JP2009145446A - 発光装置及び電子機器 - Google Patents

発光装置及び電子機器 Download PDF

Info

Publication number
JP2009145446A
JP2009145446A JP2007320477A JP2007320477A JP2009145446A JP 2009145446 A JP2009145446 A JP 2009145446A JP 2007320477 A JP2007320477 A JP 2007320477A JP 2007320477 A JP2007320477 A JP 2007320477A JP 2009145446 A JP2009145446 A JP 2009145446A
Authority
JP
Japan
Prior art keywords
light
voltage
organic
light emitting
initialization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007320477A
Other languages
English (en)
Inventor
Hitoshi Ota
人嗣 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007320477A priority Critical patent/JP2009145446A/ja
Publication of JP2009145446A publication Critical patent/JP2009145446A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

【課題】構成が簡易でありながら、複数の薄膜トランジスタ間の特性のばらつきの影響を受けない発光装置を提供する。
【解決手段】発光装置は、供給される電流量に応じてその発光強度が変化する有機EL素子8と、そのチャネルの両面に対応するよう配置された第1及び第2ゲート電極を備え、かつ、有機EL素子に電流を供給してこれを駆動する駆動トランジスタTdrと、有機EL素子の発光強度を検出する光検出素子15と、を備え、前記第1ゲート電極には、有機EL素子を所望の強度で発光させるべく意図された第1電圧が印加され、前記第2ゲート電極には、光検出素子による検出結果に応じた第2電圧が印加される。
【選択図】図2

Description

本発明は、発光素子を駆動するための薄膜トランジスタを含む発光装置及び電子機器に関する。
薄型で軽量な発光源として、OLED(organic light emitting diode)、即ち有機EL(electro luminescent)素子が提供されている。この有機EL素子は、有機材料を含む、少なくとも一層の有機発光層を画素電極と対向電極とで挟んだ構造を有する。有機EL素子は、これら画素電極及び対向電極間に所定の電流が供給されることによって発光する。その発光強度は、通常、前記電流の値に依存する。
このような有機EL素子は、例えば、その多数がマトリクス状に配列されることで画像表示装置を構成する。この場合、当該画像表示装置は、それら複数の有機EL素子のそれぞれを駆動するための薄膜トランジスタ(TFT;Thin Film Transistor)を備え得る。この薄膜トランジスタは、例えば有機EL素子に対する電流源としての役割を担う場合や、スイッチング素子としての役割を担う場合等がある。
以上の構成を備えた画像表示装置は、前記の薄膜トランジスタ(あるいは、薄膜トランジスタ群)が1個1個の有機EL素子に対応しつつ画素回路を構成するとともに、当該画素回路の多数がマトリクス状に配列される構造をもつことになる(いわゆるアクティブ・マトリクス型の画像表示装置である。)。
このような画像表示装置としては、例えば特許文献1に開示されているようなものが知られている。
特開2006−38965号公報
ところで、上述のような画像表示装置においては、複数の有機EL素子それぞれに対応する薄膜トランジスタの特性のばらつきが一定の範囲に収まっているのが望ましい。そうでなければ、各有機EL素子の発光強度がばらつき、表示画像の品質を低下させるからである。例えば、有機EL素子に電流を供給する駆動トランジスタの閾値電圧にばらつきがあれば、ある有機EL素子にはより多くの電流が流れてその発光強度がより大きくなり、他の有機EL素子にはより少ない電流が流れてその発光強度が小さくなる、というようことになる。
しかし、そのような要求を満足させるには困難が伴う。例えば、ある1枚の基板上に、複数の薄膜トランジスタを一斉に形成するにしても、当該基板の平面内におけるプロセス・パラメータの微妙な相違(例えば、CVD(Chemical Vapor Deposition)法を考えるのであれば、原料ガス供給量の相違)等が発生し得、これにより、1個1個の薄膜トランジスタの特性にばらつきが生じる、ということは発生しがちな事態だからである。また、製造直後は一定の範囲に収まっていた特性も、装置の運用に伴ってばらついていくということもある。この場合、各薄膜トランジスタの特性のばらつきが時間の進行に伴って拡大する可能性もあり、表示画像の品質が次第に劣化していく、等ということも生じ得ないではない。
このような不具合に対処するため、前述の特許文献1は、「ドライブトランジスタのドレイン電流のばらつきを補償可能な画素回路及び表示装置とこれらの駆動方法」に係る技術を開示する(特許文献1の〔0009〕より。あるいは、〔請求項1〕、〔図5〕等参照)。これによれば、たしかに、前記の不具合を一定程度解消することは可能である。
しかしながら、この特許文献1に開示される技術は、その〔図5〕等を一見するとわかるように、極めて複雑な回路構成を擁する。具体的にいえば、薄膜トランジスタの数だけでも正味7個が数えられ、その他に容量素子4個、走査線が5本、データ線が1本、固定電位Vofs及び電源電位Vccを供給するための電源線2本、更にはこれら各回路要素間を接続する各種の配線を備える、というが如くである。これに伴い駆動シーケンスも当然複雑になる。
このような極めて複雑な回路構成は、その構築工程における、前述のプロセス・パラメータに関する不安定要因を一層悪化させることにもなりかねない。また、前述した各種回路要素の個数は、1個の画素回路が備えるべきものとして要求されているのであるが、このようであると、基板面内における当該1個の画素回路の占有領域中、それら各種回路要素が備えられるべき領域の割合が大きくなって、結果的に、発光領域の確保が困難になるという問題もある。したがって、このような画素回路がマトリクス状に配列されるとなると、結局、表示画像の精細度が低下するという問題も惹起され得る。
本発明は、上述した課題に鑑みてなされたものであり、構成が簡易でありながら、複数の薄膜トランジスタ間の特性のばらつきの影響を受けない発光装置及び電子機器を提供することを課題とする。
本発明に係る発光装置は、上述した課題を解決するため、供給される電流量に応じてその発光強度が変化する発光素子と、そのチャネルの両面に対応するよう配置された第1及び第2ゲート電極を備え、かつ、前記発光素子に電流を供給してこれを駆動する駆動トランジスタと、前記発光素子の発光強度を検出する光検出素子と、を備え、前記第1ゲート電極には、前記発光素子を所望の強度で発光させるべく意図された第1電圧が印加され、前記第2ゲート電極には、前記光検出素子による検出結果に応じた第2電圧が印加される。
本発明によれば、駆動トランジスタから発光素子に電流が供給されると、当該発光素子は、その供給された電流値の相違に応じた強度でもって発光する。この場合、駆動トランジスタの第1ゲート電極に印加される第1電圧の大きさは、当該駆動トランジスタのソース・ドレイン間の電流、即ち当該駆動トランジスタが供給する電流の大きさに影響を与える。つまり、発光素子の発光強度は、第1電圧を所望の大きさに設定することによって制御され得るのである。
ただし、この場合、駆動トランジスタの特性に着目する必要がある。この特性は、既述のように、任意の2個の薄膜トランジスタを対比したとき、一般に相違すると考えるのが自然であるから、前述の発光強度の制御も思い通りには行かない場合が生じることになる。より具体的にいえば、前記駆動トランジスタが2個あるとして、その両者に同じ大きさの第1電圧を供給したとしても、それら2個の駆動トランジスタそれぞれに対応する2個の発光素子が、同じ強度で発光するとは限らないのである。
しかしながら、ここで本発明においては特に、光検出素子が発光素子の発光強度を検出するとともに、前記駆動トランジスタの第2ゲート電極には、その光検出素子の検出結果に応じた第2電圧が印加されるようになっている。一般に、「チャネルの両面に対応するよう」2つのゲート電極をもつ、いわゆるバックゲート構造をもつ薄膜トランジスタでは、その“バックゲート”に電圧を供給すると、ソース・ドレイン間の電流量が変化する性質をもつ。このことと、前述の「第2電圧」とを併せ考えると、結局、本発明によれば、発光素子の現実の発光強度(即ち、駆動トランジスタの特性のばらつきをそのまま反映した状態の発光強度)が観測された上で、それに基づき駆動トランジスタの電流供給機能の調整が行われるようになっている(要するに、フィードバック制御がなされている)、といえるのである。
したがって、本発明によれば、薄膜トランジスタの特性のばらつきに起因して発光強度がばらつくという事態の発生を未然に回避することができる。しかも、本発明においては、このような効果が基本的に「光検出素子」と、第2ゲート電極をもつ駆動トランジスタとを設けることによってのみ達成されているのであるから、その回路構成は極めて簡易である。
以上を要するに、本発明によれば、構成が簡易でありながら、複数の薄膜トランジスタ間の特性のばらつきの影響を受けない発光装置が提供されることになるのである。
この発明の発光装置では、前記光検出素子による検出結果に応じて、その蓄積電荷量を変化させる容量素子を更に備え、当該容量素子は、前記第2電圧の供給主体に含まれる、ように構成してもよい。
この態様によれば、第2電圧が容量素子によって供給されるようになっているから、駆動トランジスタのバックゲートに安定的に所定の電圧を供給することが可能になる。
この「容量素子」を備える態様では、前記発光素子は、その複数が所定の配列に従って並べられ、かつ、それら複数の発光素子の各々に対応する、前記駆動トランジスタ、前記光検出素子及び前記容量素子の各々を少なくとも1つずつ、及び、当該発光素子の1つを含む画素回路が構成され、前記複数の容量素子に対しては、それらの蓄積電荷量が所定の値となるように、初期化処理が実行される、ように構成してもよい。
この態様によれば、複数の画素回路が備えられるので、例えば、何らかの意味内容をもつ画像、等が表示され得る。この場合、各画素回路に含まれる各発光素子の発光強度にばらつきがあることは、より深刻な事態として認識され得る。
ここで、本態様では、それら各画素回路中の容量素子に対する初期化処理が実行されるので、容量素子が、「光検出素子による検出結果に応じて、その蓄積電荷量を変化させる」前に、前記複数の画素回路中の複数の容量素子はすべて、同じ電荷量を蓄積している状態が現出されることになる。そして、当該容量素子の蓄積電荷量の変動は、この後、「光検出素子による検出結果」、即ち「発光素子の発光強度」に応じて生じるが、この場合、かかる変動は、前記複数の画素回路ごとに行われることになる。
このようにして、本態様によれば、各画素回路の発光素子の発光強度が、それら複数の画素回路を通じてみて、均一化され得ることになる。
この「初期化処理」が実行される態様では、前記容量素子の一方の電極に接続される第1スイッチング素子と、該第1スイッチング素子に接続される第1初期化線と、を更に備え、前記光検出素子は、前記一方の電極からみて前記第1スイッチング素子と並列関係となるように当該一方の電極に接続され、前記初期化処理は、前記第1スイッチング素子をONにすることで前記第1初期化線と前記容量素子とを電気的に短絡することにより行われる、ように構成してもよい。
この態様によれば、第1初期化線を所定の電位に設定する、あるいは設定しておくことで、容量素子の初期化が好適に実行され得ることになる。また、この態様では、前記第1スイッチング素子を“OFF”とすれば、容量素子が、光検出素子の検出結果に応じて、その蓄積電荷量を好適に変化させることが可能である。要するに、本態様では、これら両動作の切換が好適に行われ得る。
あるいは、「初期化処理」が実行される態様では、前記光検出素子の一方の端子に接続される第2初期化線と、前記光検出素子の他方の端子と前記容量素子との間に設けられる第2スイッチング素子と、を更に備え、前記初期化処理は、前記第2スイッチング素子をONとするとともに前記第2初期化線を所定の電位に設定することにより行われる、ように構成してもよい。
この態様によれば、光検出素子が例えばフォトダイオードを含む場合に、その順方向に電流を流すことによって、容量素子の初期化が好適に実行され得ることになる。
更には、「初期化処理」が実行される態様では、前記容量素子は、その一方の電極が前記光検出素子に接続され、かつ、その他方の電極が第3初期化線に接続されており、前記初期化処理は、前記第3初期化線を所定の電位に設定することにより行われる、ように構成してもよい。
この態様によれば、光検出素子が例えばフォトダイオードを含む場合であってそのアノードが接地されている場合、第1に、第3初期化線を負の所定電圧に設定し、第2に、正の所定電圧に設定する、という手順をとれば、容量素子の初期化が好適に実行され得ることになる。かかる事項については、後の実施形態の<変形例2>において説明される。
加えて、「初期化処理」が実行される態様では、前記初期化処理は、前記第1電圧として、前記複数の画素回路それぞれに含まれる複数の駆動トランジスタそれぞれの前記第1ゲート電極に、同一値の電圧を印加する処理、を含む、ように構成してもよい。
この態様によれば、光検出素子に検出されることとなる光の強度は、理論的には一応、“同じ発光強度”という前提が置かれることになる。なぜなら、第1ゲート電極には、「同一値の電圧」が、前記「第1電圧」として印加されることになるからである。しかし、現実には、各画素回路中の駆動トランジスタの特性にばらつきがあることによって、当該各画素回路中の発光素子が“同じ発光強度”で発光するということは極めて稀な事態と考えられる。例えば、ある画素回路の発光素子はより強く、他の画素回路の発光素子はより弱く、発光するということが一般的に生じ得るのである。
本態様では、以上のような状況の下、各画素回路中の容量素子の蓄積電荷量の変動が生じる。例えば、より強く発光する発光素子を擁する前記ある画素回路中の容量素子については、より大きな変動が生じ、より弱く発光する発光素子を擁する前記他の画素回路中の容量素子については、より小さな変動が生じる、というが如くである(これは、光検出素子の蓄積電荷量の変動が、「光検出素子による検出結果に応じ」るということの好適な一態様である。)。
このようなことから明らかなように、本態様によれば、建前上は“同じ発光強度”という前提が置かれた上で、各画素回路中の駆動トランジスタに関する補償動作が行われることになるのである。
結局、本態様によれば、前述にも増して、各画素回路の発光素子の発光強度の均一化が達成され得ることになる。
また、本発明の電子機器は、上記課題を解決するために、上述した各種の発光装置を備える。
本発明の電子機器は、上述した各種の発光装置、即ち駆動トランジスタの特性のばらつきの影響を受けずに発光素子が発光する発光装置を備えているので、高品質な画像を表示することが可能となる。
以下では、本発明に係る実施の形態について図1乃至図4を参照しながら説明する。なお、これらの図面及び後に参照する図5以降の各図面においては、各部の寸法の比率は実際のものとは適宜に異ならせてある場合がある。
図1は、本実施形態に係る有機EL装置を示すブロック図である。
この図1において、有機EL装置は、素子基板7と、この素子基板7上に形成される各種の要素を備えている。ここで各種の要素とは、有機EL素子8、走査線3及びデータ線6、走査線駆動回路103A及び103B、並びにデータ線駆動回路106、等々である。
有機EL素子(発光素子)8は、図1に示すように、素子基板7上に複数備えられており、それら複数の有機EL素子8はマトリクス状に配列されている。有機EL素子8の各々は、画素電極、発光機能層及び対向電極から構成されている。これら有機EL素子8がマトリクス状の配列に従って並べられている領域は、画像表示領域7aを構成する。
走査線3及びデータ線6は、それぞれ、マトリクス状に配列された有機EL素子8の各行及び各列に対応するように配列されている。より詳しくは、走査線3は、図1に示すように、図中左右方向に沿って延び、かつ、周辺領域上に形成されている走査線駆動回路103A及び103Bに接続されている。一方、データ線6は、図中上下方向に沿って延び、かつ、周辺領域上に形成されているデータ線駆動回路106に接続されている。
これら各走査線3及び各データ線6の各交点の近傍には、前述の有機EL素子8等を含む単位回路(画素回路)P1が設けられている。この画素回路P1の詳細については、後に改めて説明する。なお、素子基板7上には、前記データ線6と並行して、電源線113及び初期化線123が形成され、それぞれ有機EL素子8と接続されているが、この点についても、画素回路P1の説明の際に触れることにする。
素子基板7上の周辺領域上には、プリチャージ回路106Aが備えられている。このプリチャージ回路106Aは、有機EL素子8へのデータ信号の書込み動作に先立って、データ線6を所定の電位に設定するための回路である。
また、対向電極用電源線201(以下、単に「電源線201」という。)は、素子基板7の外形輪郭線にほぼ沿うように、平面視してΠ字状の形状をもつ。この電源線201は、有機EL素子8の対向電極に例えばグランドレベル等の電源電圧を供給する。
なお、前述では、走査線駆動回路103A及び103B、データ線駆動回路106、並びにプリチャージ回路106Aのすべてが素子基板7上に形成される例について説明しているが、場合によっては、そのうちの全部又は一部を、フレキシブル基板に形成するのであってもよい。この場合、当該のフレキシブル基板と素子基板7との両当接部分に適当な端子を設けておくことにより、両者間の電気的な接続を可能とする。
以上のほか、有機EL装置は、図1に示すように制御部CUを備えている。この制御部CUは、いずれも図示しない、CPU(Central Process Unit)、表示すべき画像データ等の必要な情報を記憶するRAM(Random Access Memory)、及び当該画像表示装置を動作させる上で必要なプラグラム等を格納するROM(Read Only Memory)等を備える。
この制御部CUは、本実施形態に係る有機EL装置を構成する各種要素が調和的に動作するように、当該各種要素の動作を司る。特に、後に図5を参照して説明する、画素回路P1を駆動するための各種信号の供給タイミング等が、この制御部CUによってコントロールされる。
次に、画素回路P1について説明する。
画素回路P1は、図2に示すように、有機EL素子8を中心的要素として、駆動トランジスタTdr、第1〜第4スイッチングトランジスタTr1〜Tr4(以下、「スイッチング」を「SW」に略す。)、第1及び第2容量素子C1及びC2、並びに光量検出素子15等を備えている。
まず、図2の説明に入る前提として、前述し、また図1に示されていた “走査線3”は、図2に示すように、第1〜第4走査線31〜34を含んでいることが確認される(図1では紙面の大きさの都合上、図示を簡略化した。)。これら第1〜第4走査線31〜34は、前述した各種のSWトランジスタTr1〜Tr4のゲートに接続されて、そのON状態及びOFF状態間の遷移をつかさどる各種の信号を供給するために用いられるが、その点については、追々説明を加えていくことにする。
有機EL素子8は、図2に示すように、その構成要素たる前記対向電極がグランドに設定される一方、前記画素電極が第2SWトランジスタTr2を介して、駆動トランジスタTdrのドレインに接続されている。このうち第2SWトランジスタTr2のゲートは、第4走査線34に接続されており、制御信号Gcntの入力を受ける。第2SWトランジスタTr2は、この制御信号Gcntに応じて、そのON状態又はOFF状態間を遷移する。
また、駆動トランジスタTdrのソースは、電源線113に接続されているとともに、そのフロントゲート(後述する「バックゲート」に対する用語として、本明細書では、この「フロントゲート」という用語を用いる。)は、第1SWトランジスタTr1を介してデータ線6に接続されている。これにより駆動トランジスタTdrのフロントゲート・ソース間には、電源線113が供給する電源電圧、及び、データ線6を介して供給されてくる、画像情報等を載せたデータ信号に基づく電圧Vd(本発明にいう「第1電圧」に該当する。)、に応じた電圧Vgsがかかることになる。そして、後者の電圧Vdの大きさによって電圧Vgsは変化することになり、これに従い、当該駆動トランジスタTdrのソース・ドレイン間に流れる電流Idsの大きさが変わる。この電流Idsが、第2SWトランジスタTr2を介して有機EL素子8に供給される電流であり、当該有機EL素子8は、この電流Idsの大きさに応じて、その発光強度を変化させる。
なお、前述のうち第1SWトランジスタTr1のゲートは、第1走査線31に接続されており、制御信号Gdataの入力を受ける。第1SWトランジスタTr1は、この制御信号Gdataに応じて、そのON状態又はOFF状態間を遷移する。
また、第1SWトランジスタTr1と、駆動トランジスタTdrとの間には、図2に示すように、容量素子C1が接続されている。この容量素子C1は、第1SWトランジスタTr1を介してデータ線6から供給されてくるデータ信号に応じた電荷を蓄える。そして、容量素子C1に蓄えられた電荷は、駆動トランジスタTdrのフロントゲートに印加されるようになっている。このような容量素子C1は、前記フロントゲートに対するデータ信号に基づく電圧供給を安定的に行うこと、等に役立つ。
一方、前述の駆動トランジスタTdrは、前述したフロントゲートのほかに、バックゲートを持つ。図3は、このようなバックゲートをもつ駆動トランジスタTdrの、より実際的な構造例を示している。この図3において、駆動トランジスタTdrは、チャネル領域、ドレイン領域及びソース領域を含む半導体層1と、この半導体層1の図中上層側にフロントゲート絶縁膜300を介して形成されたフロントゲート電極Fgとをもつ。他方、この駆動トランジスタTdrは、前記半導体層1の図中下層側に、バックゲート絶縁膜299を介して形成されているバックゲート電極Bgをもっている。なお、バックゲート電極Bgは、素子基板7上に形成された下地絶縁膜298の上に形成されている。
駆動トランジスタTdrが、このような構造をもつと、半導体層1内のチャネル領域には、フロントゲート電極Fgの電圧に応じて所定の電圧がかけられることになると同時に、バックゲート電極Bgの電圧に応じても所定の電圧がかけられることになる。
この両者の関係は、図4のようになる。この図4は、前述の両電極Fg及びBgにかけられる電圧と、それに応じたソース・ドレイン間の電流Idsの変化の様子を示したグラフである。なお、図4の横軸はフロントゲート電極Fgの電圧、縦軸はソース・ドレイン間の電流Idsを表している。また、この図において、実線は、当該駆動トランジスタのゲート・ソース間の電位差Vbgが0〔V〕となるような電圧をバックゲート電極Bgに印加するとき、一点鎖線は、該電位差Vbgが正となるような電圧を印加するとき、をそれぞれ表している。
この図からわかるように、例えばフロントゲート電極Fgの電圧Vdがある一定の値をとっている状況下で、バックゲート電極Bgにかける電圧を変化させると(即ち、曲線S1から曲線S2へと変化させると)、電流Idsは増大することがわかる。すなわち、このようなI−V特性により、有機EL素子8に供給される電流Idsの値は、バックゲート電極Bgへの電圧の印加の有無及び程度によって調整され得ることがわかる。
なお、前述で参照した図3においては、既に述べた駆動トランジスタTdrのほか、有機EL素子8の、より実際的な構造例についても併せて示しておいた。図3において、有機EL素子8は、画素電極13、対向電極5、並びにこれら両電極13及び5間に挟まれる発光機能層18を備えている。このうち発光機能層18からは図に示すように光Lが発せられる。また、画素電極13は、コンタクトホール363やソース電極62等を介して、駆動トランジスタTdrを構成する半導体層1のソース領域に接続されている(なお、図2では示されていた第2SWトランジスタTr2等は、図3ではその図示が省略されている。)。そのほか、図3では、第1〜第3層間絶縁膜301〜303や、前記半導体層1のドレイン領域に接続されるドレイン電極61もまた、図示されている。
さて、説明を図2に戻すと、画素回路P1は、前述した駆動トランジスタTdrのバックゲートに接続される容量素子C2を備えている。この容量素子C2はまた、第3SWトランジスタTr3を介して初期化線123に接続されている。なお、この初期化線123は、第3SWトランジスタTr3がON状態となるとき、容量素子C2に電気的に短絡するとともに、前記バックゲートにも短絡する。
さらに、容量素子C2は、第4SWトランジスタTr4を介して、光量検出素子15と接続されている。容量素子C2と光検出素子15とは、駆動トランジスタTdrのバックゲートから見て、並列に接続されている。
この光量検出素子15は、図2に示すように、例えばフォトダイオードであり、有機EL素子8が発した光の強度に応じて電流を発生する。
なお、前述のうち第3SWトランジスタTr3のゲートは、第2走査線32に接続されており、制御信号Gbgの入力を受ける。第3SWトランジスタTr3は、この制御信号Gbgに応じて、そのON状態又はOFF状態間を遷移する。また、第4SWトランジスタTr4のゲートは、第3走査線33に接続されており、制御信号Gmntの入力を受ける。第4SWトランジスタTr4は、この制御信号Gmntに応じて、そのON状態又はOFF状態間を遷移する。
続いて、以上のような構成をもつ有機EL装置の動作、特に画素回路P1の動作について、前述の図1乃至図4に加えて、図5を参照しながら説明する。本実施形態に係る有機EL素子、ないしは画素回路P1は、例えば図5に示すようなタイミングチャートに従って動作する。
まず、第4走査線34にLレベルの制御信号Gcntが供給され、これにより、第2SWトランジスタTr2がOFF状態(非導通状態)となると同時に、有機EL素子8の発光が停止する。
次に、第1及び第2走査線31及び32それぞれに、Hレベルの制御信号Gdata及びGbgが供給され、これにより、第1及び第3SWトランジスタTr1及びTr3がON状態(導通状態)となる。
このうち、制御信号GdataがHレベルになることに対応して、データ線6には初期化用データ信号が供給される。これにより、駆動トランジスタTdrのフロントゲートには、第1SWトランジスタTr1を介して、当該初期化用データ信号に基づく初期化電圧Vini1が印加されることになる。また、この初期化電圧Vini1は、容量素子C1に書き込まれることになる。
他方、制御信号GbgがHレベルになることに対応して、初期化線123にはバックゲート初期化信号が供給される。これにより、駆動トランジスタTdrのバックゲートには、第3SWトランジスタを介して、当該バックゲート初期化信号に基づく初期化電圧Vini2が印加されることになる。また、この初期化電圧Vini2は、容量素子C2に書き込まれることになる。
このような初期化電圧Vini2の容量素子C1への書込みが完了したら、第2走査線32には、Lレベルの制御信号Gbgが供給される。これにより、第3SWトランジスタTr3がOFF状態となり、初期化線123が画素回路P1から切り離される。
次に、第3及び第4走査線33及び34それぞれに、Hレベルの制御信号Gmnt及びGcntが供給され、これにより、第2及び第4SWトランジスタTr2及びTr4がON状態となる。
このうち制御信号GcntがHレベルになる(即ち、第2SWトランジスタTr2がON状態になる)ことに対応して、有機EL素子8は、前述の初期化データ信号に応じた発光を行う。そうすると、この発光に応じて、光量検出素子15に電流が流れることになる。更に、この場合、第4SWトランジスタTr4がON状態とされていることから、光量検出素子15に電流が流れると、容量素子C2に蓄えられた電荷量に変動がもたらされることになる。つまり、容量素子C2の電圧が、先に書き込まれた初期化電圧Vini2から変動することになるのである。図5の最下段においては、このことが、図2に示すノードAの電圧の変動というかたちで表現されている。
ここで重要なのは、第1に、前述の有機EL素子8の発光は、いわば、駆動トランジスタTdrの特性をそのまま反映するようなかたちで行われることである。つまり、この時点において、有機EL素子8は、初期化データ信号に応じた発光を行うものの、当該素子8に対応する駆動トランジスタTdrの特性の影響を受けて、該初期化データ信号を正確に反映して発光するとは限らないのである。したがって、図1において、ある1ライン上に並ぶ各画素回路P1中の各有機EL素子8は、そのそれぞれに対応する駆動トランジスタTdrの特性に応じて発光することになり、それらの発光強度は、一般的には、相当程度ばらつき得ることになる。
第2に、容量素子C2における電圧変動量は、光量検出素子15に流れる電流量に応じて、変わる。つまり、有機EL素子8の発光強度が大きければ、光量検出素子15に流れる電流量は大きくなり、小さければ小さくなる。そうすると、前者の場合は、容量素子C2に蓄えられた電荷はより多く逃げていくことになり、その結果、その電圧降下量はより大きくなり、後者の場合は、その電圧降下量はより小さくなる。
第3に、以上の結果、図1に示す、ある1ライン上に並ぶ各画素回路P1中の駆動トランジスタTdrのバックゲートにかかる電圧は、当該各画素回路P1に応じて変わることになる。そして、バックゲートにかけられる電圧の大きさが変われば、既に参照した図4に示したようなIV特性に従って、駆動トランジスタTdrに流れる電流Idsの大きさが変わることになる。
このような補償動作の概要を図式化すれば、以下のようになる。すなわち、
〔I〕 補償動作がない場合における有機EL素子8の発光強度が大きい(以下、これを「事態〔i〕」と名付ける)→光量検出素子15の電流量が大きい→容量素子C2の電圧降下量が大きい→駆動トランジスタTdrのバックゲートにかけられる電圧が小さくなる。
あるいは、
〔II〕 補償動作がない場合における有機EL素子8の発光強度が小さい(以下、これを「事態〔ii〕」と名付ける)→光量検出素子15の電流量が小さい→容量素子C2の電圧降下量が小さい→駆動トランジスタTdrのバックゲートにかけられる電圧が大きくなる。
そして、前記〔I〕の場合、その帰結として、駆動トランジスタの電流Idsは小さくなるのに対して、前記〔II〕の場合、当該電流Idsは大きくなることになる(図4参照)。またしたがって、前者の場合は、有機EL素子8がより弱く発光する環境が整えられ、後者の場合は、より強く発光する環境が整えられるということになるのである。この最後の結論のそれぞれは、前述した事態〔i〕及び事態〔ii〕を、ちょうど打ち消すような関係にある。
以上のような各画素回路P1における駆動トランジスタTdrのバックゲート電圧の調整は、所定時間続行される。これが終了したら、第3及び第4走査線33及び34それぞれに、Lレベルの制御信号Gmnt及びGcntが供給され、これにより、第2及び第4SWトランジスタTr2及びTr4がOFF状態となる。このうち後者によって、バックゲートにかけられる電圧が、いわば“固定化”される。
次に、データ線6に、表示画像用データ信号が供給される。これにより、駆動トランジスタTdrのフロントゲートには、第1SWトランジスタTr1を介して、当該表示画像用データ信号に基づく電圧Vdが印加されることになる。また、この電圧Vdは、容量素子C1に書き込まれることになる。
後は、以上のような処理が、図1の各走査線3について繰り返し実行される。これにより、図1に示す全画素回路P1中の全有機EL素子8の発光強度は、そのそれぞれに対応する駆動トランジスタTdrの特性の相違にもかかわらず、画像表示領域7a内において均一化されることになる。
以上のように動作する、本実施形態の有機EL装置によれば、次のような効果が奏される。
(1) 本実施形態に係る有機EL装置によれば、画像表示領域7aを構成する各画素回路P1中の有機EL素子8間の発光強度のばらつきを極力抑制することができ、したがって、極めて高品質の画像が表示され得ることになる。これは、上に述べたところからも既に明らかなように、光量検出素子15が、その検出した有機EL素子8の発光強度に応じて電流値を変化させ、これに応じて、駆動トランジスタTdrのバックゲートにかけられる電圧の大きさが調整される、という巧妙な回路構成がとられていることによる。
(2) 本実施形態に係る有機EL装置によって奏される上述したような効果は、極めて簡易な回路構成でもって実現されている。これも、上に述べたところから既に明らかなように、本実施形態では、前記の効果を得るために、基本的に、駆動トランジスタTdrにバックゲート型構造をもつTFTを採用することと、光量検出素子15を備えること、だけによっているのである。
以上の(1)及び(2)を要するに、本実施形態によれば、構成が簡易でありながら、複数の駆動トランジスタTdr間の特性のばらつきの影響を受けない有機EL装置が提供されることになるのである。
(3) また、本実施形態においては、上述したようなバックゲートの電圧調整が、基本的に時を選ばず実行され得るようになっていることも利点の1つとして挙げられる。つまり、本実施形態によれば、当該電圧調整が、例えば電源投入時のみ1回だけ実施されるという態様、数フレーム期間ごとに1回実施されるという態様、あるいは図1に示す1本1本の走査線3(すなわち、図2に示す第1〜第4走査線31〜34を1組とする、図1に示す走査線3)の選択時ごとに1回実施されるという態様、等々の各種の態様が選択可能である。このようなことが可能であるのは、図5を参照して行った、バックゲート電圧の調整過程の説明から明らかであるので、もはや繰り返さない。
このような、いわば随時調整が可能でれば、例えば、駆動トランジスタTdrが経時的に劣化していく場合にも好適に対応していくことが可能である。
以上、本発明に係る実施形態について説明したが、本発明に係る発光装置は、上述した形態に限定されることはなく、各種の変形が可能である。
<変形例1>
(1) 上述した実施形態では、画素回路P1が、初期化線123と、これに付随する要素、即ち第3SWトランジスタTr3、及び、そのゲートに接続される第2走査線32とを備える形態について説明しているが、本発明は、かかる形態に限定されない。
例えば、上記実施形態中の「画素回路」は、図6に示すような形態を採ることができる。
この図6において、画素回路“P2”は、初期化線123、第3SWトランジスタTr3及び第2走査線32を備えていない。ただし、この画素回路P2は、光量検出素子15に直接的に接続される初期化線125を備えている。
このような画素回路P2は、例えば図7に示すようなタイミングチャートに従って動作する。
この図7は、図5と対比すると、制御信号Gbgが存在しない点で大きく相違する。これは、第3SWトランジスタTr3が備えられていないことに対応する。
その他の点は、以下のようである。
すなわち、第1に、第4走査線34にLレベルの制御信号Gcntが供給されて、第2SWトランジスタTr2がOFF状態となると同時に、有機EL素子8の発光が停止される。
第2に、第1走査線31に、Hレベルの制御信号Gdataが供給され、これにより、第1SWトランジスタTr1がON状態となる。この場合、データ線6には初期化用データ信号が供給され、これにより、初期化電圧Vini1が、駆動トランジスタTdrのフロントゲートに印加されると同時に、容量素子C1に書き込まれることになる。
これら2点は、前記の図5と同様である。
第3に、前記の第2の動作と同時に、第3走査線33に、Hレベルの制御信号Gmntが供給され、これにより、第4SWトランジスタTr4がON状態となる。また、これと同時に、画素回路P2にはバックゲート初期化信号が供給される。このバックゲート初期化信号は、この変形例1では、光量検出素子15に直接的に接続された初期化線125を介して供給される(上述の実施形態では初期化線123及び第3SWトランジスタTr3を介して供給されている。)。
以上により、初期化電圧Vini3に応じた初期化電圧Vini3−Vth[15]−Vth[Tr4](ここで、Vth[15]は光量検出素子15の閾値電圧、Vth[Tr4]は第4SWトランジスタTr4の閾値電圧である。)が、駆動トランジスタTdrのバックゲートに印加されると同時に、容量素子C2に書き込まれることになる。すなわち、この場合における初期化処理は、フォトダイオードたる光量検出素子15の順方向に電流を流すことにより行われるのである。
そして第4に、第4走査線34に、Hレベルの制御信号Gcntが供給されて、第2SWトランジスタTr2がON状態となる。これにより、有機EL素子8は発光し、これに応じて、前記で〔I〕及び〔II〕として記載した機序に従い、最終的に、前記事態〔i〕及び事態〔ii〕が打ち消されるように、有機EL素子8の発光環境が整えられる(即ち、駆動トランジスタTdrのバックゲートにかかる電圧が調整される)ことになる。
このような形態であっても、上記実施形態と本質的に相違のない効果が奏されることは明白である。しかも、この図6及び図7の形態によれば、初期化線123、第3SWトランジスタTr3及び第2走査線32を備える必要がないので、回路構成の簡易化が更に促進されるという利点が得られる。
このように、本変形例1によれば、前述した実施形態に係る効果が、更に実効的に奏されることになるになるのである。
<変形例2>
(2) あるいは、上記実施形態中の「画素回路」は、図8に示すような形態を採ることもできる。
この図8において、画素回路“P3”は、上記変形例1と同様、やはり初期化線123、第3SWトランジスタTr3及び第2走査線32を備えていない。ただし、この画素回路P3は、容量素子C2の一方の電極に、初期化線127が接続されている点が異なっている。なお、ここで「一方の電極」といっているのは、当該容量素子C2において、駆動トランジスタTdrと接続されている電極ではない方の電極を指している。
このような画素回路P3は、例えば図9に示すようなタイミングチャートに従って動作する。
この図9において、まず、前記図7における第1の工程(有機EL素子8の発光停止)及び第2の工程(初期化電圧Vini1の印加)が実施されるのは、当該図7の場合と同様である。
これに引き続き図9では、第3に、前記第2の動作と同時に、第3走査線33に、Hレベルの制御信号Gmntが供給され、これにより、第4SWトランジスタTr4がON状態となる。また、これと同時に、容量素子C2に直接的に接続された初期化線127に対して、負の初期化電圧−Va1が印加される。これにより、光量検出素子15のアノード電圧(GND)と、初期化線127との間に電位差が生じることにより、当該光量検出素子15がON状態となって、ノードAの電位VAini1が、
VAini1=−(Va1−Vth〔15〕−Vth〔Tr4〕)
となる。ここで、Vth〔15〕は、光量検出素子15の閾値電圧、Vth〔Tr4〕は、第4SWトランジスタTr4の閾値電圧である。なお、初期化線127に印加されている電圧は、通常状態において、電圧Va2である(図9参照)。
続いて第4に、第4走査線34に、Hレベルの制御信号Gcntが供給されて、第2SWトランジスタTr2がON状態となる。これにより、有機EL素子8は発光する。また、これと同時に、初期化線127に対して、正の初期化電圧+Va2が印加される(あるいは、当該初期化線127の電位が“通常状態”に復帰する、ともいえる。)。これにより、ノードAの電位VAini2は、
VAini2=Va2−(Va1−Vth〔15〕−Vth〔Tr4〕)
となる。
後は、上述の実施形態、あるいは変形例1と同じである。すなわち、有機EL素子8の発光に応じて、前記で〔I〕及び〔II〕として記載した機序に従い、最終的に、前記事態〔i〕及び事態〔ii〕が打ち消されるように、有機EL素子8の発光環境が整えられることになる。
このような形態であっても、上記実施形態と本質的に相違のない効果が奏されることは明白である。また、この図8及び図9の形態の場合も、前述の変形例1と同様、初期化線123、第3SWトランジスタTr3及び第2走査線32を備える必要がないので、回路構成の簡易化が更に促進されるという利点が得られる。
このように、本変形例2によれば、前述した実施形態に係る効果が、更に実効的に奏されることになるのである。
<応用>
次に、本発明に係る有機EL装置を適用した電子機器について説明する。
図10は、上記実施形態に係る有機EL装置を画像表示装置に利用したモバイル型のパーソナルコンピュータの構成を示す斜視図である。パーソナルコンピュータ2000は、表示装置としての有機EL装置と本体部2010とを備える。本体部2010には、電源スイッチ2001及びキーボード2002が設けられている。
図11に、上記実施形態に係る有機EL装置を適用した携帯電話機を示す。携帯電話機3000は、複数の操作ボタン3001及びスクロールボタン3002、ならびに表示装置としての有機EL装置1を備える。スクロールボタン3002を操作することによって、有機EL装置に表示される画面がスクロールされる。
図12に、上記実施形態に係る有機EL装置を適用した情報携帯端末(PDA:Personal Digital Assistant)を示す。情報携帯端末4000は、複数の操作ボタン4001及び電源スイッチ4002、ならびに表示装置としての有機EL装置を備える。電源スイッチ4002を操作すると、住所録やスケジュール帳といった各種の情報が有機EL装置に表示される。
上記実施形態に係る有機EL装置が適用される電子機器としては、図10から図12に示したもののほか、デジタルスチルカメラ、テレビ、ビデオカメラ、カーナビゲーション装置、ページャ、電子手帳、電子ペーパー、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、ビデオプレーヤ、タッチパネルを備えた機器等が挙げられる。
本発明の実施形態に係る有機EL装置を示すブロック図である。 図1の画素回路の回路構成例を示す図である。 バックゲートをもつ薄膜トランジスタの構造例を示す断面図である。 図3のI‐V特性を示すグラフである。 図2の画素回路を駆動するためのタイミングチャートの一例である。 図2と同趣旨の図であって、その変形した回路構成例(変形例1)を示す図である。 図6の画素回路を駆動するためのタイミングチャートの一例である。 図2と同趣旨の図であって、その変形した回路構成例(変形例2)を示す図である。 図8の画素回路を駆動するためのタイミングチャートの一例である。 本実施形態に係る有機EL装置を適用した電子機器を示す斜視図である。 本実施形態に係る有機EL装置を適用した他の電子機器を示す斜視図である。 本実施形態に係る有機EL装置を適用したさらに他の電子機器を示す斜視図である。
符号の説明
8……有機EL素子(発光素子)、15……光量検出素子、P1,P2,P3……画素回路、7……素子基板、3……走査線、31,32,33,34……第1〜第4走査線、6……データ線、113……電源線、123,125,127……初期化線、Tdr……駆動トランジスタ、Fg……フロントゲート電極、Bg……バックゲート電極、Tr1,Tr2,Tr3,Tr4……第1〜第4SWトランジスタ、C1,C2……容量素子、CU……制御部、103A,103B……走査線駆動回路、106……データ線駆動回路、106A……プリチャージ回路、201……電源線、

Claims (8)

  1. 供給される電流量に応じてその発光強度が変化する発光素子と、
    そのチャネルの両面に対応するよう配置された第1及び第2ゲート電極を備え、かつ、前記発光素子に電流を供給してこれを駆動する駆動トランジスタと、
    前記発光素子の発光強度を検出する光検出素子と、
    を備え、
    前記第1ゲート電極には、前記発光素子を所望の強度で発光させるべく意図された第1電圧が印加され、
    前記第2ゲート電極には、前記光検出素子による検出結果に応じた第2電圧が印加される、
    ことを特徴とする発光装置。
  2. 前記光検出素子による検出結果に応じて、その蓄積電荷量を変化させる容量素子を更に備え、
    当該容量素子は、前記第2電圧の供給主体に含まれる、
    ことを特徴とする請求項1に記載の発光装置。
  3. 前記発光素子は、その複数が所定の配列に従って並べられ、かつ、
    それら複数の発光素子の各々に対応する、前記駆動トランジスタ、前記光検出素子及び前記容量素子の各々を少なくとも1つずつ、及び、当該発光素子の1つを含む画素回路が構成され、
    前記複数の容量素子に対しては、それらの蓄積電荷量が所定の値となるように、初期化処理が実行される、
    ことを特徴とする請求項2に記載の発光装置。
  4. 前記容量素子の一方の電極に接続される第1スイッチング素子と、
    該第1スイッチング素子に接続される第1初期化線と、
    を更に備え、
    前記光検出素子は、前記一方の電極からみて前記第1スイッチング素子と並列関係となるように当該一方の電極に接続され、
    前記初期化処理は、
    前記第1スイッチング素子をONにすることで前記第1初期化線と前記容量素子とを電気的に短絡することにより行われる、
    ことを特徴とする請求項3に記載の発光装置。
  5. 前記光検出素子の一方の端子に接続される第2初期化線と、
    前記光検出素子の他方の端子と前記容量素子との間に設けられる第2スイッチング素子と、
    を更に備え、
    前記初期化処理は、
    前記第2スイッチング素子をONとするとともに前記第2初期化線を所定の電位に設定することにより行われる、
    ことを特徴とする請求項3に記載の発光装置。
  6. 前記容量素子は、
    その一方の電極が前記光検出素子に接続され、かつ、
    その他方の電極が第3初期化線に接続されており、
    前記初期化処理は、
    前記第3初期化線を所定の電位に設定することにより行われる、
    ことを特徴とする請求項3に記載の発光装置。
  7. 前記初期化処理は、
    前記第1電圧として、前記複数の画素回路それぞれに含まれる複数の駆動トランジスタそれぞれの前記第1ゲート電極に、同一値の電圧を印加する処理、を含む、
    ことを特徴とする請求項3乃至6のいずれか一項に記載の発光装置。
  8. 請求項1乃至7のいずれか一項に記載の発光装置を備える、
    ことを特徴とする電子機器。
JP2007320477A 2007-12-12 2007-12-12 発光装置及び電子機器 Withdrawn JP2009145446A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007320477A JP2009145446A (ja) 2007-12-12 2007-12-12 発光装置及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007320477A JP2009145446A (ja) 2007-12-12 2007-12-12 発光装置及び電子機器

Publications (1)

Publication Number Publication Date
JP2009145446A true JP2009145446A (ja) 2009-07-02

Family

ID=40916140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007320477A Withdrawn JP2009145446A (ja) 2007-12-12 2007-12-12 発光装置及び電子機器

Country Status (1)

Country Link
JP (1) JP2009145446A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227854A (ja) * 2015-07-30 2017-12-28 株式会社半導体エネルギー研究所 表示装置
CN108877653A (zh) * 2018-06-29 2018-11-23 京东方科技集团股份有限公司 像素电路、显示装置及其制造方法
JP2021081735A (ja) * 2011-09-16 2021-05-27 株式会社半導体エネルギー研究所 発光装置
JP2021193452A (ja) * 2016-06-16 2021-12-23 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器
JP2022189898A (ja) * 2011-09-14 2022-12-22 株式会社半導体エネルギー研究所 発光装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022189898A (ja) * 2011-09-14 2022-12-22 株式会社半導体エネルギー研究所 発光装置
JP7328433B2 (ja) 2011-09-14 2023-08-16 株式会社半導体エネルギー研究所 発光装置
JP2021081735A (ja) * 2011-09-16 2021-05-27 株式会社半導体エネルギー研究所 発光装置
JP7049494B2 (ja) 2011-09-16 2022-04-06 株式会社半導体エネルギー研究所 発光装置
US11637129B2 (en) 2011-09-16 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, light-emitting device, and electronic device
JP2017227854A (ja) * 2015-07-30 2017-12-28 株式会社半導体エネルギー研究所 表示装置
JP2021193452A (ja) * 2016-06-16 2021-12-23 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器
JP7128334B2 (ja) 2016-06-16 2022-08-30 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器
CN108877653A (zh) * 2018-06-29 2018-11-23 京东方科技集团股份有限公司 像素电路、显示装置及其制造方法
US11404002B2 (en) 2018-06-29 2022-08-02 Boe Technology Group Co., Ltd. Pixel unit, compensation method of pixel unit, display device and manufacturing method of display device

Similar Documents

Publication Publication Date Title
US7329849B2 (en) Electronic circuit, method of driving electronic circuit, electro-optical device, and electronic apparatus
US7928935B2 (en) Electric circuit, driving method thereof, electro-optical device, and electronic apparatus
US8379062B2 (en) Electro-optical device and electronic apparatus
US8159420B2 (en) Electro-optical device and electronic apparatus
JP5720100B2 (ja) 発光装置、画素回路の駆動方法および電子機器
US7868854B2 (en) Electro-optical device and electronic apparatus
JP5018869B2 (ja) 電気光学装置および電子機器
JP2006215275A (ja) 表示装置
JP2011221070A (ja) 発光装置および電子機器、発光装置の駆動方法
JP5392963B2 (ja) 電気光学装置及び電子機器
JP2008191450A (ja) 画素回路、画素回路の駆動方法、電気光学装置および電子機器
JP2004070349A (ja) 表示装置及びその駆動方法
US20100007647A1 (en) Electro-optical device and electronic apparatus
JP2010170018A (ja) 発光装置及びその駆動方法、並びに電子機器
JP2006091923A (ja) 電気光学装置および電子機器
JP2009145446A (ja) 発光装置及び電子機器
JP2009128870A (ja) El表示パネル及び電子機器
JP2009026586A (ja) 輝点リペア方法、表示パネル及び電子機器
JP2010224390A (ja) 単位回路、並びに単位回路及び電気光学装置の駆動方法
JP2009222779A (ja) 電気光学装置および電子機器
JP2006349794A (ja) 電子回路、その駆動方法、電気光学装置および電子機器
JP2010262251A (ja) 単位回路の駆動方法、電気光学装置及び電子機器
JP2007187779A (ja) 電子回路、電子装置、その駆動方法および電子機器
JP4984520B2 (ja) 電子回路、電子装置および電子機器
JP5494684B2 (ja) 電子回路の駆動方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301