鉄化合物貯留槽18に接続され、他端は酸化処理反応槽12に接続されている。また、消石灰添加ライン24の一端は消石灰貯留槽22に接続され、他端は消石灰反応槽36に接続されている。また、凝集剤添加ライン28の一端は凝集剤貯留槽26に接続され、他端は凝集反応槽38に接続されている。また、各層間は配管42a,42bにより接続され(消石灰反応槽36と凝集反応槽38間の配管は省略)、沈殿槽40には排出ライン30a,30bが接続されている。   As shown in FIG. 2, an inflow line 10 is connected to the oxidation treatment reaction tank 12. One end of the hydrogen peroxide addition line 16 is connected to the hydrogen peroxide storage tank 14, and the other end is connected to the oxidation treatment reaction tank 12. One end of the iron compound addition line 20 is connected to the iron compound storage tank 18, and the other end is connected to the oxidation treatment reaction tank 12. One end of the slaked lime addition line 24 is connected to the slaked lime storage tank 22, and the other end is connected to the slaked lime reaction tank 36. Further, one end of the flocculant addition line 28 is connected to the flocculant storage tank 26, and the other end is connected to the aggregation reaction tank 38. In addition, the respective layers are connected by pipes 42 a and 42 b (the pipe between the slaked lime reaction tank 36 and the agglomeration reaction tank 38 is omitted), and discharge lines 30 a and 30 b are connected to the precipitation tank 40.

以下に、図2に示す処理装置2の動作を説明する。   Below, operation | movement of the processing apparatus 2 shown in FIG. 2 is demonstrated.

<酸化処理工程>
上記のような高濃度の難分解性有機物含有水(例えば、PVA含有水)が、流入ライン10から酸化処理反応槽12に供給される。また、過酸化水素貯留槽14内の過酸化水素が、過酸化水素添加ライン16から酸化処理反応槽12に供給されると共に、鉄化合物貯留槽18内の鉄化合物(硫酸第1鉄)が鉄化合物添加ライン20から酸化処理反応槽12に供給される。酸化処理反応槽12内では、過酸化水素と鉄化合物の鉄イオンとの反応により生成したヒドロキシラジカルにより、難分解性有機物が酸化分解される、所謂フェントン処理が行われる。このとき、低分子化された分解生成物や有機酸等が生成され、酸化処理後の処理水中にCODとして含まれる。なお、酸化処理工程における過酸化水素濃度等の処理条件は、前述のバッチ式処理装置と同様である。
<Oxidation process>
High concentration hardly decomposed organic substance-containing water (for example, PVA-containing water) as described above is supplied from the inflow line 10 to the oxidation treatment reaction tank 12. Further, the hydrogen peroxide in the hydrogen peroxide storage tank 14 is supplied from the hydrogen peroxide addition line 16 to the oxidation treatment reaction tank 12, and the iron compound (ferrous sulfate) in the iron compound storage tank 18 is iron. It is supplied from the compound addition line 20 to the oxidation treatment reaction tank 12. In the oxidation treatment reaction tank 12, so-called Fenton treatment is performed in which a hardly decomposable organic substance is oxidized and decomposed by hydroxy radicals generated by the reaction between hydrogen peroxide and iron ions of an iron compound. At this time, decomposition products, organic acids, and the like that have been reduced in molecular weight are generated and are included as COD in the treated water after the oxidation treatment. The processing conditions such as the hydrogen peroxide concentration in the oxidation processing step are the same as those in the batch processing apparatus described above.

<消石灰添加工程>
次に、酸化処理後の処理水が、配管42aを通り消石灰反応槽36に供給されると共に、消石灰貯留槽22内の消石灰が、消石灰添加ライン24から消石灰反応槽36に供給され、酸化処理後の処理水に添加混合される。このように、酸化処理後の処理水に消石灰を添加することにより、処理水中のCOD濃度を効率よく低減させることが可能となる。その結果、酸化処理反応槽12の後段に生物処理、活性炭処理などの複数の処理設備を削減することが可能となる。なお、酸化処理後の処理水のpH等の処理条件は、前述のバッチ式処理装置と同様である(異なる場合は、追加してください)。
<Slaked lime addition process>
Next, the treated water after the oxidation treatment is supplied to the slaked lime reaction tank 36 through the pipe 42a, and the slaked lime in the slaked lime storage tank 22 is supplied from the slaked lime addition line 24 to the slaked lime reaction tank 36, and after the oxidation treatment. Added to the treated water. Thus, by adding slaked lime to the treated water after the oxidation treatment, the COD concentration in the treated water can be efficiently reduced. As a result, it is possible to reduce a plurality of treatment facilities such as biological treatment and activated carbon treatment after the oxidation treatment reaction tank 12. The treatment conditions such as the pH of the treated water after the oxidation treatment are the same as those of the batch type treatment apparatus described above (add them if they are different).

<固液分離工程>
次に、消石灰添加後のカルシウム塩含有処理水が、配管(不図示)を通り凝集反応槽38に供給されると共に、凝集剤貯留槽26内の高分子凝集剤が、凝集剤添加ライン28から凝集反応槽38内に供給され、消石灰添加後のカルシウム塩含有処理水に添加混合される。このとき、撹拌羽根等の撹拌装置32により、該処理水が高速攪拌、緩速攪拌され、処理水中のフロックを成長させる。そして、所定時間撹拌した後、フロックを含む処理水が、配管42bを通り沈殿槽40に供給される。沈殿槽40では、フロックを含む汚泥と上澄み水(最終処理水)とに固液分離され、最終処理水は、排出ライン30aから系外へ排出され、フロックを含む汚泥は、排出ライン30bから系外へ排出される。なお、最終処理水は必要に応じてpH調整剤を添加したり、他の排水と混合したりして、pHを中和して放流することが望ましい。
<Solid-liquid separation process>
Next, the calcium salt-containing treated water after the addition of slaked lime is supplied to the coagulation reaction tank 38 through a pipe (not shown), and the polymer coagulant in the coagulant storage tank 26 is fed from the coagulant addition line 28. It is supplied into the agglomeration reaction tank 38 and added and mixed with the calcium salt-containing treated water after the addition of slaked lime. At this time, the treated water is stirred at a high speed and slowly by the stirring device 32 such as a stirring blade to grow flocs in the treated water. And after stirring for the predetermined time, the treated water containing a floc is supplied to the sedimentation tank 40 through the piping 42b. In the sedimentation tank 40, solid sludge is separated into sludge containing floc and supernatant water (final treated water), and the final treated water is discharged out of the system from the discharge line 30a, and the sludge containing floc is discharged from the discharge line 30b to the system. It is discharged outside. The final treated water is desirably discharged after neutralizing the pH by adding a pH adjuster or mixing with other waste water as necessary.

以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail more concretely, this invention is not limited to a following example.

(実施例1)
図1に示す処理装置を用いて、表1に示す原水性状のPVA含有水(工場からの実排水)800mLを以下の条件で処理した。PVAは、ヨウ素比色法によって定量した。また、TOCは、TOC計(島津製作所製)を用いて、燃焼酸化−赤外線式TOC自動計測法(JIS K0102 22.2)により定量した。CODは、100℃における過マンガン酸カリウムによる酸素消費量(JIS K0102 17)によって定量した。
Example 1
1, 800 mL of raw aqueous PVA-containing water (actual waste water from a factory) shown in Table 1 was treated under the following conditions. PVA was quantified by the iodine colorimetric method. The TOC was quantified by a combustion oxidation-infrared TOC automatic measurement method (JIS K0102 22.2) using a TOC meter (manufactured by Shimadzu Corporation). COD was quantified by oxygen consumption by potassium permanganate at 100 ° C. (JIS K0102217).

Figure 2014221449
Figure 2014221449

(処理条件)
酸化処理反応槽に、硫酸第一鉄を500mg/Lになるように添加し、また、30%過酸化水素を1mL/minの流量で20000mg/Lになるように1時間かけて連続的に添加した。添加終了後、150rpmの撹拌速度で1時間撹拌して、酸化処理反応を行った。酸化処理反応後、消石灰(水酸化カルシウム)を添加して、酸化処理後の処理水のpHを10に調整した後、150rpmの撹拌速度で10分撹拌した。消石灰添加後のカルシウム塩含有処理水に高分子凝集剤(オルフロックAP−1、オルガノ社製)を10mg/L添加して、150rpmの撹拌速度で1分、40rpmの撹拌速度で5分撹拌した。撹拌停止後、酸化処理反応槽内で処理水を10分静置させて固液分離した後、上澄み水を最終処理水として得た。
(Processing conditions)
Add ferrous sulfate to the oxidation treatment tank to 500 mg / L, and add 30% hydrogen peroxide continuously over 1 hour to 20000 mg / L at a flow rate of 1 mL / min. did. After completion of the addition, the mixture was stirred for 1 hour at a stirring speed of 150 rpm to carry out an oxidation treatment reaction. After the oxidation treatment reaction, slaked lime (calcium hydroxide) was added to adjust the pH of the treated water after the oxidation treatment to 10, followed by stirring at a stirring speed of 150 rpm for 10 minutes. 10 mg / L of a polymer flocculant (Olflock AP-1, manufactured by Organo Corporation) was added to the calcium salt-containing treated water after the addition of slaked lime, and the mixture was stirred for 1 minute at a stirring speed of 150 rpm and 5 minutes at a stirring speed of 40 rpm. . After the stirring was stopped, the treated water was allowed to stand for 10 minutes in the oxidation treatment reaction vessel and subjected to solid-liquid separation, and then supernatant water was obtained as the final treated water.

(実施例2)
硫酸第一鉄を5000mg/Lになるように添加したこと、30%過酸化水素を1mL/minの流量で40000mg/Lになるように1時間かけて連続的に添加したこと以外は実施例1と同様の処理条件とした。
(Example 2)
Example 1 except that ferrous sulfate was added to 5000 mg / L and 30% hydrogen peroxide was continuously added to 40000 mg / L at a flow rate of 1 mL / min over 1 hour. The same processing conditions were used.

(比較例1)
消石灰を苛性ソーダに代えたこと以外は実施例1と同様の処理条件とした。
(Comparative Example 1)
The processing conditions were the same as in Example 1 except that slaked lime was replaced with caustic soda.

(比較例2)
消石灰を苛性ソーダに代えたこと以外は実施例2と同様の処理条件とした。
(Comparative Example 2)
The processing conditions were the same as in Example 2 except that slaked lime was replaced with caustic soda.

(比較例3)
過酸化水素を添加しないこと以外は実施例1と同様の処理条件とした。
(Comparative Example 3)
The treatment conditions were the same as in Example 1 except that no hydrogen peroxide was added.

実施例1〜2、比較例1〜3の最終処理水中のPVA、TOC、CODを上記と同様の方法により定量した。それらの結果を表2にまとめた。   PVA, TOC, and COD in the final treated water of Examples 1-2 and Comparative Examples 1-3 were quantified by the same method as described above. The results are summarized in Table 2.

Figure 2014221449
Figure 2014221449

実施例1と比較例1では、過酸化水素と鉄濃度を同条件とし酸化反応させているが、消石灰を添加した実施例1のTOC濃度、COD濃度は、苛性ソーダを添加した比較例1のTOC濃度、COD濃度の約1/3程度の値となり、著しく低い値を示した。さらに、過酸化水素濃度、鉄塩濃度を上げた実施例2では、TOC濃度、COD濃度共に100mg/L以下まで低減させることができた。これに対し、過酸化水素と鉄濃度を同条件とし酸化反応させている比較例2は、TOC濃度が1900mg/L、COD濃度が1400mg/Lとなり、実施例2と比べて非常に高い値となった。なお、比較例2の処理水のままでは放流できないため、後段に別途生物処理、活性炭処理などの設備が必要である。   In Example 1 and Comparative Example 1, the hydrogen peroxide and the iron concentration were subjected to the oxidation reaction under the same conditions, but the TOC concentration and COD concentration of Example 1 to which slaked lime was added were the TOC of Comparative Example 1 to which caustic soda was added. The value was about 1/3 of the concentration and COD concentration, showing a remarkably low value. Furthermore, in Example 2 in which the hydrogen peroxide concentration and the iron salt concentration were increased, both the TOC concentration and the COD concentration could be reduced to 100 mg / L or less. In contrast, Comparative Example 2 in which the hydrogen peroxide and iron concentrations were subjected to an oxidation reaction under the same conditions had a TOC concentration of 1900 mg / L and a COD concentration of 1400 mg / L, which are very high values compared to Example 2. became. In addition, since it cannot discharge with the treated water of the comparative example 2, the facilities, such as a biological treatment and an activated carbon treatment, are required in a back | latter stage.

比較例3は、過酸化水素溶液を無添加で酸化処理し、酸化処理以外の消石灰(水酸化カルシウム)の添加のみの効果について検討したものである。この結果、PVA、TOC、CODのいずれも除去率は低かった。すなわち、水酸化カルシウムと鉄を用いた処理では、そもそもPVAを分解処理することができないことを確認した。また、実施例1及び実施例2の結果から分かるように、フェントン処理と水酸化カルシウムを組み合わせた実施例は、従来のフェントン処理や水酸化カルシウム単独処理以上の高い相乗効果があった。   In Comparative Example 3, the effect of only adding slaked lime (calcium hydroxide) other than the oxidation treatment was examined by oxidizing the hydrogen peroxide solution without addition. As a result, the removal rate of all of PVA, TOC, and COD was low. That is, it was confirmed that PVA cannot be decomposed in the first place by the treatment using calcium hydroxide and iron. Moreover, as can be seen from the results of Example 1 and Example 2, the example in which the Fenton treatment and calcium hydroxide were combined had a higher synergistic effect than the conventional Fenton treatment or calcium hydroxide single treatment.

1,2 処理装置、10 流入ライン、12 酸化処理反応槽、14 過酸化水素貯留槽、16 過酸化水素添加ライン、18 鉄化合物貯留槽、20 鉄化合物添加ライン、22 消石灰貯留槽、24 消石灰添加ライン、26 凝集剤貯留槽、28 凝集剤添加ライン、30a,30b 排出ライン、32 撹拌装置、34 pH計、36 消石灰反応槽、38 凝集反応槽、40 沈殿槽、42a,42b 配管。   1, 2 treatment apparatus, 10 inflow line, 12 oxidation treatment reaction tank, 14 hydrogen peroxide storage tank, 16 hydrogen peroxide addition line, 18 iron compound storage tank, 20 iron compound addition line, 22 slaked lime storage tank, 24 slaked lime addition Line, 26 Coagulant storage tank, 28 Coagulant addition line, 30a, 30b Discharge line, 32 Stirrer, 34 pH meter, 36 Slaked lime reaction tank, 38 Coagulation reaction tank, 40 Precipitation tank, 42a, 42b Piping.

<消石灰添加工程>
次に、酸化処理後の処理水が、配管42aを通り消石灰反応槽36に供給されると共に、消石灰貯留槽22内の消石灰が、消石灰添加ライン24から消石灰反応槽36に供給され、酸化処理後の処理水に添加混合される。このように、酸化処理後の処理水に消石灰を添加することにより、処理水中のCOD濃度を効率よく低減させることが可能となる。その結果、酸化処理反応槽12の後段に生物処理、活性炭処理などの複数の処理設備を削減することが可能となる。なお、酸化処理後の処理水のpH等の処理条件は、前述のバッチ式処理装置と同様である

<Slaked lime addition process>
Next, the treated water after the oxidation treatment is supplied to the slaked lime reaction tank 36 through the pipe 42a, and the slaked lime in the slaked lime storage tank 22 is supplied from the slaked lime addition line 24 to the slaked lime reaction tank 36, and after the oxidation treatment. Added to the treated water. Thus, by adding slaked lime to the treated water after the oxidation treatment, the COD concentration in the treated water can be efficiently reduced. As a result, it is possible to reduce a plurality of treatment facilities such as biological treatment and activated carbon treatment after the oxidation treatment reaction tank 12. In addition, processing conditions, such as pH of the treated water after an oxidation process, are the same as that of the above-mentioned batch type processing apparatus .

Claims (8)

1500mg/L以上の難分解性有機物含有水に、鉄化合物及び過酸化水素を添加して酸化処理する酸化処理工程と、
前記酸化処理を行った処理水に消石灰を添加する消石灰添加工程と、を備えることを特徴とする難分解性有機物含有水の処理方法。
An oxidation treatment step in which an iron compound and hydrogen peroxide are added to water containing 1500 mg / L or more of a hardly decomposable organic substance-containing water, and an oxidation treatment step;
And a slaked lime addition step of adding slaked lime to the treated water subjected to the oxidation treatment.
前記難分解性有機物含有水は、ポリビニルアルコール含有水であることを特徴とする請求項1記載の難分解性有機物含有水の処理方法。   The method for treating hardly-decomposable organic substance-containing water according to claim 1, wherein the hardly-decomposable organic substance-containing water is polyvinyl alcohol-containing water. 前記鉄化合物は硫酸第1鉄を含むことを特徴とする請求項1又は2記載の難分解性有機物含有水の処理方法。   The method for treating hardly-decomposable organic substance-containing water according to claim 1, wherein the iron compound contains ferrous sulfate. 前記酸化処理は、単一の反応槽で行うことを特徴とする請求項1〜3のいずれか1項に記載の難分解性有機物含有水の処理方法。   The method for treating hardly-decomposable organic substance-containing water according to any one of claims 1 to 3, wherein the oxidation treatment is performed in a single reaction tank. 1500mg/L以上の難分解性有機物含有水に、鉄化合物及び過酸化水素を添加して酸化処理する酸化処理手段と、
前記酸化処理を行った処理水に消石灰を添加する消石灰添加と、を備えることを特徴とする難分解性有機物含有水の処理装置。
An oxidation treatment means for performing an oxidation treatment by adding an iron compound and hydrogen peroxide to water containing a hardly decomposable organic substance of 1500 mg / L or more;
A treatment apparatus for water containing hardly decomposable organic matter, comprising: slaked lime addition for adding slaked lime to treated water subjected to the oxidation treatment.
前記難分解性有機物含有水は、ポリビニルアルコール含有水であることを特徴とする請求項5記載の難分解性有機物含有水の処理装置。   6. The processing apparatus for water containing hardly decomposable organic substance according to claim 5, wherein the water containing hardly decomposable organic substance is water containing polyvinyl alcohol. 前記鉄化合物は硫酸第1鉄を含むことを特徴とする請求項5又は6記載の難分解性有機物含有水の処理装置。   The apparatus for treating hardly-decomposable organic substance-containing water according to claim 5 or 6, wherein the iron compound contains ferrous sulfate. 前記酸化処理手段は、単一の反応槽であることを特徴とする請求項5〜7のいずれか1項に記載の難分解性有機物含有水の処理装置。   The said oxidation treatment means is a single reaction tank, The processing apparatus of the hardly decomposable organic substance containing water of any one of Claims 5-7 characterized by the above-mentioned.
JP2013101312A 2013-05-13 2013-05-13 Method and apparatus for treatment of water containing persistent organic substances Active JP6062797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101312A JP6062797B2 (en) 2013-05-13 2013-05-13 Method and apparatus for treatment of water containing persistent organic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101312A JP6062797B2 (en) 2013-05-13 2013-05-13 Method and apparatus for treatment of water containing persistent organic substances

Publications (2)

Publication Number Publication Date
JP2014221449A true JP2014221449A (en) 2014-11-27
JP6062797B2 JP6062797B2 (en) 2017-01-18

Family

ID=52121287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101312A Active JP6062797B2 (en) 2013-05-13 2013-05-13 Method and apparatus for treatment of water containing persistent organic substances

Country Status (1)

Country Link
JP (1) JP6062797B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540818A (en) * 2016-02-29 2016-05-04 四川理工学院 Method for treating polyvinyl alcohol wastewater through catalytic oxidation of hydrogen peroxide
CN110282791A (en) * 2019-08-02 2019-09-27 鸿灌环境技术有限公司 One kind being used for printing house's groundwater treatment equipment and technique

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124758A (en) * 1976-04-13 1977-10-20 Toa Gosei Chem Ind Method of treating waste water
JPS5447357A (en) * 1977-09-22 1979-04-13 Toa Gosei Chem Ind Waste water disposal method
JPS61197093A (en) * 1985-02-25 1986-09-01 Idemitsu Petrochem Co Ltd Treatment of waste water
JPH06182362A (en) * 1992-12-17 1994-07-05 Gunze Ltd Treatment of dyeing waste water
JPH11172039A (en) * 1997-12-08 1999-06-29 Idemitsu Petrochem Co Ltd Method for decomposition of water-soluble polymer
JP2009101262A (en) * 2007-10-22 2009-05-14 Japan Organo Co Ltd Method and apparatus for water treatment
JP2011050887A (en) * 2009-09-03 2011-03-17 Fuji Xerox Co Ltd Water treating device and water treating method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124758A (en) * 1976-04-13 1977-10-20 Toa Gosei Chem Ind Method of treating waste water
JPS5447357A (en) * 1977-09-22 1979-04-13 Toa Gosei Chem Ind Waste water disposal method
JPS61197093A (en) * 1985-02-25 1986-09-01 Idemitsu Petrochem Co Ltd Treatment of waste water
JPH06182362A (en) * 1992-12-17 1994-07-05 Gunze Ltd Treatment of dyeing waste water
JPH11172039A (en) * 1997-12-08 1999-06-29 Idemitsu Petrochem Co Ltd Method for decomposition of water-soluble polymer
JP2009101262A (en) * 2007-10-22 2009-05-14 Japan Organo Co Ltd Method and apparatus for water treatment
JP2011050887A (en) * 2009-09-03 2011-03-17 Fuji Xerox Co Ltd Water treating device and water treating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540818A (en) * 2016-02-29 2016-05-04 四川理工学院 Method for treating polyvinyl alcohol wastewater through catalytic oxidation of hydrogen peroxide
CN110282791A (en) * 2019-08-02 2019-09-27 鸿灌环境技术有限公司 One kind being used for printing house's groundwater treatment equipment and technique

Also Published As

Publication number Publication date
JP6062797B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
Nawaz et al. Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment
CN101723526B (en) Film treatment method for wastewater produced by synthetic rubber
JP6422649B2 (en) Waste water treatment apparatus and waste water treatment method
WO2015120735A1 (en) Method for advanced treatment of papermaking wastewater by advanced oxidation of activating persulfate or peroxymonosulfate with ferrous salt
CN105174641A (en) Treating technology for chemical RO concentrated water
US11377374B2 (en) System and process for treating water
CN104671565B (en) Treatment method of industrial refuse landfill percolate
CN107857423A (en) A kind of processing system of reverse osmosis concentrated water
KR101543551B1 (en) Wastewater treatment system using electrolysis
JP2007029825A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
CN102765859A (en) Treatment method for removing arsenic and COD in wastewater in gallium arsenide wafer production treatment simultaneously
CN206204105U (en) A kind of butyl acrylate production wastewater treatment system
JP6062797B2 (en) Method and apparatus for treatment of water containing persistent organic substances
EP2701827A1 (en) Method for treatment of sludge from water and wastewater treatment plants with chemical treatment
JP5628704B2 (en) Treatment method of electroless nickel plating waste liquid
JP2018535093A (en) Improvement of phosphorus precipitation and membrane flux in membrane bioreactors
CN103332827A (en) Desalination and organic matter degradation recycling technology for RO (reverse osmosis) concentrated water
JP6565268B2 (en) Method and apparatus for treating inorganic carbon-containing water
CN217809018U (en) HPPO waste water and hydrogen peroxide solution waste water combined treatment system
CN101423304B (en) Glycol production waste water treatment method
JP2016168514A (en) Waste water treatment method
US11661366B2 (en) Process for selenium removal with biological, chemical and membrane treatment
JP5218082B2 (en) Method and apparatus for coagulating sedimentation of low organic matter concentration wastewater
KR100368951B1 (en) Method of Treating Highly Concentrated Organic Waste Water using Recycled Steeler&#39;s Dust as Catalysts
JP2016059843A (en) Method and apparatus for biological treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161215

R150 Certificate of patent or registration of utility model

Ref document number: 6062797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250