JP4264226B2 - Purification of wastewater, groundwater or soil leachate - Google Patents

Purification of wastewater, groundwater or soil leachate Download PDF

Info

Publication number
JP4264226B2
JP4264226B2 JP2002157486A JP2002157486A JP4264226B2 JP 4264226 B2 JP4264226 B2 JP 4264226B2 JP 2002157486 A JP2002157486 A JP 2002157486A JP 2002157486 A JP2002157486 A JP 2002157486A JP 4264226 B2 JP4264226 B2 JP 4264226B2
Authority
JP
Japan
Prior art keywords
water
groundwater
iron sulfide
soil leachate
heavy metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002157486A
Other languages
Japanese (ja)
Other versions
JP2003340465A (en
Inventor
淳一 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2002157486A priority Critical patent/JP4264226B2/en
Publication of JP2003340465A publication Critical patent/JP2003340465A/en
Application granted granted Critical
Publication of JP4264226B2 publication Critical patent/JP4264226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、セレンもしくは/かつ有機塩素化合物及び重金属を含む排水、地下水または土壌浸出水の浄化方法に関するものである。
【0002】
【従来の技術】
汚染された土壌中にはセレンもしくは/かつ有機塩素化合物及び重金属が含まれている場合があり、これらの土壌中の重金属は地下水または土壌浸出水中に溶出して周囲の環境をも汚染するおそれがある。従来から水銀、カドミウム、鉛などの重金属の除去技術として、▲1▼炭酸塩や水酸化物として除去する方法、▲2▼硫化ナトリウムを混合して硫化物として除去する方法、▲3▼キレート剤に吸着させる方法などが知られている。
【0003】
しかし▲1▼の方法は、重金属の溶解度が硫化物に比べて大きいので大量の凝集剤を必要とする。その結果、発生する汚泥量が多く、また処理対象の重金属によって最適pHが異なるため一段で処理することができず、何段ものpH調整が必要となるという問題がある。
【0004】
また▲2▼の方法は、使用する硫化ナトリウムが強アルカリ性のために扱いにくく、しかも使用中に硫化水素が発生するために、装置の腐食を招いたり悪臭などの二次公害を発生するおそれがある。さらに▲3▼の方法は、キレート剤が高価であるうえ再利用が難しく、またあまり多くの重金属を処理することができない。このように従来の重金属の除去技術は処理コストがかかり、また操作が難しいなどの問題があるうえに、セレンもしくは/かつ有機塩素化合物の除去を目的としたものは知られていなかった。
【0005】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決して、セレンもしくは/かつ有機塩素化合物及び重金属を含む地下水または土壌浸出水を低コストで容易に浄化することができる排水、地下水または土壌浸出水の浄化方法を提供するためになされたものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するためになされた請求項1の発明は、セレン及び重金属を含む排水、地下水または土壌浸出水を、FeSの他に少なくともFeを含有する純度30〜80%の硫化鉄粉末に接触させて6価のセレンを還元し、水酸化鉄のコロイドと共沈させるとともに、重金属を硫化物として析出させ、さらに硫化物を生成しない重金属は水酸化物として沈殿させることによりこれらを水中から除去することを特徴とするものである。また請求項2の発明は、有機塩素化合物及び重金属を含む排水、地下水または土壌浸出水を、FeSの他に少なくともFeを含有する純度30〜80%の硫化鉄粉末に接触させ、有機塩素化合物を脱塩素化することで無害化するとともに、重金属を硫化物として析出させ、さらに硫化物を生成しない重金属は水酸化物として沈殿させることにより、これらを水中から除去することを特徴とするものである。なお、後段でカルシウム塩を添加することによりフッ素やホウ素を除去することができる。また、Feを含有する硫化鉄を透水体に担持させ、地下水脈中に設置することにより、地下水を浄化することができる。いずれの発明においても、硫化鉄としてFeとFe3O4を含むもの、FeとFe2O3を含むもの、FeとFe3O4とFe2O3を含むものを用いることができる。また、pHが5.5〜8の範囲で反応を行なわせることができる。
【0007】
本発明によれば、排水、地下水または土壌浸出水中の6価のセレンをFeと硫化鉄との還元力により4価のセレン、もしくは単体セレンに還元するとともに生成された水酸化鉄のコロイド中に4価のセレン、もしくは単体セレンを取り込み共沈させ、水中から分離することができる。溶存酸素が豊富な場合ではFe2O3は含有されていなくとも硫化鉄及びFeの溶解によって水酸化鉄のコロイドが生成されるので問題ないが、溶存酸素が含まれない場合はFe2O3が含有されていた方が水酸化鉄のコロイドが生成しやすいので望ましい。
【0008】
また、硫化鉄自体の還元力と含有しているFeの還元力を利用することで、有機塩素化合物を脱塩素化し無害化することもできる。また硫化鉄自体の性質から溶解度積の大きい水銀、カドミウム、銅、鉛などの重金属は、硫化鉄の表面に析出させることにより水中から分離することができる。さらに、6価クロムのように硫化物を生成しない重金属の場合でも還元した後、3価クロムの水酸化物として沈殿させることができる。当然ながら3価クロムも水酸化物として沈殿させることができ、マンガンも同様に水酸化物として沈殿させることができる。これは、硫化鉄や硫化鉄表面上に生成した水酸化鉄が核となりクロムやマンガンの水酸化物の沈殿もしくは析出を促進しているからである。
【0009】
なお、Fe3O4は一般に黒錆びと呼ばれ酸化防止剤として働く。すなわち還元力を有する硫化鉄を長期保存する場合に内部の酸化を防ぐ酸化防止剤の役割を担っている。また、磁性を持ち磁石にくっつくので、硫化鉄を粉末で使用する場合には、磁力による回収が容易となるので含まれていることが望ましい。本方法で使用するものはFeと場合によりFe3O4、Fe2O3を含有する安価で安全な硫化鉄であるから浄化コストは安価となる。また、中性域での反応が可能で硫化水素などを発生することもなく、操作は容易である。
【0010】
【発明の実施の形態】
以下に本発明の好ましい実施形態を示す。
図1は本発明の第1の実施形態を示すもので、排水、地中から取り出された地下水または土壌浸出水を浄化する方法である。セレンもしくは/かつ有機塩素化合物及び重金属を含む排水、地下水または土壌浸出水はいったん貯留タンク1に貯留され、反応槽2に送られる。反応槽2には攪拌装置3が設けられている。
【0011】
反応槽2の内部には硫化鉄の粒子4が投入されているが、純度の高い硫化鉄ではなく、Feと場合によりFe3O4、Fe2O3を含有する低純度の硫化鉄である。硫化鉄の純度は30%程度とすれば十分であり、あまり高純度のものは相対的にFeと場合によりFe3O4、Fe2O3とが減少するため好ましくない。好ましい硫化鉄の純度は30〜80%程度である。なお硫化鉄の粒子4は表面積を確保するために、110μm以下としておくことが好ましい。なお、本方法で使用する硫化鉄中の結晶相の同定であるが、粒子状の硫化鉄表面の結晶相を同定することは困難なので、塊状で得られる硫化鉄の表面を直接X線回折、さらには表面の酸化の影響などを考慮して、ある程度の大きさに砕いた後、酸化されていない破断面をX線回折で同定することが望ましい。
【0012】
セレンもしくは/かつ有機塩素化合物及び重金属を含む地下水または土壌浸出水をこの反応槽2内に入れ、Feと場合によりFe3O4、Fe2O3を含有する硫化鉄の粒子4とともに攪拌すると、重金属の多くは硫化物となって、硫化鉄の粒子4の表面に析出する。すなわち、重金属の硫化物と硫化鉄(FeS)のうち、水に対する溶解度積の小さい方が析出するのであるが、水銀、銅、鉛、カドミウム、錫、コバルト、ニッケル、亜鉛、砒素、アンチモン、ビスマスなどの硫化物は硫化鉄よりも溶解度積が小さいために、硫化鉄の粒子4の表面に析出して水中から分離される。また、硫化鉄や表面に生成した水酸化鉄が核となり沈殿を促進するので、硫化物を生成しない6価クロムも硫化鉄と鉄の還元力により還元された後、3価クロムの水酸化物として沈殿し、マンガンも水酸化物として水中から分離される。
【0013】
なお、反応槽2のpHを5〜8の中性域とすることにより、硫化水素を発生させずに重金属の除去が可能であり、従来法のように様々なpHに切り替えながら順次反応を進行させる必要はない。また本発明の反応は空気中において支障なく進行させることができ硫化水素の発生もないので、特別な雰囲気制御を行う必要はない。
【0014】
しかし、セレンは上記の方法では除去することができないので、本発明では水酸化鉄のコロイド中に取り込み共沈させる方法によって水中から分離する。前記したように、本発明で用いられる硫化鉄の粒子4はFeと場合によりFe3O4、Fe2O3を含有するものであり、まずFeと硫化鉄との還元力により水中の6価のセレンを4価のセレン、もしくは単体セレンに還元する。一方、撹拌によりFe2O3が溶出し水酸化鉄Fe(OH)3となってコロイドを作る。そして還元された4価のセレン、もしくは単体セレンはこのコロイドとともに共沈し、水中から分離される。
【0015】
なお、溶存酸素が豊富な場合ではFe2O3は含有されていなくとも硫化鉄及びFeの溶解によって水酸化鉄のコロイドが生成されるので問題ないが、溶存酸素が含まれない水の場合はFe2O3が含有されていた方が硫化鉄表面に水酸化鉄のコロイドが生成しやすいので望ましい。また、硫化鉄や表面に生成した水酸化鉄が核となり沈殿を促進するので、硫化物を生成しない6価クロムも硫化鉄と鉄の持つ還元力で還元された後、3価クロムの水酸化物として沈殿し、マンガンも水酸化物として水中から分離される。
【0016】
このように、本発明の方法によれば水銀、銅、鉛、カドミウム、錫、コバルト、ニッケル、亜鉛、砒素、アンチモン、ビスマス、クロム、マンガンなどの重金属とともに、セレンも水中から分離することが可能となる。なお、水中にトリクロロエチレン、テトラクロロエチレンなどの有機塩素化合物が含有されている場合にも、Feと硫化鉄との還元力によりこれらを分解することができる。また、後段でカルシウム塩を添加することにより、フッ素やホウ素をフッ化カルシウムやホウ化カルシウムとして凝集沈殿させて、除去することができる。
【0017】
図2は本発明の第2の実施形態を示す図である。この実施形態ではFeと場合によりFe3O4、Fe2O3 を含有する硫化鉄の粒子5を透水体6に担持させ、地下水脈7中に設置する。透水体6としては、例えばフィルターを使用することができる。地下水脈7を流れる地下水はこの透水体6を通過する際にFeと場合によりFe3O4、Fe2O3を含有する硫化鉄と接触し、第1の実施形態の場合と同様に重金属は硫化物もしくは水酸化物として析出させ、またセレンは水酸化鉄のコロイドに捕捉させることによって水中から分離することができる。さらに、水中にトリクロロエチレン、テトラクロロエチレンなどの有機塩素化合物が含有されている場合では、Feと硫化鉄との還元力によりこれらを分解することができる。このように「透過壁法」を利用すれば、全く動力や施設を必要とせずに地下水の浄化を行うことができる。
【0018】
【実施例】
以下に本発明の実施例を示す。
(実施例1)水銀1ppm,鉛10ppm,銅1ppm,カドミウム1ppm,砒素2.5ppm、6価セレン5ppm、4価セレン5ppm、6価クロム1ppm、3価クロム1ppm、マンガン5ppmを含む試験用地下水を作成した。この試験用地下水1Lを5gの硫化鉄粉末とともにビーカーに入れ、室温で200rpmの攪拌機で3時間攪拌した。硫化鉄粉末はFe9%、Fe3O415%、Fe2O313%、FeS63%の組成を有するもので、その粒径は106μmである。またビーカー内のpHは6.4〜7.1の中性である。
【0019】
3時間攪拌した後に試験用地下水中の各成分を分析したところ、水銀は0.005ppm以下,鉛、銅、カドミウム、砒素、6価クロム、3価クロム、マンガンはいずれも0.05ppm以下にまで大幅に低下し、全ての重金属が分離された。また4価セレン、6価セレンもそれぞれ0.05ppm以下にまで低下しており、水中から分離されたことが確認された。硫化鉄粉末の表面を顕微鏡で観察すると表面に付着物が認められ、水中の重金属及びセレンが硫化鉄粉末の表面に捕捉されたことが確認された。
【0020】
なお、硫化鉄粉末の粒径を212〜355μmに変えて同じ条件で実験を行ったところ、鉛4.6ppm、銅0.4ppm、6価セレン1.8ppmなどが測定された。このように、硫化鉄粉末の粒径は細かい方が好ましいことが判る。ただし細かすぎると水との分離が困難となるから、実用的には5μm以上が望ましい。
【0021】
(実施例2)トリクロロエチレンを10mg/L、Hgを1mg/Lを含む試験排水を10mL作成しバイアル瓶にいれ、これに硫化鉄を100mg添加して密封し、室温で3時間200rpmで撹拌した後、各成分を分析するとトリクロロエチレンは検出されず、Hgは0.005mg/L以下であった。また、トリクロロエチレンの分解により添加したトリクロロエチレン量の90%程度のエチレンが検出された。
【0022】
【発明の効果】
以上に説明したように、本発明のセレン及び重金属を含む地下水または土壌浸出水の浄化方法によれば、Feと場合によりFe3O4、Fe2O3を含有する硫化鉄を用いることにより、セレン及び重金属を水中から分離除去することができる。このFeと場合によりFe3O4、Fe2O3を含有する硫化鉄は安価に入手することができるものであり、また特別な反応条件を設定することなしに中性域で反応を同時に進行させることができるため、簡単かつ安価に排水、地下水や土壌浸出水の浄化が可能となる。しかも硫化水素の発生もないため、装置の腐食を招いたり悪臭などの二次公害を発生するおそれもない。
【0023】
さらに、請求項2のように後段でカルシウム塩を添加すればフッ素やホウ素を除去することができる、また請求項3のようにFeと場合によりFe3O4、Fe2O3を含有する硫化鉄を透水体に担持させ地下水脈中に設置すれば、特別な装置や動力を必要とせずに地下水の浄化が可能となる。
【図面の簡単な説明】
【図1】第1の実施形態を示す断面図である。
【図2】第2の実施形態を示す断面図である。
【符号の説明】
1 回収タンク、2 反応槽、3 攪拌装置、4 硫化鉄の粒子、5 硫化鉄の粒子、6 透水体、7 地下水脈
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying waste water, groundwater or soil leachate containing selenium and / or organochlorine compounds and heavy metals.
[0002]
[Prior art]
Contaminated soil may contain selenium and / or organochlorine compounds and heavy metals, and heavy metals in these soils may elute into groundwater or soil leachate and contaminate the surrounding environment. is there. Conventionally, techniques for removing heavy metals such as mercury, cadmium and lead include: (1) a method for removing carbonates and hydroxides, (2) a method for removing sodium sulfide as a mixture, and (3) a chelating agent. The method of making it adsorb | suck to is known.
[0003]
However, the method (1) requires a large amount of flocculant because the solubility of heavy metals is larger than that of sulfides. As a result, there is a problem that the amount of sludge generated is large and the optimum pH differs depending on the heavy metal to be treated, so that it cannot be treated in one step, and many steps of pH adjustment are required.
[0004]
The method (2) is difficult to handle due to the strong alkalinity of sodium sulfide used, and hydrogen sulfide is generated during use, which may cause corrosion of the device and secondary pollution such as bad odor. is there. Furthermore, in the method (3), the chelating agent is expensive and difficult to reuse, and not much heavy metal can be treated. As described above, the conventional heavy metal removal technique has problems such as high processing cost and difficulty in operation, and a technique for removing selenium and / or organochlorine compounds has not been known.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems and purifies drainage, groundwater or soil leachate that can easily purify groundwater or soil leachate containing selenium and / or organochlorine compounds and heavy metals at low cost. It was made to provide a method.
[0006]
[Means for Solving the Problems]
Invention of Claim 1 made | formed in order to solve said subject is the waste water containing selenium and a heavy metal, groundwater, or soil leachate to the iron sulfide powder of purity 30-80% containing Fe at least other than FeS. The hexavalent selenium is reduced by contact to be coprecipitated with the iron hydroxide colloid, heavy metals are precipitated as sulfides, and heavy metals that do not produce sulfides are precipitated as hydroxides to precipitate them from the water. It is characterized by removing. According to the invention of claim 2, wastewater, groundwater or soil leachate containing an organic chlorine compound and heavy metal is brought into contact with iron sulfide powder containing 30% to 80% purity containing at least Fe in addition to FeS. It is detoxified by dechlorination, and precipitates heavy metals as sulfides, and further removes heavy metals that do not generate sulfides as hydroxides, thereby removing them from the water. . Note that fluorine and boron can be removed by adding a calcium salt at a later stage. Moreover, groundwater can be purified by supporting iron sulfide containing Fe on a water permeable body and installing it in a groundwater vein. In any of the inventions, iron sulfide containing Fe and Fe 3 O 4 , Fe and Fe 2 O 3 , and Fe, Fe 3 O 4 and Fe 2 O 3 can be used. Further, the reaction can be carried out at a pH in the range of 5.5-8.
[0007]
According to the present invention, hexavalent selenium in waste water, ground water or soil leachate is reduced to tetravalent selenium or simple selenium by the reducing power of Fe and iron sulfide, and in the iron hydroxide colloid produced. Tetravalent selenium or simple selenium can be taken in and coprecipitated and separated from water. When dissolved oxygen is abundant, even if Fe 2 O 3 is not contained, there is no problem since iron hydroxide colloid is generated by dissolution of iron sulfide and Fe, but when dissolved oxygen is not included, Fe 2 O 3 It is preferable that iron is contained since iron hydroxide colloids are easily formed.
[0008]
Further, by using the reducing power of iron sulfide itself and the reducing power of Fe contained, the organic chlorine compound can be dechlorinated and rendered harmless. In addition, heavy metals such as mercury, cadmium, copper, and lead, which have a high solubility product due to the nature of iron sulfide itself, can be separated from the water by being deposited on the surface of iron sulfide. Furthermore, even in the case of a heavy metal that does not generate sulfides such as hexavalent chromium, it can be reduced and precipitated as a hydroxide of trivalent chromium. Of course, trivalent chromium can also be precipitated as a hydroxide, and manganese can also be precipitated as a hydroxide. This is because iron hydroxide generated on the surface of iron sulfide or iron sulfide serves as a nucleus to accelerate precipitation or precipitation of chromium or manganese hydroxide.
[0009]
Fe 3 O 4 is generally called black rust and acts as an antioxidant. That is, it plays the role of an antioxidant that prevents internal oxidation when iron sulfide having reducing power is stored for a long period of time. Further, since it has magnetism and sticks to the magnet, it is desirable that iron sulfide is included because it can be easily recovered by magnetic force when used in powder form. What is used in the present method is inexpensive and safe iron sulfide containing Fe and optionally Fe 3 O 4 or Fe 2 O 3 , so that the purification cost is low. In addition, the reaction is possible in the neutral range, and hydrogen sulfide is not generated, and the operation is easy.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention are shown below.
FIG. 1 shows a first embodiment of the present invention, which is a method for purifying drainage, ground water taken from the ground or soil leachate. Waste water, groundwater or soil leachate containing selenium and / or organochlorine compounds and heavy metals is once stored in the storage tank 1 and sent to the reaction tank 2. The reaction vessel 2 is provided with a stirring device 3.
[0011]
Although the iron sulfide particles 4 are introduced into the reaction vessel 2, it is not high-purity iron sulfide but low-purity iron sulfide containing Fe and possibly Fe 3 O 4 and Fe 2 O 3. . It is sufficient that the purity of iron sulfide is about 30%, and a very high purity is not preferable because Fe and Fe 3 O 4 and Fe 2 O 3 are relatively decreased in some cases. The purity of preferable iron sulfide is about 30 to 80%. The iron sulfide particles 4 are preferably set to 110 μm or less in order to secure a surface area. Although it is difficult to identify the crystalline phase of the iron sulfide surface in the form of particles, it is difficult to identify the crystalline phase of the iron sulfide used in this method. Furthermore, it is desirable to identify the non-oxidized fracture surface by X-ray diffraction after crushing to a certain size in consideration of the effect of surface oxidation.
[0012]
When ground water or soil leachate containing selenium and / or organochlorine compound and heavy metal is put into the reactor 2 and stirred with iron sulfide particles 4 containing Fe and possibly Fe 3 O 4 and Fe 2 O 3 , Most of the heavy metals become sulfides and precipitate on the surfaces of the iron sulfide particles 4. That is, of the heavy metal sulfides and iron sulfide (FeS), the one with the smaller solubility product in water is precipitated, but mercury, copper, lead, cadmium, tin, cobalt, nickel, zinc, arsenic, antimony, bismuth. Since sulfides such as these have a smaller solubility product than iron sulfide, they precipitate on the surface of the iron sulfide particles 4 and are separated from the water. Moreover, since iron sulfide and iron hydroxide formed on the surface serve as a nucleus to promote precipitation, hexavalent chromium that does not produce sulfide is reduced by the reducing power of iron sulfide and iron, and then trivalent chromium hydroxide. And manganese is also separated from water as hydroxide.
[0013]
In addition, by setting the pH of the reaction tank 2 to a neutral range of 5 to 8, it is possible to remove heavy metals without generating hydrogen sulfide, and the reaction proceeds sequentially while switching to various pH as in the conventional method. There is no need to let them. Further, the reaction of the present invention can proceed in the air without any trouble and no hydrogen sulfide is generated, so that it is not necessary to perform special atmosphere control.
[0014]
However, since selenium cannot be removed by the above-described method, in the present invention, selenium is separated from water by a method in which it is incorporated into iron hydroxide colloid and coprecipitated. As described above, the iron sulfide particles 4 used in the present invention contain Fe and optionally Fe 3 O 4 and Fe 2 O 3 , and first, hexavalent in water by the reducing power of Fe and iron sulfide. Is reduced to tetravalent selenium or simple selenium. On the other hand, Fe 2 O 3 is eluted by stirring and becomes iron hydroxide Fe (OH) 3 to form a colloid. The reduced tetravalent selenium or simple selenium co-precipitates with this colloid and is separated from the water.
[0015]
In the case of abundant dissolved oxygen, there is no problem because iron hydroxide colloid is generated by dissolution of iron sulfide and Fe even if Fe 2 O 3 is not contained, but in the case of water that does not contain dissolved oxygen It is desirable that Fe 2 O 3 is contained because iron hydroxide colloids are easily formed on the iron sulfide surface. Moreover, since iron sulfide and iron hydroxide formed on the surface serve as a nucleus to promote precipitation, hexavalent chromium that does not generate sulfide is reduced by the reducing power of iron sulfide and iron, and then the hydroxylation of trivalent chromium is performed. It precipitates as a product, and manganese is also separated from water as a hydroxide.
[0016]
Thus, according to the method of the present invention, selenium can be separated from water together with heavy metals such as mercury, copper, lead, cadmium, tin, cobalt, nickel, zinc, arsenic, antimony, bismuth, chromium and manganese. It becomes. Even when organic chlorine compounds such as trichlorethylene and tetrachloroethylene are contained in water, they can be decomposed by the reducing power of Fe and iron sulfide. Further, by adding a calcium salt at a later stage, fluorine and boron can be aggregated and precipitated as calcium fluoride or calcium boride and removed.
[0017]
FIG. 2 is a diagram showing a second embodiment of the present invention. In this embodiment, iron sulfide particles 5 containing Fe and possibly Fe 3 O 4 and Fe 2 O 3 are supported on the water permeable body 6 and installed in the underground water channel 7. As the water permeable body 6, a filter can be used, for example. The groundwater flowing through the groundwater vein 7 comes into contact with Fe and possibly iron sulfide containing Fe 3 O 4 and Fe 2 O 3 when passing through the permeable body 6, and the heavy metal is the same as in the first embodiment. It can be precipitated as sulfides or hydroxides, and selenium can be separated from the water by trapping in iron hydroxide colloids. Furthermore, when organic chlorine compounds such as trichlorethylene and tetrachloroethylene are contained in water, these can be decomposed by the reducing power of Fe and iron sulfide. If the “permeation wall method” is used in this way, the groundwater can be purified without requiring any power or facilities.
[0018]
【Example】
Examples of the present invention are shown below.
(Example 1) Test groundwater containing mercury 1 ppm, lead 10 ppm, copper 1 ppm, cadmium 1 ppm, arsenic 2.5 ppm, hexavalent selenium 5 ppm, tetravalent selenium 5 ppm, hexavalent chromium 1 ppm, trivalent chromium 1 ppm, manganese 5 ppm. Created. 1 L of this groundwater for test was placed in a beaker together with 5 g of iron sulfide powder and stirred at room temperature with a 200 rpm stirrer for 3 hours. The iron sulfide powder has a composition of 9% Fe, 15% Fe 3 O 4 , 13% Fe 2 O 3 and 63% FeS, and its particle size is 106 μm. The pH in the beaker is neutral from 6.4 to 7.1.
[0019]
After stirring for 3 hours, each component in the groundwater for testing was analyzed. As a result, mercury was 0.005 ppm or less, and lead, copper, cadmium, arsenic, hexavalent chromium, trivalent chromium, and manganese were all 0.05 ppm or less. It was greatly reduced and all heavy metals were separated. In addition, tetravalent selenium and hexavalent selenium each decreased to 0.05 ppm or less, and it was confirmed that they were separated from water. When the surface of the iron sulfide powder was observed with a microscope, deposits were observed on the surface, and it was confirmed that heavy metals and selenium in water were captured on the surface of the iron sulfide powder.
[0020]
In addition, when the experiment was performed under the same conditions while changing the particle size of the iron sulfide powder to 212 to 355 μm, lead 4.6 ppm, copper 0.4 ppm, hexavalent selenium 1.8 ppm and the like were measured. Thus, it turns out that the one where the particle size of iron sulfide powder is fine is preferable. However, if it is too fine, it becomes difficult to separate from water.
[0021]
(Example 2) 10 mL of test waste water containing 10 mg / L of trichlorethylene and 1 mg / L of Hg was prepared and placed in a vial. After 100 mg of iron sulfide was added and sealed, the mixture was stirred at room temperature for 3 hours at 200 rpm. When each component was analyzed, trichlorethylene was not detected, and Hg was 0.005 mg / L or less. In addition, about 90% of the amount of trichlorethylene added by decomposition of trichlorethylene was detected.
[0022]
【The invention's effect】
As described above, according to the method for purifying groundwater or soil leachate containing selenium and heavy metals of the present invention, by using Fe and optionally Fe 3 O 4 , Fe 2 O 3 containing iron sulfide, Selenium and heavy metals can be separated and removed from the water. This Fe and, in some cases, Fe 3 O 4 and Fe 2 O 3 containing iron sulfide can be obtained at low cost, and the reaction proceeds simultaneously in the neutral region without setting special reaction conditions. Therefore, drainage, ground water and soil leachate can be purified easily and inexpensively. Moreover, since there is no generation of hydrogen sulfide, there is no possibility of causing corrosion of the apparatus or secondary pollution such as bad odor.
[0023]
Further, fluorine or boron can be removed by adding a calcium salt at a later stage as in claim 2, and sulfur containing Fe and optionally Fe 3 O 4 and Fe 2 O 3 as in claim 3. If iron is supported on a permeable body and installed in a groundwater vein, it becomes possible to purify the groundwater without requiring any special equipment or power.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment.
FIG. 2 is a cross-sectional view showing a second embodiment.
[Explanation of symbols]
1 recovery tank, 2 reaction tank, 3 stirrer, 4 iron sulfide particles, 5 iron sulfide particles, 6 permeable body, 7 underground water vein

Claims (8)

セレン及び重金属を含む排水、地下水または土壌浸出水を、FeSの他に少なくともFeを含有する純度30〜80%の硫化鉄粉末に接触させて6価のセレンを還元し、水酸化鉄のコロイドと共沈させるとともに、重金属を硫化物として析出させ、さらに硫化物を生成しない重金属は水酸化物として沈殿させることによりこれらを水中から除去することを特徴とする排水、地下水または土壌浸出水の浄化方法。Wastewater containing selenium and heavy metals, groundwater or soil leachate is brought into contact with iron sulfide powder with a purity of 30-80% containing at least Fe in addition to FeS to reduce hexavalent selenium, and colloidal iron hydroxide A method for purifying drainage water, groundwater or soil leachate, characterized by coprecipitation, precipitation of heavy metals as sulfides, and removal of heavy metals that do not produce sulfides from the water by precipitation as hydroxides . 有機塩素化合物及び重金属を含む排水、地下水または土壌浸出水を、FeSの他に少なくともFeを含有する純度30〜80%の硫化鉄粉末に接触させ、有機塩素化合物を脱塩素化することで無害化するとともに、重金属を硫化物として析出させ、さらに硫化物を生成しない重金属は水酸化物として沈殿させることにより、これらを水中から除去することを特徴とする排水、地下水または土壌浸出水の浄化方法。Wastewater containing organic chlorine compounds and heavy metals, groundwater or soil leachate is brought into contact with iron sulfide powder with a purity of 30 to 80% containing at least Fe in addition to FeS to detoxify the organic chlorine compounds. In addition, a method for purifying drainage water, groundwater or soil leachate is characterized in that heavy metals are precipitated as sulfides, and heavy metals that do not generate sulfides are precipitated as hydroxides, thereby removing them from the water. 後段でカルシウム塩を添加する請求項1または2記載の排水、地下水または土壌浸出水の浄化方法。  The method for purifying wastewater, groundwater or soil leachate according to claim 1 or 2, wherein a calcium salt is added at a later stage. Feを含有する硫化鉄を透水体に担持させ、地下水脈中に設置することを特徴とする請求項1または2記載の排水、地下水または土壌浸出水の浄化方法。  The method for purifying wastewater, groundwater or soil leachate according to claim 1 or 2, wherein iron sulfide containing Fe is supported on a water-permeable body and installed in a groundwater vein. FeとFe3O4を含む硫化鉄を用いることを特徴とする請求項1〜4の何れかに記載の排水、地下水または土壌浸出水の浄化方法。Method for purifying waste water, ground water or soil leachate according to any one of claims 1 to 4, characterized by using iron sulfide containing Fe and Fe 3 O 4. FeとFe2O3を含む硫化鉄を用いることを特徴とする請求項1〜4の何れかに記載の排水、地下水または土壌浸出水の浄化方法。Method for purifying waste water, ground water or soil leachate according to any one of claims 1 to 4, characterized by using iron sulfide containing Fe and Fe 2 O 3. FeとFe3O4とFe2O3を含む硫化鉄を用いることを特徴とする請求項1〜4の何れかに記載の排水、地下水または土壌浸出水の浄化方法。The method for purifying waste water, ground water or soil leachate according to any one of claims 1 to 4, wherein iron sulfide containing Fe, Fe 3 O 4 and Fe 2 O 3 is used. pHが5.5〜8の間で行うことを特徴とする請求項1〜7の何れかに記載の排水、地下水または土壌浸出水の浄化方法。  The method for purifying waste water, ground water or soil leachate according to any one of claims 1 to 7, wherein the pH is between 5.5 and 8.
JP2002157486A 2002-05-30 2002-05-30 Purification of wastewater, groundwater or soil leachate Expired - Fee Related JP4264226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002157486A JP4264226B2 (en) 2002-05-30 2002-05-30 Purification of wastewater, groundwater or soil leachate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002157486A JP4264226B2 (en) 2002-05-30 2002-05-30 Purification of wastewater, groundwater or soil leachate

Publications (2)

Publication Number Publication Date
JP2003340465A JP2003340465A (en) 2003-12-02
JP4264226B2 true JP4264226B2 (en) 2009-05-13

Family

ID=29773330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002157486A Expired - Fee Related JP4264226B2 (en) 2002-05-30 2002-05-30 Purification of wastewater, groundwater or soil leachate

Country Status (1)

Country Link
JP (1) JP4264226B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170105408A (en) 2016-03-09 2017-09-19 가부시키가이샤 고베 세이코쇼 Purification treatment agent and purification treatment method
KR20200125461A (en) 2019-04-25 2020-11-04 가부시키가이샤 고베 세이코쇼 Removal method of selenium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116469A (en) * 2004-10-22 2006-05-11 Dowa Mining Co Ltd Treatment method for selenium-containing water
JP4706827B2 (en) * 2005-02-25 2011-06-22 三菱マテリアル株式会社 Method and apparatus for treating organic halide-containing water
CN1317205C (en) * 2005-05-30 2007-05-23 广州大学 Treating method for waste water containing thallium
KR100874370B1 (en) 2007-03-28 2008-12-18 한국과학기술연구원 Removal method of chlorine compound by soil mineral with transition metal added
CN116899168A (en) * 2023-06-07 2023-10-20 江西盖亚环保科技有限公司 Fly ash composite medicament for effectively removing selenium and arsenic and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170105408A (en) 2016-03-09 2017-09-19 가부시키가이샤 고베 세이코쇼 Purification treatment agent and purification treatment method
KR20200125461A (en) 2019-04-25 2020-11-04 가부시키가이샤 고베 세이코쇼 Removal method of selenium
KR102421952B1 (en) * 2019-04-25 2022-07-18 가부시키가이샤 고베 세이코쇼 Removal method of selenium

Also Published As

Publication number Publication date
JP2003340465A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
CN111498921B (en) Composite material and method for removing pollutants in polluted water
US7153435B2 (en) Magnetic process for removing heavy metals from water employing magnetites
JP2013075252A (en) Treatment method removing cesium and heavy metal from wastewater
JP4676898B2 (en) Arsenic removal method and arsenic removal treatment agent in contaminated water
CA2119193A1 (en) Solution decontamination method using precipitation and flocculation techniques
JP2009148749A (en) Heavy metal-containing water treating method
JP4827541B2 (en) Immobilizing agent for harmful components and immobilizing method
WO2008004488A1 (en) Method and apparatus for treating selenium-containing wastewater
CA2126079C (en) Extraction of mercury and mercury compounds from contaminated material and solutions
JP2008043921A (en) Method for removing arsenic in polluted water and arsenic-removing treatment agent
JP4264226B2 (en) Purification of wastewater, groundwater or soil leachate
JP2015166080A (en) Method for removing harmful substance in aqueous solution
JP2009148750A (en) Heavy metal-containing water treating method
JP2005230643A (en) Cleaning method for polluted soil
JP2010149076A (en) Method and apparatus for purifying leachate
JP5046853B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
JP2011156470A (en) Method for treatment of contaminant components
JP4231934B2 (en) How to remove selenium in wastewater
JP2007054818A (en) Method for treating water polluted with selenium and agent therefor
KR20090120058A (en) Preparing method using carbonyl compounds of nano scale iron, and nano iron prepared thereby
Ren et al. Leaching behavior and risk control of waste mercury chloride catalyst through mechanochemical reaction using sulfur
Ngatenah et al. Optimization of heavy metal removal from aqueous solution using groundwater treatment plant sludge (GWTPS)
JP2009011915A (en) Selenium-containing wastewater treatment method and apparatus
JP4936559B2 (en) Arsenic remover
JP4706827B2 (en) Method and apparatus for treating organic halide-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4264226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees