JPS643552B2 - - Google Patents

Info

Publication number
JPS643552B2
JPS643552B2 JP5377682A JP5377682A JPS643552B2 JP S643552 B2 JPS643552 B2 JP S643552B2 JP 5377682 A JP5377682 A JP 5377682A JP 5377682 A JP5377682 A JP 5377682A JP S643552 B2 JPS643552 B2 JP S643552B2
Authority
JP
Japan
Prior art keywords
heavy metal
wastewater
hydrogen peroxide
removal rate
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5377682A
Other languages
Japanese (ja)
Other versions
JPS58174286A (en
Inventor
Masaharu Koshiba
Shuzo Kakimoto
Hitoshi Kihara
Norio Murotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP5377682A priority Critical patent/JPS58174286A/en
Publication of JPS58174286A publication Critical patent/JPS58174286A/en
Publication of JPS643552B2 publication Critical patent/JPS643552B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 本発明は、重金属が有機物と共に安定な錯塩を
形成した状態にある高濃度の重金属錯塩含有廃水
の処理方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for treating wastewater containing a high concentration of heavy metal complex salts, in which heavy metals form stable complex salts together with organic substances.

一般に、メツキ工場等の各種産業廃水や研究所
廃水などにおいては、重金属がエチレンジアミン
四酢酸塩、チオ尿素、クエン酸アンモニウム、ジ
メチルグリオキシム等の有機物と共に安定な重金
属錯塩を形成しているため、重金属の除去は容易
ではない。
In general, in various industrial wastewater such as the Metsuki factory and laboratory wastewater, heavy metals form stable heavy metal complex salts with organic substances such as ethylenediaminetetraacetate, thiourea, ammonium citrate, and dimethylglyoxime. is not easy to remove.

従来より遊離の重金属イオンの除去法として
は、PH調整により水酸化物を生成させ、硫酸アル
ミニウムやポリ塩化アルミニウムなどの無機凝集
剤やポリアクリルアミドなどの高分子凝集剤を添
加して行なう凝集沈澱処理法、硫化ソーダなどに
よる硫化物法、吸着法、イオン交換樹脂法等が一
般的に採用されているが、これらの方法では安定
な金属錯塩を形成している重金属の場合には、そ
の除去効率が極めて低い欠点があつた。そこで、
その除去効率を高めるためには安定な重金属錯塩
を酸化分解し、遊離の重金属イオンにする必要が
あり、このため酸化処理法として紫外線処理や塩
素、塩素化合物、オゾン、過酸化水素等の酸化剤
処理の単独あるいはこれらを適宜組合わせた各種
処理法が実用化されている。しかしながら、反応
速度、反応効率、設備費、運転費、未反応酸化剤
の後処理、操作の複雑さ、設置スペース等の反応
性、操作性、経済性を考慮するとき、満足する処
理法は見あたらないのが現状である。
Conventional methods for removing free heavy metal ions include coagulation-sedimentation treatment, which involves generating hydroxides by adjusting the pH and adding an inorganic flocculant such as aluminum sulfate or polyaluminum chloride, or a polymer flocculant such as polyacrylamide. Generally, methods such as sulfide method using sodium sulfide, adsorption method, and ion exchange resin method are adopted, but these methods have limited removal efficiency in the case of heavy metals that form stable metal complexes. The drawback was that it was extremely low. Therefore,
In order to increase the removal efficiency, it is necessary to oxidize and decompose stable heavy metal complex salts into free heavy metal ions. For this reason, oxidizing treatment methods include ultraviolet treatment and oxidizing agents such as chlorine, chlorine compounds, ozone, and hydrogen peroxide. Various treatment methods have been put into practical use, either alone or in appropriate combinations of these treatments. However, when considering reactivity, operability, and economic efficiency such as reaction rate, reaction efficiency, equipment cost, operating cost, post-treatment of unreacted oxidant, complexity of operation, and installation space, no satisfactory treatment method has been found. The current situation is that there is no such thing.

本発明は、かかる現状に鑑み、高濃度の重金属
錯塩を含有する有機性廃水をPH5以下に調整した
後、廃水中の重金属イオンの総モル数に対して
0.1〜2.0倍量の第一鉄イオン添加し、液温を80〜
100℃とした状態で過酸化水素を少量ずつ連続的
に添加し、冷却し、PHを6〜8に調整し、生成し
た重金属含有凝集物質を分離することにより、高
濃度の重金属錯塩含有廃水中の有機物をを分解す
ると共に、遊離した重金属イオンを鉄インと共沈
せしめて重金属錯塩を短時間で、しかも高効率で
除去し得る重金属錯塩含有廃水の処理方法の提供
を可能ならしめたものであつて、以下本発明を詳
細に説明することとする。
In view of the current situation, the present invention aims to adjust organic wastewater containing a high concentration of heavy metal complex salts to PH5 or less, and then
Add 0.1 to 2.0 times the amount of ferrous ions and raise the liquid temperature to 80
By continuously adding hydrogen peroxide little by little at 100℃, cooling, adjusting the pH to 6 to 8, and separating the generated heavy metal-containing aggregates, wastewater containing high concentrations of heavy metal complex salts can be removed. The present invention has made it possible to provide a method for treating wastewater containing heavy metal complex salts, which can remove heavy metal complex salts in a short period of time and with high efficiency by decomposing organic matter and co-precipitating free heavy metal ions with iron iron. The present invention will now be described in detail.

本発明における廃水は、銅、クロム、カドミウ
ム等の重金属とエチレンジアミン四酢酸塩、チオ
尿素、クエン酸アンモニウム、ジメチルグリオキ
シム、オキシン、グリシン、アセチルアセトン等
の有機物とで安定に形成された重金属錯塩を高濃
度に含有する廃水であつて、これらの低濃度の廃
水や容易に酸化され易い有機物含有廃水の場合に
は経済的見地から好適とはいえない。
The wastewater in the present invention contains heavy metal complex salts stably formed with heavy metals such as copper, chromium, and cadmium and organic substances such as ethylenediaminetetraacetate, thiourea, ammonium citrate, dimethylglyoxime, oxine, glycine, and acetylacetone. From an economic standpoint, this is not suitable for wastewater containing low concentrations of organic matter or for wastewater containing organic matter that is easily oxidized.

本発明においては、先ず高濃度の重金属錯塩含
有廃水に硫酸、塩酸等の無機酸を添加し、PHを
5.0以下に調整する。廃水のPHが中性、アルカリ
性の場合には、後述の重金属錯塩中の有機物の酸
化分解が充分ではない。
In the present invention, first, an inorganic acid such as sulfuric acid or hydrochloric acid is added to wastewater containing a high concentration of heavy metal complex salts, and the pH is adjusted.
Adjust to below 5.0. When the pH of the wastewater is neutral or alkaline, the oxidative decomposition of organic matter in the heavy metal complex salts described below is not sufficient.

次に、第一鉄イオンを廃水中の重金属イオンの
総モル数に対して0.1〜2.0倍量添加した後、液温
を80〜100℃に調整する。第一鉄イオンは硫酸塩、
硝酸塩、塩化物等のいずれでも良い。また、その
効果については、過酸化水素と共存した場合、生
成するヒドロキシラジカル(・OH)による酸化
力は過酸化水素単独の場合より大きいことは既に
報告されているが、本発明の如く高温における酸
化反応の場合、過酸化水素が廃水中の被酸化物質
を酸化するのに十分な酸化力をもつているため、
第一鉄イオンの存在による酸化力の増大は、常温
の場合におけるほど顕著ではない。第一鉄イオン
添加の効果は、過酸化水素の酸化力の増大よりも
酸化処理後の凝集沈澱処理を行なつた場合におけ
る共存現象による重金属イオンの除去率の向上に
ある。
Next, after adding ferrous ions in an amount of 0.1 to 2.0 times the total number of moles of heavy metal ions in the wastewater, the liquid temperature is adjusted to 80 to 100°C. Ferrous ion is sulfate,
Any of nitrates, chlorides, etc. may be used. Regarding its effect, it has already been reported that when it coexists with hydrogen peroxide, the oxidizing power of the generated hydroxyl radical (・OH) is greater than that of hydrogen peroxide alone, but as in the present invention, In the case of oxidation reactions, hydrogen peroxide has sufficient oxidizing power to oxidize substances in wastewater;
The increase in oxidizing power due to the presence of ferrous ions is not as pronounced as at room temperature. The effect of the addition of ferrous ions lies in an improvement in the removal rate of heavy metal ions due to a coexistence phenomenon when a coagulation and precipitation treatment is performed after oxidation treatment, rather than an increase in the oxidizing power of hydrogen peroxide.

上述のようにして、液温を80〜100℃に調整さ
れた廃水に過酸化水素を廃水中の錯塩を酸化する
に必要な理論量の1.0〜1.2倍量添加する。過酸化
水素は通常、過酸化水素水として廃水に添加し、
その添加量は廃水中の被酸化性物質を酸化分解す
るに必要な理論量以上であるが、あまりに過剰に
添加すると、過酸化水素の浪費となるばかりでな
く、処理水中に残存し、二次公害を招く恐れがあ
る。本発明における条件下では過酸化水素の反応
効率が極めて良好なため、必要理論量の1.2倍を
越える添加量は必要ではない。過酸化水素を添加
する時間としては、処理の迅速化と図るためには
短時間であるほど良いのであるが、極端な短時間
では反応が急激に進みすぎ、危険であり、また反
応効率も低下するので、好ましくない。過酸化水
素は少量ずつ連続的に添加し、添加時間は0.5〜
2時間が適当である。
Hydrogen peroxide is added in an amount 1.0 to 1.2 times the theoretical amount required to oxidize the complex salt in the wastewater to the wastewater whose liquid temperature has been adjusted to 80 to 100°C as described above. Hydrogen peroxide is usually added to wastewater as a hydrogen peroxide solution;
The amount of hydrogen peroxide added is more than the theoretical amount required to oxidize and decompose oxidizable substances in wastewater, but adding too much hydrogen peroxide will not only waste hydrogen peroxide, but also cause it to remain in the treated water and cause secondary There is a risk of causing pollution. Since the reaction efficiency of hydrogen peroxide is extremely good under the conditions of the present invention, it is not necessary to add an amount exceeding 1.2 times the theoretical amount required. The shorter the time for adding hydrogen peroxide, the better in order to speed up the process, but if the time is too short, the reaction will proceed too rapidly, which is dangerous, and the reaction efficiency will also decrease. Therefore, it is not desirable. Hydrogen peroxide is added continuously in small amounts, and the addition time is 0.5~
2 hours is appropriate.

上記の処理により、廃水中の重金属錯塩におけ
る有機物は、酸化分解され、生成した遊離の重金
属イオンの一部は鉄イオンと共に共沈し、一部は
液中に残存しているので、さらに廃水を放冷等に
より冷却し、必要に応じ沈澱物を分離した後、ア
ルカリを加えてPHを6〜8に調整する。このPHの
調整により、沈澱物の一部が再溶解する場合があ
るので、PHの調整に先立つて沈澱物を分離してお
くことが望ましい。上記のPHの調整により、液中
に充分な凝集物質が生成する場合には凝集剤を添
加しなくても充分に重金属イオンを凝集沈澱せし
めることができるので、凝集物質を分離すれば、
直ちに重金属錯塩を高効率で除去することができ
る。上記のPH調整だけでは凝集物質の生成が不充
分な場合には、さらに硫酸バンド、ポリ塩化アル
ミニウムなどの無機凝集剤やポリアクリルアミド
等の高分子凝集剤を添加することが望ましい。上
記のPH調整にさいしては、除去すべき重金属の種
類によつてPH値を適切に選定する必要がある。
Through the above treatment, the organic matter in the heavy metal complex salts in the wastewater is oxidized and decomposed, and some of the generated free heavy metal ions are co-precipitated with iron ions, and some remain in the liquid, so that the wastewater can be further processed. After cooling by standing to cool or separating the precipitate as necessary, alkali is added to adjust the pH to 6 to 8. Since some of the precipitates may be redissolved by this pH adjustment, it is desirable to separate the precipitates prior to adjusting the pH. By adjusting the PH as described above, if enough flocculating substances are generated in the liquid, heavy metal ions can be sufficiently flocculated and precipitated without adding a flocculant, so if the flocculating substances are separated,
Heavy metal complex salts can be immediately removed with high efficiency. If the above pH adjustment alone is insufficient to produce flocculants, it is desirable to further add an inorganic flocculant such as aluminum sulfate or polyaluminum chloride, or a polymer flocculant such as polyacrylamide. In the above pH adjustment, it is necessary to appropriately select the pH value depending on the type of heavy metal to be removed.

本発明においては、過酸化水素の添加前に行な
うPHの調整、第一鉄イオンの添加および液温の調
整の順序はいかなる順序であつても良く、また過
酸化水素による酸化処理後のPH調整、あるいは凝
集物質の分離は連続して行なう必要はなく、別の
処理工程を交えた後に行なつても良いことは勿論
である。
In the present invention, the PH adjustment before addition of hydrogen peroxide, the addition of ferrous ions, and the adjustment of liquid temperature may be carried out in any order, and the PH adjustment after oxidation treatment with hydrogen peroxide may be carried out in any order. Alternatively, the separation of aggregated substances need not be performed continuously, and may of course be performed after another treatment step.

実施例 1 エチレンジアミン四酢酸塩等の錯塩形成性有機
物が有機炭素(TOC)量として4000mg/を含
有し、かつ重金属としてCuイオン700mg/を含
有する廃水1中にHClを添加してPHを2.0とし、
次いで硫酸第1鉄を2g/添加し、液温を20、
40、65、80、95℃とした。次に、30%H2O2113g
(必要理論量の約1.0倍)を少量ずつ連続的に120
分かけて添加し、放冷後、PHを7.0に調整し、5
mg/の高分子凝集剤を添加して凝集分離した
後、処理水のTOC除去率およびCu除去率を測定
した。その結果を第1図および第2図に示す。
Example 1 HCl was added to wastewater 1 containing 4000 mg of organic carbon (TOC) and 700 mg of Cu ions as heavy metals, and the pH was set to 2.0. ,
Next, 2g/of ferrous sulfate was added, and the liquid temperature was lowered to 20%.
The temperatures were 40, 65, 80, and 95°C. Next, 113g of 30% H2O2
(approximately 1.0 times the required theoretical amount) in small amounts continuously at 120
Add over a few minutes, let it cool, then adjust the pH to 7.0.
After flocculating and separating by adding mg/mg of polymer flocculant, the TOC removal rate and Cu removal rate of the treated water were measured. The results are shown in FIGS. 1 and 2.

第1図から明らかなように、80℃以上でTOC
除去率は格段に上昇する。またCuの除去率も第
2図に示すように80℃以上で著しく良好な値を示
す。
As is clear from Figure 1, TOC at temperatures above 80℃
The removal rate increases significantly. Furthermore, as shown in Figure 2, the Cu removal rate shows extremely good values at temperatures above 80°C.

実施例 2 過酸化水素の添加の液温を80℃とし、PHを種々
に変化させる以外は実施例1と同様にして廃水を
処理した。処理水のTOC除去率はPH5.0以下で良
好な結果を示した。PHが中性、アルカリ性となる
につれてTOC除去率は低下しているが、これは
過酸化水素が廃水中の被酸化性物質と反応するこ
となく、自己分解して酸素ガスを放出してしまう
ためと考えられる。なお、Cuの除去率もTOC除
去率と同様の傾向を示す。
Example 2 Wastewater was treated in the same manner as in Example 1, except that the liquid temperature for hydrogen peroxide addition was 80°C and the pH was varied. The TOC removal rate of treated water showed good results when the pH was below 5.0. The TOC removal rate decreases as the pH becomes neutral or alkaline, but this is because hydrogen peroxide self-decomposes and releases oxygen gas without reacting with oxidizable substances in wastewater. it is conceivable that. Note that the Cu removal rate also shows the same tendency as the TOC removal rate.

実施例 3 PHを3.5とし、Cuイオンに対する硫酸第一鉄の
モル比を種々に変化させた以外は実施例1と同様
にして廃水を処理した。TOC除去率は第4図に
示す如く第一鉄イオンの如何にかかわらず、良好
な値を示しており、第一鉄イオンが過酸化水素の
酸化力の増大にほとんど寄与していないことを意
味している。一方、Cu除去率は第5図に示すよ
うに第一鉄イオンが0.1モル(Cuのモル数に対し
て)以上存在するときには明らかに増加してお
り、第一鉄イオンがCuと化合物を形成すると共
に共沈作用を示すなどのCuの凝集沈澱に重要な
作用をしていることがわかる。
Example 3 Wastewater was treated in the same manner as in Example 1, except that the pH was 3.5 and the molar ratio of ferrous sulfate to Cu ions was varied. As shown in Figure 4, the TOC removal rate shows a good value regardless of the presence of ferrous ions, which means that ferrous ions hardly contribute to the increase in the oxidizing power of hydrogen peroxide. are doing. On the other hand, as shown in Figure 5, the Cu removal rate clearly increases when ferrous ions are present at 0.1 mole or more (relative to the number of moles of Cu), and ferrous ions form compounds with Cu. At the same time, it can be seen that it plays an important role in the coagulation and precipitation of Cu, such as exhibiting a coprecipitation effect.

実施例 4 エチレンジアミン四酢酸塩、チオ尿素等の錯塩
形性有機物をTOC量として5000mg/含有し、
かつ重金属としてCu620mg/を含有するメツキ
工程から排出される廃水1(PH:9.5)を採取
し、HClを加えてPHを3.0とし、次いで硫酸第一
鉄をFeとして400mg添加し、液温を80℃とした。
次に、30%H2O2113gを少量ずつ連続的に100分
かけて添加し、放冷後、PHを7.0に調整し、高分
子凝集剤(ポリアクリルアミド)5mg/を添加
し、凝集沈澱処理を行なつた後の上澄液の水質分
析を行なつたところ、TOCが195mg/、Cuが6
mg/であつた。
Example 4 Contains 5000 mg of complex organic substances such as ethylenediaminetetraacetate and thiourea as TOC amount,
Wastewater 1 (PH: 9.5) discharged from the plating process containing 620 mg of Cu as a heavy metal was collected, HCl was added to adjust the pH to 3.0, then 400 mg of ferrous sulfate was added as Fe, and the liquid temperature was lowered to 80 ℃.
Next, 113 g of 30% H 2 O 2 was continuously added in small portions over 100 minutes, and after cooling, the pH was adjusted to 7.0, and 5 mg of a polymer flocculant (polyacrylamide) was added to coagulate and precipitate. Water quality analysis of the supernatant after treatment revealed that TOC was 195 mg/, and Cu was 6.
mg/.

比較のために、他の条件は全く同様にして、30
%H2O2の添加を一括添加とし、反応時間を100分
間として廃水の処理を行なつたところ、上澄液の
TOCは484mg/、Cuは67mg/であつた。この
場合、H2O2を100分間にわたつて添加した場合に
比較してTOC除去率およびCu除去率が大巾に低
下している。この原因は一括添加の場合には添加
直後から急激なガスの発生が見られるところか
ら、反応によつて生成されるCO2ガスと共に
H2O2の分解によるO2ガスが逃げて行くためであ
り、それだけ浪費されたと考えてよい。
For comparison, 30
%H 2 O 2 was added all at once and the reaction time was 100 minutes to treat wastewater.
TOC was 484 mg/, and Cu was 67 mg/. In this case, the TOC removal rate and Cu removal rate are significantly lower than when H 2 O 2 is added over 100 minutes. The reason for this is that in the case of bulk addition, rapid gas generation is observed immediately after addition, and together with the CO 2 gas generated by the reaction,
This is because O 2 gas from the decomposition of H 2 O 2 escapes, and it can be considered that that amount is wasted.

実施例 5 30%H2O2の添加量を125gとし、添加の時間を
120分とする以外は実施例4と同様に廃水の処理
を行なつたところ、凝集処理後の上澄液の水質は
TOCが80mg/、Cuが1mg/であつた。
Example 5 The amount of 30% H 2 O 2 added was 125 g, and the addition time was
When the wastewater was treated in the same manner as in Example 4 except that the time was 120 minutes, the water quality of the supernatant after the flocculation treatment was as follows.
TOC was 80 mg/, and Cu was 1 mg/.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1の処理を施した場合における
処理温度と有機炭素(TOC)量の除去率との関
係を示すグラフ、第2図は実施例1の処理を施し
た場合における処理温度と銅イオンの除去率との
関係を示したグラフ、第3図は実施例2の処理を
施した場合における廃水のPHとTOC除去率との
関係を示すグラフ、第4図は実施例3の処理を施
した場合における重金属イオンに対する硫酸第一
鉄のモル比とTOC除去率との関係を示すグラフ、
第5図は実施例3の処理を施した場合における重
金属イオンに対する硫酸第一鉄のモル比と重金属
イオンの除去率との関係を示すグラフである。
Figure 1 is a graph showing the relationship between the treatment temperature and the removal rate of organic carbon (TOC) when the treatment of Example 1 is applied, and Figure 2 is a graph showing the relationship between the treatment temperature and the removal rate of organic carbon (TOC) when the treatment of Example 1 is applied. A graph showing the relationship between the copper ion removal rate and Figure 3 is a graph showing the relationship between wastewater PH and TOC removal rate when the treatment of Example 2 is applied. Figure 4 is a graph showing the relationship between the TOC removal rate and the treatment of Example 3. A graph showing the relationship between the molar ratio of ferrous sulfate to heavy metal ions and TOC removal rate when applying
FIG. 5 is a graph showing the relationship between the molar ratio of ferrous sulfate to heavy metal ions and the removal rate of heavy metal ions when the treatment of Example 3 was performed.

Claims (1)

【特許請求の範囲】[Claims] 1 高濃度の重金属錯塩を含有する有機性廃水を
PH5以下に調整し、廃水中の重金属イオンの総モ
ル数に対して0.1〜2.0倍量の第一鉄イオンを添加
し、液温を80〜100℃とした状態で過酸化水素を
少量ずつ連続的に添加し、冷却し、PHを6〜8に
調整し、生成した重金属含有凝集物質を分離する
ことを特徴とする重金属錯塩含有廃水の処理法。
1 Organic wastewater containing high concentrations of heavy metal complex salts
Adjust the pH to below 5, add 0.1 to 2.0 times the amount of ferrous ions to the total number of moles of heavy metal ions in the wastewater, and continuously add hydrogen peroxide in small amounts at a temperature of 80 to 100℃. 1. A method for treating wastewater containing heavy metal complex salts, which comprises: adding water to the wastewater, cooling it, adjusting the pH to 6 to 8, and separating the generated heavy metal-containing aggregated substances.
JP5377682A 1982-04-02 1982-04-02 Treatment of waste water containing heavy metal complex salt Granted JPS58174286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5377682A JPS58174286A (en) 1982-04-02 1982-04-02 Treatment of waste water containing heavy metal complex salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5377682A JPS58174286A (en) 1982-04-02 1982-04-02 Treatment of waste water containing heavy metal complex salt

Publications (2)

Publication Number Publication Date
JPS58174286A JPS58174286A (en) 1983-10-13
JPS643552B2 true JPS643552B2 (en) 1989-01-23

Family

ID=12952211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5377682A Granted JPS58174286A (en) 1982-04-02 1982-04-02 Treatment of waste water containing heavy metal complex salt

Country Status (1)

Country Link
JP (1) JPS58174286A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9044178B2 (en) 2007-08-30 2015-06-02 Pepex Biomedical, Llc Electrochemical sensor and method for manufacturing

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104299A (en) * 1984-10-26 1986-05-22 日揮株式会社 Method of disposing radioactive decontaminated waste liquor
US4724084A (en) * 1986-03-28 1988-02-09 The Boeing Company System for removing toxic organics and metals from manufacturing wastewater
JP4374636B2 (en) * 1999-01-11 2009-12-02 栗田工業株式会社 Treatment method of waste liquid containing heavy metal complex
AT412470B (en) * 2003-04-30 2005-03-25 Dauser Industrieanlagen Und Ab METHOD FOR CLEANING WASTE WATER
KR100613727B1 (en) 2004-10-27 2006-08-22 한국전력공사 The continuous disposal method and apparatus of chemical cleaning waste water by non-catalytic oxidant treatment
JP5191058B2 (en) * 2009-04-07 2013-04-24 太平洋セメント株式会社 Wastewater treatment method
WO2015129541A1 (en) * 2014-02-27 2015-09-03 三菱レイヨン株式会社 Treatment method and treatment device for waste water containing heavy metal
CN105000652A (en) * 2015-07-30 2015-10-28 奉化市腾远计时器厂 Heavy metal treatment device of water purifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9044178B2 (en) 2007-08-30 2015-06-02 Pepex Biomedical, Llc Electrochemical sensor and method for manufacturing
US9746440B2 (en) 2007-08-30 2017-08-29 Pepex Biomedical, Llc Electrochemical sensor and method for manufacturing

Also Published As

Publication number Publication date
JPS58174286A (en) 1983-10-13

Similar Documents

Publication Publication Date Title
KR860001247B1 (en) Reclamation method of merwry in wast water
JP3739480B2 (en) Treatment method of flue gas desulfurization waste water
EA200000437A1 (en) METHOD FOR REMOVING SELENIUM FROM TECHNOLOGICAL WATER FLOWS AND DEVICE FOR ITS IMPLEMENTATION
JP7204140B2 (en) Method for treating wastewater containing cyanide
JP2009148749A (en) Heavy metal-containing water treating method
WO2015096536A1 (en) Method for removing cyanide in wastewater by recycling electroplating sludge
JP2008036608A (en) Method and apparatus for treating cyanide-containing wastewater
JPS643552B2 (en)
CN106698637A (en) Treatment method of arsenic-containing wastewater
JP2004249258A (en) Wastewater treatment method
JP5848119B2 (en) Treatment method for fluorine-containing wastewater
JPS6211634B2 (en)
KR100404343B1 (en) Method for purifying a metal-containing solution
JP5211320B2 (en) Selenium-containing wastewater treatment method
CN114524553A (en) Process for treating heavy metal wastewater by using alkaline-boiling tungsten slag
JP4936559B2 (en) Arsenic remover
JPS59196796A (en) Treatment of liquid waste
JP3840656B2 (en) Purification method of aqueous solution and purified aqueous solution
JPH08141579A (en) Drainage treatment method
JP4052428B2 (en) Treatment method and treatment agent for lead-containing wastewater
JP3788782B2 (en) Method for removing and recovering copper by treating waste water and chemicals used therefor
JPH0780479A (en) Treatment of organic compound-containing waste liquid
JP6623288B2 (en) Method and apparatus for treating wastewater containing hydrogen sulfide
JP4604203B2 (en) Treatment method for waste liquid containing heavy metals
JP4407236B2 (en) Treatment method of wastewater containing antimony