JP3840656B2 - Purification method of aqueous solution and purified aqueous solution - Google Patents
Purification method of aqueous solution and purified aqueous solution Download PDFInfo
- Publication number
- JP3840656B2 JP3840656B2 JP2002354879A JP2002354879A JP3840656B2 JP 3840656 B2 JP3840656 B2 JP 3840656B2 JP 2002354879 A JP2002354879 A JP 2002354879A JP 2002354879 A JP2002354879 A JP 2002354879A JP 3840656 B2 JP3840656 B2 JP 3840656B2
- Authority
- JP
- Japan
- Prior art keywords
- aqueous solution
- arsenic
- hydrochloric acid
- iron
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、たとえば塩酸、さらには塩酸に、ナトリウム、カルシウム、カリウム、クロミウム、アルミニウム、マンガン、鉄、銅、ニッケル、カドミウムなどの金属が溶解した金属塩酸塩の塩酸酸性水溶液などに不純物として存在する砒素化合物を除去して、それらの水溶液を精製する方法と、この精製方法によって得られる精製水溶液に関するものである。
【0002】
【従来の技術】
塩酸や、ナトリウム、カルシウム、カリウム、クロミウム、アルミニウム、マンガン、鉄、銅、ニッケル、カドミウムなどの金属塩酸塩の塩酸酸性水溶液は、酸洗、水処理薬剤、メッキ用薬品、染色助剤、写真用薬剤、更には防腐剤、消毒剤、乾燥剤、反応触媒などに広く使用されているもので、その使用あるいは回収再利用に際して、不純物の存在、特に砒素の存在は大きな問題となることが多い。
【0003】
すなわち、砒素、特に砒化水素、亜砒酸等の砒素化合物は、公知のように毒性が強く、特にそれら砒素化合物は金属中に微量に存在しても、その金属の性質を極端に劣化させる性質を有しているので、不純物としての砒素及び砒素化合物(以下これらを総称して単に砒素という。)は非常に嫌われている成分で、不純物としての砒素については、その除去が強く求められることが多く、優れた砒素の除去方法が常に求められている。
【0004】
したがって、液中の砒素の除去方法も種々提案されており、古くから知られているが、一般的な砒素除去方法としては、強塩基性イオン交換法、又は活性炭に吸着させる吸着剤法、あるいは硫化砒素として沈殿させる硫化物法、さらには金属水酸化物との共沈あるいは吸着を利用する方法、特に鉄の水酸化物に吸着させる等が知られ、イオン交換樹脂法又は吸着剤法あるいは硫化物法等は、経費高のため特殊な場合に用いられているため、多用されている方法としては金属水酸化物との共沈あるいは吸着による方法で、その中でも鉄の水酸化物に吸着させるのが普通で、より具体的な砒素除去方法としては、以下のような例を挙げることができる。
【0005】
たとえば、砒素と重金属類を含む硫酸酸性溶液をpH2.0〜3.2に調整し、酸素加圧下で撹拌しつつ加温して、主にFe3 (SO4 )2 (OH)5 ・2H2 O形態の塩基性硫酸鉄を生成せしめ、該塩基性硫酸鉄に砒素を共沈および又は吸着させて除去する方法。(例えば、特許文献1参照)
【0006】
重金属と砒素を含む酸性溶液に酸化剤を添加して、該溶液中の3価の砒素を5価の砒素に酸化したのち、第1鉄塩を添加し、さらに溶液のpHを1.5〜3.0に保持しつつ、空気、酸素または酸化剤あるいは以上のうち二者以上の併用によって第1鉄を酸化することにより、砒素を砒素品位の高い砒酸鉄として、前記重金属を含有する溶液から沈殿分離除去する方法。(例えば、特許文献2参照)
【0007】
砒素と鉄とを含有する酸性溶液を酸化処理して、該溶液中の砒素と鉄を酸化させ、更に該酸化処理と同時に又は該酸化処理後に中和処理してpH1.5〜4.0として、砒素と鉄とを含有する固形分を形成させて固液分離して砒素を除去する方法。(例えば、特許文献3参照)
【0008】
水中に含まれる砒酸イオン/又は亜砒酸イオンと水素供与体とを触媒の存在下で反応させることにより砒酸イオン/又は亜砒酸イオンを単体砒素に還元して除去する方法。(例えば、特許文献4参照)
【0009】
【特許文献1】
特公昭56− 6356号公報(特許請求の範囲)
【特許文献2】
特公昭62−21728号公報(特許請求の範囲)
【特許文献3】
特開平 6−206080号公報(請求項1)
【特許文献4】
特開平 9−327694号公報(請求項1)
【0010】
【発明が解決しようとする課題】
しかしながら、これらの方法には、ランニングコストが高価、排ガス処理設備や高圧容器が必要、工程が多段に渡り複雑、析出物の濾過性不良、水素(気体)と液体の反応で反応性の向上に工夫が必要といった問題点がある。
【0011】
かかる現状に鑑み、発明者は、これらの砒素除去方法に比較し、より簡便で、安全性が高く経済性にも優れた方法を見出すべく研究を行った結果、砒素を含有する水溶液を、塩酸酸性の水溶液とすると、還元剤により、砒素が簡単に還元され単体砒素(金属)となり容易に分離できることを見出して、この発明を完成させた。
【0012】
【課題を解決するための手段】
すなわち、この発明は請求項1に記載の発明は、
Fe +2 とイオン状もしくは金属状の銅の非存在下に、塩酸酸性の水溶液中に含まれる砒素を、金属鉄又は金属ニッケルを用いて析出分離すること
を特徴とする水溶液の精製方法である。
【0013】
また、この発明は請求項2に記載の発明は、
請求項1に記載の水溶液の精製方法において、
前記塩酸酸性の水溶液は、
金属を溶解しているものであること
を特徴とするものである。
【0014】
また、この発明は請求項3に記載の発明は、
請求項1又は2に記載の水溶液の精製方法において、
前記塩酸酸性の水溶液は、
そのpHが4以下であること
を特徴とするものである。
【0015】
また、この発明は請求項4に記載の発明は、
請求項1〜3のいずれかに記載の水溶液の精製方法において、
前記還元析出は、
温度40℃〜90℃の範囲下に行うこと
を特徴とするものである。
【0016】
さらに、この発明は請求項5に記載の発明は、
請求項1〜4のいずれかに記載の水溶液の精製方法で精製されたこと
を特徴とする精製水溶液である。
【0017】
【発明の実施の形態】
以下、この発明の水溶液の精製方法と、この精製方法によって得られる水溶液について、より具体的に説明する。
【0018】
<水溶液>
この発明において、精製の対象となる水溶液は、砒素を含有するもので、この発明は水溶液中に不純物として存在している砒素を除去することによって、当該水溶液を精製するもので、精製される水溶液は、塩酸酸性であることが必要で、中性乃至アルカリ性の水溶液を精製するときは、塩酸を用いて酸性にする必要があり、塩酸酸性の水溶液のpHは、4以下であることが好ましく、pHが4を越える水溶液では、砒素の析出分離の効率が低下することがある。
【0019】
この発明において、適用される塩酸酸性の水溶液としては種々挙げられるが、最も基本的なものとしては、塩酸が挙げられ、この発明によれば、塩酸中に砒素が不純物として存在するときに、その砒素の除去を簡単に行うことができる。
【0020】
その他の塩酸酸性の水溶液としては、ナトリウム、カルシウム、カリウム、クロミウム、アルミニウム、マンガン、鉄、銅、ニッケル、カドミウムなどの金属を塩酸に溶解した、これらの金属の塩酸酸性水溶液、換言すれば、塩化ナトリウム、塩化カルシウム、塩化カリウム、塩化クロム、塩化アルミニウム、塩化マンガン、塩化鉄、塩化銅、塩化ニッケル、塩化カドミウムなどの金属塩化物の塩酸酸性水溶液などが挙げられる。
【0021】
以上のような塩酸、塩酸酸性水溶液は、工業用として調製されたものであっても、また一度各種用途で使用された回収品で再利用するもの、あるいは廃棄処分するものなどであってもよく、それらの水溶液中に不純物として砒素が存在し、除去が必要なものにこの発明を適用することができ、また、固体の金属あるいは金属塩なども、塩酸酸性の水溶液、特に塩酸に溶解するものであるならば、溶解して水溶液として、それらから砒素を除去することができる。
【0022】
<金属鉄、ニッケル金属>
金属鉄及びニッケル金属は還元剤として機能するものであり、上記のような塩酸や金属塩化物を処理する際には、反応速度の面から、それらを粉末として使用するのが特に好ましい。
【0023】
金属鉄又はニッケル金属を用いた場合は、以下の式1に示されるように、砒素単体(金属砒素)が析出されるが、亜鉛を用いた場合は、以下の式2に示されるように、毒性の強い砒化水素が発生するので、還元剤として亜鉛を用いることには問題がある。
【0024】
【式1】
H3 AsO4 +5Fe+10HCl → 5FeCl2 +8H2 O+2As↓
【0025】
【式2】
H3 AsO4 +4Zn+8HCl → 4ZnCl2 +4H2 O+AsH3 ↑
【0026】
<析出条件>
砒素の析出については、塩酸酸性の水溶液と還元剤としての、金属鉄やニッケル金属を接触させるだけで良く、通常は、反応を早めるために、金属鉄やニッケル金属を粉末として、水溶液に添加するだけでよく、添加後、反応を早めるために、水溶液を撹拌することが望ましいが、反応によっては、水素の発生があり、発生する水素により撹拌効果が生じ、反応が順次進行するときには、格別に撹拌する必要もない。
【0027】
析出温度としては、常温でも良いが、反応速度を高めるためには温度40℃以上で行うことが好ましい。なお、温度90℃以上では、反応容器として格別なものを使用する必要が生じるので避けるのが望ましい。
【0028】
なお、反応は発熱反応であるため、反応初期においては、加温しなくても水溶液の温度が上昇するので、反応温度は、初期は上昇にまかせ、反応途次から過熱の防止、さらには、反応熱が低下した際の加温のために、温度調整器を用いて温度を一定に保つのが好ましい。
【0029】
析出時間としては、析出温度が温度80℃であれば1時間以上、通常5〜8時間とするのが好ましい。
【0030】
砒素は、還元されて金属状態で析出し、添加物が金属鉄粉などであれば、その表面に付着した状態で析出するので、それらを濾過することにより水溶液から分離される。
【0031】
【作用】
この発明の水溶液の精製方法は、不純物として塩酸酸性の水溶液中に存在する砒素イオンを、この水溶液に金属鉄粉などの還元剤を添加することによって還元し、砒素単体(金属砒素)として析出させるもので、析出した砒素は、金属鉄粉などの表面に付着状態で析出するため、分離は簡単に行うことができる。
【0032】
【実施例】
以下、実施例に基づいて、この発明の水溶液の精製方法と、該精製方法によって得られる精製水溶液について、より詳細に説明する。
【0033】
実施例1
原子吸光用の1000ppm砒素標準液を10ml添加した18%塩酸100mlに、ニッケル金属紛(砒素濃度1.24ppm)32.4g加え、温度50℃にて2時間反応させたところ、反応に伴ない水素が発生した。反応終了後、固液分離をし、固体はイオン交換水で洗浄し、液体、固体、洗浄液の砒素濃度を測定した。
液体中の砒素濃度は0.39ppmで、固体及び洗浄液中の砒素濃度は1688.6ppm、4.06ppmで、回収された砒素は97.5%であった。
【0034】
実施例2
銅濃度10%、塩酸濃度8%の塩化銅水溶液848gに、砒酸水素ニナトリウム七水和物3.95gを加えて完全に溶解させ、砒素濃度0.1%の塩化銅塩酸酸性水溶液を作成した。
この水溶液に鉄粉(砒素濃度15ppm)81.04gを加えた。温度は、鉄粉を加えることで上昇するが、温度調節器で温度70℃になるように調整し、3時間反応させた。
反応終了後、固液分離し、液中と固体中の砒素濃度を測定したところ、水溶液の砒素の濃度は3.02ppmで、砒素回収率はほぼ100%であった。
【0035】
実施例3
ニッケル濃度1%の塩化ニッケル水溶液1000gに、砒酸水素ニナトリウム七水和物4.16gを加えた後、18%の塩酸5mlを加え砒酸塩を完全に溶解させ、砒素濃度0.1%の塩化ニッケル水溶液を作成した。この水溶液にニッケル金属粉(砒素濃度30ppm)2.18gを加えた。温度は、ニッケル金属粉を加えることで上昇するが、温度調節器で温度70℃になるように調整し、4時間反応させた。
反応終了後、固液分離し、液中と固体中の砒素濃度を測定したところ、水溶液の砒素の濃度は326ppm、砒素回収率は97.7%であった。
水溶液の砒素の濃度が326ppmと高いのは、析出した砒素がニッケル金属粉の表面に付着し、ニッケルの活性を失わせた反応の進行を阻害したためであると思われる。
【0036】
参考例
塩酸濃度約8%の塩化鉄水溶液(組成:塩化第1鉄10.5%、塩化第、銅イオン3.72%)1kgに、砒酸水素ニナトリウム七水和物4.18gを加えて溶解し、砒素濃度が1000ppmとの水溶液とした。この水溶液に鉄粉84.8gを加えて反応させた。反応温度は、反応熱で上昇するが、反応初期は熱を加えることはせず、その後温度調節器で温度70℃になるように調整して反応を継続させた。
反応終了後、固液分離し、液中と固体中の砒素濃度を測定したところ、水溶液の砒素の濃度は0.1ppm以下で、砒素回収率はほぼ100%であった。
反応後の液体は、塩化銅を殆んど含まない塩化第1鉄水溶液で、析出した固体は黒色で、金属銅の表面に砒素が付着した状態のものと判断された。また、反応中にガス検知管で砒化水素の濃度を測定したが、検出下限値の0.2ppm以下であった。
【0037】
実施例4
塩化第1鉄と塩化第2鉄を含有し、砒素濃度1.64ppmの塩化鉄の塩酸酸性水溶液に鉄粉を加え、塩化第2鉄の殆んど全量を塩化第1鉄にしたところ、同時に砒素も析出し、砒素の濃度が検出限界値の塩化第1鉄水溶液が得られた。また、反応中に砒化水素の発生は認められなかった。
【0038】
実施例5
35%の塩化第1鉄水溶液1kgに、砒酸水素ニナトリウム七水和物を砒素濃度が1%になるように加え、塩酸を加えて砒酸水素ニナトリウム七水和物を完全に溶解した。水溶液温度を温度70℃に調整し、電解鉄50gを加え12時間反応させた。
電解鉄は、黒色の皮膜で覆われた状態となった。固液分離し、黒色の皮膜で覆われた電解鉄を洗浄した。洗浄により黒色皮膜は剥離することなく、乾燥後、36%塩酸に浸漬したが、塩酸とは反応しなかった。
これから、黒色皮膜は、塩酸に溶解する砒酸鉄でも亜砒酸鉄でもなく、塩酸に溶解しない金属砒素であることが判明した。
【0039】
【発明の効果】
この発明の水溶液の精製方法は、塩酸酸性の水溶液中に不純物として含まれる砒素を、還元剤としての金属鉄や金属ニッケルを加えるだけで、毒性の強い砒化水素ガスを発生させずに金属砒素として分離除去することができ、特別な試薬や操作を必要とせず、また、ガス処理装置などの高価な設備も作る必要がなく、安全性の高い経済的な方法である。また、水酸化物等の難濾過性の生成物も生じないので、分離効率も非常に良い方法である。[0001]
BACKGROUND OF THE INVENTION
This invention exists as an impurity in hydrochloric acid aqueous solution of metal hydrochloride in which metal such as sodium, calcium, potassium, chromium, aluminum, manganese, iron, copper, nickel, cadmium is dissolved in hydrochloric acid, and further hydrochloric acid, for example The present invention relates to a method for removing arsenic compounds and purifying an aqueous solution thereof, and a purified aqueous solution obtained by this purification method.
[0002]
[Prior art]
Hydrochloric acid and aqueous hydrochloric acid solutions of metal hydrochlorides such as sodium, calcium, potassium, chromium, aluminum, manganese, iron, copper, nickel, cadmium, pickling, water treatment chemicals, plating chemicals, dyeing aids, photographic It is widely used for chemicals, preservatives, disinfectants, desiccants, reaction catalysts, and the like, and the presence of impurities, especially the presence of arsenic, is often a major problem when used or recovered and reused.
[0003]
That is, arsenic compounds, particularly arsenic compounds such as hydrogen arsenide and arsenous acid, are highly toxic as is well known, and even if these arsenic compounds are present in trace amounts in metals, they have the property of extremely degrading the properties of the metals. Therefore, arsenic and arsenic compounds as impurities (hereinafter collectively referred to simply as arsenic) are components that are very disliked, and removal of arsenic as impurities is often strongly required. Therefore, there is always a need for an excellent arsenic removal method.
[0004]
Therefore, various methods for removing arsenic in the liquid have been proposed and have been known for a long time. As a general method for removing arsenic, a strong basic ion exchange method, an adsorbent method for adsorption on activated carbon, or Known is the sulfide method for precipitation as arsenic sulfide, and further, the method using coprecipitation or adsorption with metal hydroxides, especially adsorption to iron hydroxides, ion exchange resin method or adsorbent method or sulfide Since physical methods are used in special cases due to high costs, the most commonly used methods are coprecipitation with metal hydroxides or adsorption, and among them, adsorption to iron hydroxides. As a more specific arsenic removal method, the following examples can be given.
[0005]
For example, arsenic and sulfuric acid solution containing heavy metals is adjusted to PH2.0~3.2, warmed while stirring at an oxygen pressure, mainly Fe 3 (SO 4) 2 ( OH) 5 · 2H A method in which 2 O form of basic iron sulfate is produced and arsenic is coprecipitated and / or adsorbed on the basic iron sulfate to remove it. (For example, see Patent Document 1)
[0006]
An oxidizing agent is added to an acidic solution containing heavy metal and arsenic to oxidize trivalent arsenic in the solution to pentavalent arsenic, and then ferrous salt is added. While maintaining 3.0, ferrous oxide is oxidized by air, oxygen, an oxidizer, or a combination of two or more of the above, so that arsenic is converted to iron arsenate with high arsenic quality from the solution containing the heavy metal. A method of separating and removing the precipitate. (For example, see Patent Document 2)
[0007]
An acidic solution containing arsenic and iron is oxidized to oxidize arsenic and iron in the solution, and further neutralized at the same time as or after the oxidation to obtain a pH of 1.5 to 4.0. A method of removing arsenic by forming a solid content containing arsenic and iron and separating it into solid and liquid. (For example, see Patent Document 3)
[0008]
A method of reducing and removing arsenate ions / or arsenite ions to simple arsenic by reacting arsenate ions / or arsenite ions contained in water with a hydrogen donor in the presence of a catalyst. (For example, see Patent Document 4)
[0009]
[Patent Document 1]
Japanese Patent Publication No. 56-6356 (Claims)
[Patent Document 2]
Japanese Examined Patent Publication No. 62-21728 (Claims)
[Patent Document 3]
JP-A-6-206080 (Claim 1)
[Patent Document 4]
JP-A-9-327694 (Claim 1)
[0010]
[Problems to be solved by the invention]
However, these methods have high running costs, require exhaust gas treatment equipment and high-pressure vessels, are complicated in multiple steps, have poor filterability of precipitates, and improve reactivity by reacting hydrogen (gas) with liquid. There is a problem that a device is necessary.
[0011]
In view of the present situation, the inventor conducted research to find a simpler, safer and more economical method than these arsenic removal methods. As a result, an aqueous solution containing arsenic was added to hydrochloric acid. The present invention has been completed by finding that an acidic aqueous solution can be easily reduced to a simple arsenic (metal) by a reducing agent to form a simple arsenic (metal).
[0012]
[Means for Solving the Problems]
That is, the present invention according to claim 1
A method for purifying an aqueous solution, wherein arsenic contained in an acidic aqueous solution of hydrochloric acid is precipitated and separated using metallic iron or metallic nickel in the absence of Fe +2 and ionic or metallic copper .
[0013]
Moreover, this invention is the invention according to claim 2,
In the purification method of the aqueous solution of Claim 1,
The aqueous hydrochloric acid solution is
The metal is dissolved.
[0014]
Moreover, this invention is the invention according to claim 3,
In the purification method of the aqueous solution of Claim 1 or 2,
The aqueous hydrochloric acid solution is
Its pH is 4 or less.
[0015]
Moreover, this invention is the invention according to claim 4,
In the purification method of the aqueous solution in any one of Claims 1-3,
The reduction precipitation is
It is characterized by being carried out at a temperature in the range of 40 ° C to 90 ° C.
[0016]
Furthermore, this invention is the invention according to claim 5,
A purified aqueous solution purified by the method for purifying an aqueous solution according to any one of claims 1 to 4 .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the aqueous solution purification method of the present invention and the aqueous solution obtained by this purification method will be described more specifically.
[0018]
<Aqueous solution>
In the present invention, the aqueous solution to be purified contains arsenic, and the present invention purifies the aqueous solution by removing arsenic present as an impurity in the aqueous solution. Is required to be acidic with hydrochloric acid, and when purifying a neutral or alkaline aqueous solution, it is necessary to make it acidic with hydrochloric acid, and the pH of the aqueous hydrochloric acid solution is preferably 4 or less, In an aqueous solution having a pH exceeding 4, the efficiency of arsenic precipitation separation may be reduced.
[0019]
In this invention, various hydrochloric acid acidic aqueous solutions can be used, and the most basic one is hydrochloric acid. According to this invention, when arsenic is present as an impurity in hydrochloric acid, Arsenic can be easily removed.
[0020]
Other hydrochloric acid aqueous solutions include sodium, calcium, potassium, chromium, aluminum, manganese, iron, copper, nickel, cadmium, and other metals dissolved in hydrochloric acid. Examples include hydrochloric acid aqueous solution of metal chloride such as sodium, calcium chloride, potassium chloride, chromium chloride, aluminum chloride, manganese chloride, iron chloride, copper chloride, nickel chloride, cadmium chloride.
[0021]
The hydrochloric acid and hydrochloric acid aqueous solution as described above may be prepared for industrial use, reused with recovered products once used for various purposes, or discarded. The present invention can be applied to those in which arsenic is present as an impurity in those aqueous solutions and needs to be removed, and solid metals or metal salts are also soluble in hydrochloric acid aqueous solutions, particularly those dissolved in hydrochloric acid. If so, it can be dissolved to remove arsenic from them as an aqueous solution.
[0022]
<Metal iron, nickel metal>
Metallic iron and nickel metal function as a reducing agent, and when treating hydrochloric acid or metal chloride as described above, it is particularly preferable to use them as powder from the viewpoint of reaction rate.
[0023]
When metallic iron or nickel metal is used, arsenic alone (metal arsenic) is deposited as shown in the following formula 1, but when zinc is used, as shown in the following formula 2, There is a problem in using zinc as a reducing agent because highly toxic hydrogen arsenide is generated.
[0024]
[Formula 1]
H 3 AsO 4 + 5Fe + 10HCl → 5FeCl 2 + 8H 2 O + 2As ↓
[0025]
[Formula 2]
H 3 AsO 4 + 4Zn + 8HCl → 4ZnCl 2 + 4H 2 O + AsH 3 ↑
[0026]
<Precipitation conditions>
For arsenic precipitation, it is only necessary to contact an acidic aqueous hydrochloric acid solution with metallic iron or nickel metal as a reducing agent. Usually, in order to accelerate the reaction, metallic iron or nickel metal is added to the aqueous solution as a powder. In order to accelerate the reaction after the addition, it is desirable to stir the aqueous solution. However, depending on the reaction, hydrogen is generated, and when the generated hydrogen has a stirring effect and the reaction proceeds sequentially, There is no need to stir.
[0027]
The deposition temperature may be room temperature, but it is preferably performed at a temperature of 40 ° C. or higher in order to increase the reaction rate. It should be noted that if the temperature is 90 ° C. or higher, it is necessary to avoid using a special reaction vessel.
[0028]
Since the reaction is an exothermic reaction, the temperature of the aqueous solution rises at the initial stage of the reaction without heating, so the reaction temperature is allowed to rise at the initial stage to prevent overheating from the middle of the reaction. In order to warm up when the heat of reaction decreases, it is preferable to keep the temperature constant using a temperature controller.
[0029]
The deposition time is preferably 1 hour or longer, usually 5 to 8 hours, when the deposition temperature is 80 ° C.
[0030]
Arsenic is reduced and deposited in a metallic state. If the additive is metallic iron powder or the like, it is deposited on the surface of the arsenic, so that it is separated from the aqueous solution by filtering them.
[0031]
[Action]
According to the method for purifying an aqueous solution of the present invention, arsenic ions present in an aqueous hydrochloric acid solution as an impurity are reduced by adding a reducing agent such as metallic iron powder to the aqueous solution and precipitated as simple arsenic (metal arsenic). In this case, the deposited arsenic is deposited on the surface of metal iron powder or the like in an attached state, so that the separation can be easily performed.
[0032]
【Example】
Hereinafter, based on an Example, the purification method of the aqueous solution of this invention and the purified aqueous solution obtained by this purification method are demonstrated in detail.
[0033]
Example 1
32.4 g of nickel metal powder (arsenic concentration 1.24 ppm) was added to 100 ml of 18% hydrochloric acid to which 10 ml of 1000 ppm arsenic standard solution for atomic absorption was added, and reacted at a temperature of 50 ° C. for 2 hours. There has occurred. After completion of the reaction, solid-liquid separation was performed, the solid was washed with ion-exchanged water, and the arsenic concentrations of the liquid, solid and washing liquid were measured.
The arsenic concentration in the liquid was 0.39 ppm, the arsenic concentration in the solid and the cleaning liquid was 1688.6 ppm, 4.06 ppm, and the recovered arsenic was 97.5%.
[0034]
Example 2
An aqueous solution of copper chloride and hydrochloric acid having an arsenic concentration of 0.1% was prepared by adding 3.95 g of disodium hydrogen arsenate heptahydrate to 848 g of an aqueous solution of copper chloride having a copper concentration of 10% and a hydrochloric acid concentration of 8%. .
To this aqueous solution, 81.04 g of iron powder (arsenic concentration: 15 ppm) was added. The temperature was increased by adding iron powder, but the temperature was adjusted to 70 ° C. with a temperature controller and reacted for 3 hours.
After completion of the reaction, solid-liquid separation was performed, and the arsenic concentration in the liquid and the solid was measured. As a result, the arsenic concentration in the aqueous solution was 3.02 ppm, and the arsenic recovery rate was almost 100%.
[0035]
Example 3
After adding 4.16 g of disodium hydrogen arsenate heptahydrate to 1000 g of nickel chloride aqueous solution with a nickel concentration of 1%, 5 ml of 18% hydrochloric acid was added to completely dissolve the arsenate to obtain a chloride with an arsenic concentration of 0.1%. A nickel aqueous solution was prepared. 2.18 g of nickel metal powder (arsenic concentration 30 ppm) was added to this aqueous solution. The temperature was increased by adding nickel metal powder, but the temperature was adjusted to 70 ° C. with a temperature controller and reacted for 4 hours.
After completion of the reaction, solid-liquid separation was performed, and the arsenic concentration in the liquid and the solid was measured. As a result, the arsenic concentration in the aqueous solution was 326 ppm, and the arsenic recovery rate was 97.7%.
The reason why the concentration of arsenic in the aqueous solution is as high as 326 ppm is considered to be that the deposited arsenic adhered to the surface of the nickel metal powder and hindered the progress of the reaction that lost the nickel activity.
[0036]
Reference Example To 1 kg of aqueous iron chloride solution with a hydrochloric acid concentration of about 8% (composition: ferrous chloride 10.5%, chloride chloride, copper ion 3.72%), 4.18 g of disodium hydrogen arsenate heptahydrate was added. It melt | dissolved and it was set as the aqueous solution whose arsenic density | concentration is 1000 ppm. To this aqueous solution, 84.8 g of iron powder was added and reacted. The reaction temperature increased with the heat of reaction, but no heat was added at the beginning of the reaction, and then the temperature was adjusted to 70 ° C. with a temperature controller to continue the reaction.
After completion of the reaction, solid-liquid separation was performed, and the arsenic concentration in the liquid and the solid was measured. As a result, the arsenic concentration in the aqueous solution was 0.1 ppm or less, and the arsenic recovery rate was almost 100%.
The liquid after the reaction was an aqueous ferrous chloride solution containing almost no copper chloride, the precipitated solid was black, and it was judged that arsenic was attached to the surface of the metallic copper. Further, the concentration of hydrogen arsenide was measured with a gas detector tube during the reaction, but it was 0.2 ppm or less of the lower limit of detection.
[0037]
Example 4
When iron powder was added to an acidic aqueous solution of ferric chloride containing ferric chloride and ferric chloride with an arsenic concentration of 1.64 ppm, almost all of the ferric chloride was converted to ferrous chloride. Arsenic was also precipitated, and an aqueous ferrous chloride solution with an arsenic concentration at a detection limit was obtained. In addition, generation of hydrogen arsenide was not observed during the reaction.
[0038]
Example 5
Disodium hydrogen arsenate heptahydrate was added to 1 kg of 35% ferrous chloride aqueous solution so that the arsenic concentration was 1%, and hydrochloric acid was added to completely dissolve the disodium hydrogen arsenate heptahydrate. The temperature of the aqueous solution was adjusted to 70 ° C., and 50 g of electrolytic iron was added and reacted for 12 hours.
The electrolytic iron was covered with a black film. Solid-liquid separation was performed, and the electrolytic iron covered with the black film was washed. The black film was not peeled off by washing, and was dried and immersed in 36% hydrochloric acid, but did not react with hydrochloric acid.
From this, it was found that the black coating was neither iron arsenate nor iron arsenite dissolved in hydrochloric acid, but metal arsenic not dissolved in hydrochloric acid.
[0039]
【The invention's effect】
Method of purifying an aqueous solution of the invention, the arsenic contained as impurities in an aqueous solution of hydrochloric acid, only the addition of metallic iron and metallic nickel as a reducing agent, as a metal arsenic without generating strong arsenide hydrogen gas toxic It can be separated and removed, does not require any special reagent or operation, and does not require expensive equipment such as a gas processing apparatus, and is a highly safe and economical method. Further, since a non-filterable product such as hydroxide does not occur, the separation efficiency is very good.
Claims (5)
を特徴とする水溶液の精製方法。 A method for purifying an aqueous solution, wherein arsenic contained in an aqueous hydrochloric acid solution is precipitated and separated using metallic iron or metallic nickel in the absence of Fe +2 and ionic or metallic copper .
金属が溶解しているものであること
を特徴とする請求項1に記載の水溶液の精製方法。The aqueous hydrochloric acid solution is
The method for purifying an aqueous solution according to claim 1, wherein the metal is dissolved.
pHが4以下であること
を特徴とする請求項1又は2に記載の水溶液の精製方法。The aqueous hydrochloric acid solution is
The method for purifying an aqueous solution according to claim 1 or 2, wherein the pH is 4 or less.
温度40℃〜90℃の範囲下に行うこと
を特徴とする請求項1乃至3のいずれかに記載の水溶液の精製方法。The precipitation separation is
The method for purifying an aqueous solution according to any one of claims 1 to 3, wherein the method is performed at a temperature in the range of 40C to 90C.
を特徴とする精製水溶液。A purified aqueous solution purified by the method for purifying an aqueous solution according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002354879A JP3840656B2 (en) | 2002-12-06 | 2002-12-06 | Purification method of aqueous solution and purified aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002354879A JP3840656B2 (en) | 2002-12-06 | 2002-12-06 | Purification method of aqueous solution and purified aqueous solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004181431A JP2004181431A (en) | 2004-07-02 |
JP3840656B2 true JP3840656B2 (en) | 2006-11-01 |
Family
ID=32755731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002354879A Expired - Fee Related JP3840656B2 (en) | 2002-12-06 | 2002-12-06 | Purification method of aqueous solution and purified aqueous solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3840656B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4385103B2 (en) * | 2003-07-23 | 2009-12-16 | Dowaメタルマイン株式会社 | Iron oxide powder and method for producing the same |
KR101026753B1 (en) * | 2010-08-20 | 2011-04-08 | 한국지질자원연구원 | Method for soil washing of arsenic contaminated soil |
CN102398895B (en) * | 2010-09-16 | 2014-09-24 | 上海化学试剂研究所 | Production method of ultra-pure electronic grade chemical reagent |
CN102627360B (en) * | 2012-03-16 | 2013-12-25 | 同济大学 | Method for pretreatment on industrial wastewater by nascent state ferrous iron reduction |
CN111135674A (en) * | 2020-01-07 | 2020-05-12 | 华北电力大学(保定) | Absorption liquid for collecting gas-phase arsenic with different valence states |
-
2002
- 2002-12-06 JP JP2002354879A patent/JP3840656B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004181431A (en) | 2004-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8715612B2 (en) | Process for preparing zinc peroxide nanoparticles | |
JP4894403B2 (en) | Cyanide-containing wastewater treatment method and apparatus | |
GB2050333A (en) | Heavy netal adsorbent a process for producing such an adsorbent and an adsorption process using the same | |
JP3840656B2 (en) | Purification method of aqueous solution and purified aqueous solution | |
JP2778964B2 (en) | Detoxification of wastewater containing elemental mercury | |
JPS58174286A (en) | Treatment of waste water containing heavy metal complex salt | |
JP4106415B2 (en) | Treatment method of wastewater containing cyanide | |
KR100404343B1 (en) | Method for purifying a metal-containing solution | |
JP2923757B2 (en) | Reduction method of hexavalent selenium | |
CN111018212A (en) | Method for removing arsenic and chlorine from waste acid wastewater of metallurgical enterprise | |
JPH06510946A (en) | Detoxification of cyanide aqueous solution | |
JP2885692B2 (en) | Separation method of nickel in iron chloride solution | |
JP2008149309A (en) | Method for treating heavy metal-containing waste liquid | |
CN1348020A (en) | Method of eliminating nickel and heavy metal ion from waste ferric chloride liquid after etching or pickling | |
JPS60119B2 (en) | Processing method for chemical cleaning waste liquid | |
JP3282452B2 (en) | How to remove selenium from wastewater | |
JP3387109B2 (en) | Recovery of rhodium | |
RU2009229C1 (en) | Method for extraction of metallic arsenic from water solutions | |
JPH0592190A (en) | Treatment of waste acid solution | |
JP3786732B2 (en) | Treatment method of phosphite-containing waste liquid | |
CA2214523C (en) | Purification of metal containing solutions | |
JP3704431B2 (en) | Waste liquid treatment method and nickel recovery method | |
JPS58119389A (en) | Treatment of waste liquid containing hypophosphorous acid ion | |
JPS6023874B2 (en) | Processing method for waste liquid containing hypophosphite ions | |
CN109763000A (en) | A method of from height containing air oxidation removal arsenic in arsenic, zinc acid solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050519 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050628 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050727 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060728 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3840656 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100818 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100818 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110818 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120818 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |