JP2009145071A - 光学特性測定装置及び光学特性測定方法 - Google Patents

光学特性測定装置及び光学特性測定方法 Download PDF

Info

Publication number
JP2009145071A
JP2009145071A JP2007319773A JP2007319773A JP2009145071A JP 2009145071 A JP2009145071 A JP 2009145071A JP 2007319773 A JP2007319773 A JP 2007319773A JP 2007319773 A JP2007319773 A JP 2007319773A JP 2009145071 A JP2009145071 A JP 2009145071A
Authority
JP
Japan
Prior art keywords
optical characteristic
light receiving
light
optical
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007319773A
Other languages
English (en)
Inventor
Koji Morimoto
浩司 森本
Mikio Uematsu
幹夫 上松
Yosuke Takebe
洋佑 竹部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007319773A priority Critical patent/JP2009145071A/ja
Publication of JP2009145071A publication Critical patent/JP2009145071A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】測定試料が平坦でない、あるいは測定試料が曲面を有するなどの理由で、正規姿勢でなく傾いた状態で測定した場合であっても、正確に高精度の光学特性値を測定できる光学特性測定装置を提供する。
【解決手段】光学特性測定装置1は、測定試料に光を照射する光源部11と、光照射部から照射された光が測定試料SMで反射された反射光を受光する複数の受光素子を有する受光部21と、受光部21の出力に基づいて光学特性を導出する光学特性演算部と、測定試料SMの表面と反射光とのなす角度θ2を検出する角度検出部を備え、光学特性演算部は角度検出部により検出した角度とフレネル反射特性とに基づいて補正した、光学特性を導出する。
【選択図】図1

Description

本発明は、測定試料の光学特性、好ましくは光学的表面特性、さらに好ましくは光沢度を測定する光学特性測定装置および光学特性測定方法に関する。
従来、測定試料の光学特性、例えば試料表面の光沢度などの光学的表面特性を測定する光学特性測定装置が知られている。
図8は、背景技術における光学特性測定装置の光学的な構成を示す図である。図9は、背景技術における光学特性測定装置の補正方法を説明する図であって、図9(A)は正規姿勢での受光部に形成された像を示す図であり、図9(B)は正規姿勢でなく傾いた状態での受光部に形成された像を示す図であり、図9(C)は切取りエリアが像を追従している状態を示す図である。
図8において、背景技術における光学特性測定装置100は、照明側光学系110と受光側光学系120とを備えて構成される。照明側光学系110は、その光軸113aが測定試料SMの試料表面SMaにおける或る点を通る試料表面SMaの法線Gに対して所定の角度θ3を成すように配置され、受光側光学系120は、その光軸122aが法線Gに対して所定の角度θ4を成すように配置される。
照明側光学系110は、光源部111と、照明側開口板112と、照明レンズ113とを備えて構成される。照明側開口板112には、照明側開口112aが照明側開口板112を貫通するように穿設されている。
受光側光学系120は、受光部121と、受光レンズ122とを備えて構成される。受光部121は、複数の受光素子(画素)を備えている、例えばCCD(Charge-Coupled Devices)などの撮像素子である。
光源部111から射出された光は、照明側開口板112の照明側開口112aによって所定の開き角に規制され、照明レンズ113によって光軸113aに略平行な平行光束111aとされ、試料表面SMaに照射される。そして、試料表面SMaによって反射された反射光における略正反射方向の成分121aの光は、受光レンズ122によって収束され、受光部121で受光される。そして、受光部121の出力に基づいて例えば試料表面SMaの光沢度などの光学特性値が求められる。
ここで、照明側光学系110および受光側光学系120が試料表面SMaの法線Gに対して前記所定の角度θ3およびθ4となるように、測定試料SMが光学特性測定装置100に配置されていることが望ましい。一般的には、θ3およびθ4は同一の値であり、例えば共に60度とすればよい。なお、光学特性測定装置100と試料表面SMaとの配置がこのような状態である場合を正規姿勢という。
しかし、測定試料SMの測定箇所が平坦でなかった場合などに、試料表面SMaが光学特性測定装置100に対して傾く可能性がある。すなわち、正規姿勢でなくなる可能性がある。そうすると、角度θ3が所定の角度から変化することになり、同様に角度θ4も変化する。その結果、受光部121に形成される像の位置が、正規姿勢の場合の受光部121に形成される像の位置とは異なってしまう。このため、正しい光学特性値の測定ができなくなる。
具体的には、図9(A)に示すように、受光部121では、一定の範囲である切取りエリア130の枠が設定されており、この範囲内での受光出力を読み取っている。したがって、反射光による受光部121の像121bの位置は、切取りエリア130内になければならない。かりに、正規姿勢でなく、試料表面SMaが光学特性測定装置100に対して傾くと、所定の角度θ3が変化し、合わせて角度θ4も変化する。それにより、図9(B)に示すように、受光部121における像121bの位置が変化し、切取りエリア130の外部に像121bの一部または全部が形成される可能性がある。この場合は、切取りエリア130内で読み取った受光出力は、像121b全体の出力に比べて低下してしまう。そのため、切取りエリア130内で読み取った受光出力を用いるだけでは、測定試料SMの正しい光学特性値を得ることはできない。
そこで、例えば、特許文献1に記載の光学特性測定装置では、切取りエリアが像を追従して移動する。具体的には、図9(C)に示すように、正規姿勢から傾いている場合の像121bをすべて含むように、切取りエリア130が配置されている。像121bの位置が変動した場合であっても、切取りエリア130が像121bを追従して移動している。例えば、受光部121内の受光出力の最大強度に追従して、切取りエリア130の位置が決定されることとすればよい。このようにすることで、像121bは切取りエリア130の範囲内にすべて形成されることになり、切取りエリア130の範囲内の受光出力に基づいて、正確な光学特性値を得ることができる。
特開2006−208361号公報
しかし、特許文献1に記載の光学特性測定装置には、以下に示す問題がある。光が或る物質に照射されて反射する場合に、その反射角度に応じて反射率が異なる特性があり、これをフレネル反射特性という。図10はフレネル反射特性を説明するための特性図である。図10は、屈折率が1.5のガラスに、反射角度がそれぞれ異なるように光を照射した場合の各光の光強度を示している。また、図10には、反射角度と反射率の関係から表されるフレネル反射特性を示すグラフも示されている。図10には、反射角度59度、反射角度60度および反射角度61度の各光の光強度曲線が示されている。それぞれの光強度曲線は、その反射角度の位置において光強度がピーク値を有するが、その値は異なっている。具体的には、反射角度が大きくなるほど光強度が高くなっている。また、フレネル反射特性より、反射角度が大きくなるほど、反射率が高くなっていることがわかる。反射率が高ければ、反射光の光強度が高くなることから、反射角度が大きくなるほど反射光の光強度が高くなっていく。図10に示しているように、フレネル反射特性と、各光の光強度のピーク値とは同様の傾向を示しており、光が照射される物質が屈折率1.5のガラスであり、反射角度が60度近傍であれば、反射角度が大きくなるほど反射光の光強度は高くなる。
以上より、特許文献1に記載の光学特性測定装置のように、像121bの位置に追従して切取りエリア130が移動し、像121bのすべての範囲において受光出力を検出したとしても、反射角度によって光強度が異なることから、正確な光学特性値を測定することは困難である。
本発明は、上述の事情に鑑みて為された発明であり、その目的は、測定試料が平坦でない、あるいは測定試料が曲面を有するなどの理由で、正規姿勢でなく傾いた状態で測定した場合であっても、正確に高精度の光学特性値を測定できる光学特性測定装置および光学特性測定方法を提供することである。
本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。すなわち、本発明の一態様に係る光学特性測定装置は、測定試料に光を照射する光照射部と、前記光照射部から照射された光が前記測定試料で反射された反射光を受光する複数の受光素子を有する受光部と、前記受光部の出力に基づいて光学特性を導出する光学特性演算部とを備える光学特性測定装置であって、前記測定試料表面の法線と前記反射光とのなす角度を検出する角度検出部を備え、前記光学特性演算部は、前記角度検出部により検出した前記角度とフレネル反射特性とに基づいて補正した光学特性を導出する。
測定試料が平坦でない、あるいは測定試料が曲面を有するなどの理由で、正規姿勢でなく傾いてしまい、理想角度以外で光が測定試料に照射された場合は、フレネル反射特性の影響を受けるため、正確な測定が困難である。しかし、このような構成の光学特性測定装置は、フレネル反射特性の影響により生じた誤差を補正して、正確で高精度の光学特性測定が可能である。
また、上述の光学特性測定装置において、前記光学特性演算部は、前記受光部の出力に基づいて導出した光学特性を、前記角度検出部により検出した前記角度に応じたフレネル反射特性に基づいて補正し、前記補正した光学特性を導出することとしてもよい。
このように、導出した光学特性をフレネル反射特性に基づいて補正することで、正確で高精度の光学特性測定が可能である。
また、上述の光学特性測定装置において、前記光学特性演算部は、前記測定試料表面の法線と前記反射光とのなす角度が正規角度である場合のフレネル反射率を、前記角度検出部により検出した前記角度によるフレネル反射率で除した補正係数を、前記受光部の出力に基づいて導出した光学特性に乗じることで前記補正した光学特性を導出することとしてもよい。なお、正規角度とは、光学特性を測定するために設定された、測定試料表面の法線と反射光とのなす理想的な角度をいう。この角度は光学特性によって規格化されている。
これにより、フレネル反射特性に基づいた、導出した光学特性の補正を容易に実現することができ、正確で高精度の光学特性測定が可能である。
また、上述の光学特性測定装置において、前記光学特性演算部は、前記受光部の出力を、前記角度検出部により検出した前記角度に応じたフレネル反射特性に基づいて補正し、前記補正した受光部の出力に基づいて光学特性を導出することで、前記補正した光学特性を導出することとしてもよい。
このように、受光部の出力をフレネル反射特性に基づいて補正し、その補正した出力に基づいて光学特性を導出することで、正確で高精度の光学特性測定が可能である。
また、上述の光学特性測定装置において、前記光学特性演算部は、前記測定試料表面の法線と前記反射光とのなす角度が正規角度である場合のフレネル反射率を、前記角度検出部により検出した前記角度によるフレネル反射率で除した補正係数を、前記受光部の出力に乗じることで、前記受光部の出力を補正することとしてもよい。
これにより、フレネル反射特性に基づいた、受光部の出力の補正を容易に実現することができ、正確で高精度の光学特性測定が可能である。
また、上述の光学特性測定装置において、前記光学特性演算部は、前記受光部の出力のうち所定の切取り範囲における出力に基づいて、前記光学特性を導出することとしてもよい。
また、上述の光学特性測定装置において、前記切取り範囲は、前記受光部の出力のうち最大強度となる箇所の近傍としてもよい。
これにより、好ましい切取り範囲となる。
また、上述の光学特性測定装置において、前記フレネル反射特性は、前記測定試料に対応する屈折率を用いて算出されることとしてもよい。
これにより、より正確なフレネル反射特性を得ることができ、正確で高精度の光学特性測定が可能である。
また、上述の光学特性測定装置において、前記光学特性演算部は、前記受光部の出力に基づいて前記屈折率を推定する。
これにより、測定試料の屈折率が不明の場合であっても、フレネル反射特性を用いた補正ができ、正確で高精度の光学特性測定が可能である。
また、上述の光学特性測定装置において、さらに、屈折率入力部を備え、前記屈折率は、前記屈折率入力部により入力された屈折率であることとしてもよい。
これにより、測定試料の正確な屈折率がわかるため、より正確にフレネル反射特性を用いた補正ができ、正確で高精度の光学特性測定が可能である。
本発明の一態様に係る光学特性測定方法は、測定試料に光を照射して、照射された光が前記測定試料で反射された反射光の出力に基づいて光学特性を導出する光学特性測定方法であって、前記測定試料表面の法線と前記反射光とのなす角度とフレネル反射特性とに基づいて補正した光学特性を導出する。
このような光学特性測定方法は、フレネル反射特性の影響により生じた誤差を補正して、正確で高精度の光学特性測定を実現する。
また、上述の光学特性測定方法において、前記反射光の出力に基づいて導出された光学特性を、前記測定試料表面の法線と前記反射光とのなす角度に応じたフレネル反射特性に基づいて補正することで、前記補正した光学特性を導出することとしてもよい。
これにより、導出した光学特性をフレネル反射特性に基づいて補正することで、正確で高精度の光学特性測定が可能である。
また、上述の光学特性測定方法において、前記反射光の出力を、前記測定試料表面の法線と前記反射光とのなす角度に応じたフレネル反射特性に基づいて補正し、前記補正した反射光の出力に基づいて光学特性を導出することで、前記補正した光学特性を導出することとしてもよい。
これにより、フレネル反射特性に基づいた、受光部の出力の補正を容易に実現することができ、正確で高精度の光学特性測定が可能である。
本発明に係る光学特性測定装置および光学特性測定方法によれば、測定試料が平坦でない、あるいは測定試料が曲面を有するなどの理由で、正規姿勢でなく傾いた状態で測定した場合であっても、正確に高精度の光学特性値を測定できるという効果を奏する。
以下、本発明に係る実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。
まず、本発明で用いるフレネル反射率について説明する。光が界面で反射される場合に、界面での振幅反射率を与える式をフレネル係数という。フレネル係数は、斜め入射の場合にはp波およびs波において異なる値となる。なお、光の成分のうちベクトルが入射面内で振動するものをp波といい、光の成分のうちベクトルが入射面に垂直に振動するものをs波という。屈折率がnの物質から屈折率がnの物質に光が入射するときのp波およびs波に対するフレネル係数rpおよびrsは、それぞれ以下に示される式(1−1)および式(1−2)で表される。ただし、入射角はαであり、屈折角はβである。ここで、入射角とは界面の法線と入射光とが成す角をいい、屈折角とは界面の法線と屈折光とが成す角をいう。
Figure 2009145071
さらに、光強度についてのp波の反射率Rpおよびs波の反射率Rsは、それぞれ以下に示される式(2−1)および式(2−2)で表される。
Figure 2009145071
本明細書においては、p波とs波はそれぞれ半分ずつであると考えて、フレネル反射率Rは、以下に示す式(3)を用いる。
Figure 2009145071
図1は、実施形態の光学特性測定装置における光学系の構成を示す図である。図2は、実施形態の光学特性測定装置における開口板の構成を示す図である。図3は、実施形態の光学特性測定装置における受光部の構成を示す図である。図4は、実施形態の光学特性測定装置における電気的な構成を示す図である。
まず、本発明に係る実施の一形態における光学特性測定装置1の光学的な構成について説明する。図1ないし図3において、光学特性測定装置1は、測定試料SMの試料表面SMaにおける所定領域に光を照射する照明側光学系(光照射部)10と、前記所定領域からの反射光を受光する受光側光学系20とを備えて構成される。
照明側光学系10および受光側光学系20は、測定試料SMの試料表面SMaにおける或る点を通る試料表面SMaの法線Gに対して互いに反対側の領域に配設される。測定試料SMが光学特性測定装置1に対して正規姿勢である場合において、照明側光学系10は、その光軸13aが試料表面SMaの法線Gに対して所定の角度θ1を成すように配置され、受光側光学系20は、その光軸22aが試料表面SMaの法線Gに対して所定の角度θ2を成すように配置される。これら所定の角度θ1、θ2は、任意の角度でよいが、例えばISOやJISなどによって規格化されており、20度、60度または85度とされる。本実施形態では、光学特性の一例である60度光沢を測定するために、所定の角度θ1、θ2は、ASTMD523の規定に基づいて60度とされている。したがって、照明側光学系10と受光側光学系20とは、これらの光軸13aおよび光軸22aが試料表面SMaの法線Gを対称軸とする線対称となるように、それぞれ配設されている。
照明側光学系10は、光源部11と、照明側開口板12と、照明レンズ13とを備え、試料表面SMaから遠い順に光源部11、照明側開口板12および照明レンズ13が各光軸を光軸13aに揃えて配置されている。
光源部11は、例えばLEDなどの発光素子を備えて構成され、試料表面SMaに向けて光を放射する装置である。照明側開口板12は、光源部11から試料表面SMaに向けて放射された光を所定の開き角に規制する部材である。照明側開口板12は、例えば、本実施形態では、光源部11から放射され試料表面SMaに照射すべき光の波長を遮光する材料で形成された板状部材であり、図2に示すように、照明側開口12aが照明側開口板12を貫通するように穿設されている。この照明側開口12aは、画角にして、幅(図1では紙面内略上下方向)wが0.75度であって、高さ(図1では紙面垂直方向)hが2.5度の矩形形状とされている。照明レンズ13は、照明側開口板12の照明側開口12aを通過した光を光軸13aに略平行な平行光束11aとして試料表面SMaに導く光学素子である。
受光側光学系20は、受光部21と、受光レンズ22とを備え、試料表面SMaから遠い順に受光部21および受光レンズ22が各光軸を光軸22aに揃えて配置されている。受光レンズ22は、測定試料SMの試料表面SMaからの反射光を集光して受光部21の受光面に導く光学素子である。
受光部21は、光エネルギーを電気エネルギーに変換する光電変換素子からなる複数の受光素子を備え、本実施形態では、各受光素子から直接的に各出力が引き出されるように構成されている。受光部21は、光学特性を求める対象の領域よりも大きな受光面を持っている。受光部21の各受光素子は、照明側光学系10によって試料表面SMaに照射され当該試料表面SMaによって反射された反射光における光を受光することによって、受光量に応じた電気信号をそれぞれ出力する。
照明側光学系10および受光側光学系20において、照明側開口板12における照明側開口12aの位置と、受光部21における受光面の位置とは、光学的に共役な位置関係になるように受光部21が配設される。なお、測定試料SMの姿勢の変化が予め設定された所定の角度までならば、略正反射光方向の成分が受光部21の受光面に入射されるように受光面の大きさと受光レンズ22の焦点距離fとが設定される。
本実施形態では、受光部21は、例えば図3に示すように、一方向に配列された7個の受光素子p0〜p6を備え、各受光素子p0〜p6から直接的に各出力が引き出されるように構成されたシリコンフォトダイオードアレイを備えて構成されている。照明側開口板12の照明側開口12aの像が受光部21の受光面に結像した場合に、照明側開口12aの幅w方向と各受光素子p0〜p6の配列方向とが一致するように、受光部21は、受光レンズ22の焦点位置fに配設される。
次に、光学特性測定装置1の電気的な構成について説明する。図4において、光学特性測定装置1は、光源部11と、受光部21と、制御部31と、発光駆動部32と、アナログディジタル変換部(以下、「A/D変換部」と略記する。)33と、記憶部34と、表示部35と、入力操作部36とを備えて構成される。
光源部11および受光部21は、図1に示す光源部11および受光部21に対応する。発光駆動部32は、制御部31の制御に従って光源部11に発光動作を行わせる回路である。A/D変換部33は、受光部21のアナログ出力を、複数のビット(例えば8ビットや10ビットなど)からなるディジタル信号に変換する回路である。A/D変換部33には、受光部21における各受光素子からの各出力がパラレルにあるいはシリアルにそれぞれ入力される。記憶部34は、A/D変換部33から出力されたディジタル信号を一時的に記憶する回路であり、このディジタル信号に対して制御部31によって各種処理を行うための作業領域として用いられる。
表示部35は、入力操作部36の操作結果や、制御部31により導出された測定試料SMの例えば光沢度などの光学特性値などを表示する回路であり、例えば、液晶ディスプレイや有機ELディスプレイなどの表示回路を備えて構成される。入力操作部36は、光学特性測定装置1の主電源のオンオフを切り替えるための電源ボタン回路や、光学特性の測定開始を指示する測定開始指示を入力するためのスイッチ回路などを含むものである。また、入力操作部36は、測定試料SMの屈折率を入力するための屈折率入力部としても機能することとしてもよい。すなわち、所定の屈折率を指示するためのボタン回路などを含むこととすればよい。入力操作部(屈折率入力部)36より、測定試料SMの屈折率を入力することで、正しいフレネル反射率を算出することができ、より正確な補正を行うことができる。なお、本実施形態では、入力操作部36に屈折率入力部の機能も持たせたが、入力操作部36とは別に屈折率入力部を設けてもかまわない。
制御部31は、測定試料SMの光学特性を測定すべく、上記各部を当該機能に応じてそれぞれ制御する回路である。例えば、制御部31は、例えば制御プログラムなどを記憶する記憶素子、制御プログラムに従って動作するマイクロプロセッサおよびその周辺回路を備えたマイクロコンピュータによって構成される。記憶素子は、例えば、不揮発性のROM(Read Only Memory)、書き換え可能な不揮発性のEEPROM(Electrically Erasable Programmable Read Only Memory)および揮発性のRAM(Random Access Memory)
などを備えて構成される。制御部31は、機能的に、発光制御部31aと、受光制御部31bと、光学特性演算部31cと、表示制御部31dと、角度検出部31eとを備えている。
発光制御部31aは、発光駆動部32の動作を制御するものであり、入力操作部36による測定試料SMの光学特性測定開始の指示が入力されると、光源部11に所定時間の発光動作を行わせる。受光制御部31bは、A/D変換部33の動作を制御するものであり、入力操作部36による測定試料SMの光学特性測定開始の指示が入力されると、光源部11の発光タイミングに応じて受光部21のアナログ出力をディジタル信号に変換する動作をA/D変換部33に行わせる。光学特性演算部31cは、A/D変換部33からのディジタル信号に基づいて測定試料SMの光学特性を導出する。
角度検出部31eは、光学特性測定において実際に光軸22aが試料表面SMaの法線Gに対し成す角度θ2を検出する。角度θ2は言い換えると、試料表面SMaの法線Gと試料表面SMaでの反射光とが成す角度である。本実施形態においては、正規姿勢の場合には、前述のように角度θ2は60度である。このとき、略正反射方向の成分21aの光の強度のピークは、7個の受光素子p0〜p6のうちp1に照射されるように各受光素子p0〜p6は配置されている。かりに、正規姿勢ではなく試料表面SMaが傾いた場合には、角度θ1およびθ2が変更され、略正反射方向の成分21aの光の強度のピークの位置は変化する。角度検出部31eは、この変化量を用いて、変化後の角度θ2を検出する。なお、変化後の角度θ2が、例えば59度、61度、62度、63度、64度および65度になった場合には、それぞれ受光素子p0、p2、p3、p4、p5、およびp6に略正反射方向の成分21aの光の強度のピーク位置が来るように各受光素子p0〜p6は配置されている。
角度検出部31eは、各受光素子p0〜p6から得られる出力をもとに、変化後の角度θ2を求める。具体的には、角度検出部31eは光の強度のピーク位置となっている受光素子p0〜p6を求め、その受光素子から角度θ2を求める。具体的には、略正反射方向の成分21aの光の強度のピークの位置が、各受光素子p0、p2、p3、p4、p5、およびp6の場合、変化後の角度θ2は、それぞれ59度、61度、62度、63度、64度および65度である。なお、略正反射方向の成分21aの光の強度のピークの位置が受光素子p1の位置にあるならば、角度θ2は変化していず、60度のままである。
なお、角度検出部31eは、これ以外の方法で角度を検出してもよい。例えば、正規姿勢の場合に測定試料SMの試料表面SMaまでの距離が等しい距離センサを2つ以上設けておき、各距離センサと試料表面SMaまでの距離の差をもとに、試料表面SMaの傾き角度を求め、それにより変化後の角度θ2を検出することもできる。
本実施形態では、光学特性演算部31cは、受光部21の出力および角度検出部31eによって求めた変化後の角度θ2に基づいたフレネル反射特性に基づき測定試料SMの光学特性を導出する。表示制御部31dは、光学特性演算部31cによって算出された光学特性値を表示部35に表示させる。また、表示制御部31dは、光学特性値だけでなく、角度検出部31eで検出した変化後の角度θ2や、傾いている方向などを表示部35に表示させることとしてもよい。それにより、表示内容からユーザが測定の信頼度を判断することができる。なお、上記角度などの表示は、文字あるいはグラフなどで行うこととすれば、ユーザが理解しやすく好ましい。さらに、試料表面SMaの傾き角度が一定の範囲を超えた場合は、警告メッセージや警告ブザーなどで、ユーザに知らせることとすれば、補正の信頼度が低いことをユーザが見落としにくくなり、好ましい。
なお、制御部31、表示部35および入力操作部36は、パーソナルコンピュータ、表示装置およびキーボードなどの外部機器により構成してもよい。
次に、光学特性測定装置1の動作について説明する。図5は、実施形態における光学特性の演算手順を説明するための図である。図5(A)は、受光部における各受光素子の出力値を示す図であり、その横軸は、受光素子pn(n=0〜6)を表し、その縦軸は、受光素子pnの出力値Pnを示す。図5(B)は、受光部の出力を基に導出された強度分布(光沢プロファイル)を示す図である。図5(C)は、強度分布で表された出力の切り出し位置を説明する図である。図5(B)および図5(C)の横軸はx軸であり、その縦軸は出力を表す。x軸は、図1および図3に示すように各受光素子p0〜p6の配列方向に設定される。
ユーザによって測定試料SMが光学特性測定装置1に配置され、入力操作部36から測定試料SMの屈折率が入力され、光学特性測定開始の指示が入力されると、制御部31の発光制御部31aは、光源部11に発光動作を行わせる。
光源部11から射出された光は、照明側開口板12の照明側開口12aによって所定の開き角に規制され、照明レンズ13によって光軸13aに略平行な平行光束11aとされ、測定試料SMの試料表面SMaに照射される。そして、試料表面SMaによって反射された反射光における略正反射方向の成分21aの光は、受光レンズ22によって収束され、受光部21で受光される。
制御部31の受光制御部31bは、光源部11の発光タイミングに応じて受光部21のアナログ出力をディジタル信号に変換する動作をA/D変換部33に行わせる。本実施形態では、受光部21は、上述したように、7個の受光素子p0〜p6を備えて構成されており、各受光素子p0〜p6のアナログ出力がA/D変換部33によってディジタル信号に変換される。例えば、図5(A)に示すように、受光素子p0では受光出力値P0が出力され、受光素子p1では受光出力値P1が出力され、受光素子p2では受光出力値P2が出力され、受光素子p3では受光出力値P3が出力され、受光素子p4では受光出力値P4が出力され、受光素子p5では受光出力値P5が出力され、そして、受光素子p6では受光出力値P6が出力される。
そして、制御部31の光学特性演算部31cは、まず、受光部21の受光面上に設定された一方向に延びる直線、例えば図1および図3に示す上記x軸に沿った反射光の受光量の分布を表す強度分布(光沢プロファイル)を受光部21の出力に基づいて求める。つまり、図5(B)に示すように、各受光素子p0〜p6の受光出力値P0〜P6に基づいて、各受光素子p0〜p6の受光領域に対応する範囲で、光沢プロファイルを求める。
次に、光学特性演算部31cは、図5(C)に示すように、この求めた光沢プロファイルのうちから、光沢計算に用いる領域である切取りエリアを決定する。切取りエリアは、具体的には、光沢プロファイルのピーク位置を中心にして、x軸に沿ってプラス側およびマイナス側にW/2ずつ割り振った範囲Wとする。本実施形態では、切取りエリアの範囲Wは4.4度としている。上述したように、本実施形態では所定の角度θ1、θ2を光沢値測定の場合の規格に合わせて60度としており、この場合はWが4.4度であることが規格化されているからである。なお、切取りエリアの決定は、この方法に限らず、例えば、光沢プロファイルの重心位置を中心として、x軸に沿ってプラス側およびマイナス側にW/2ずつ割り振った範囲Wとしてもよい。また、一定の範囲において、光沢プロファイルを範囲Wについて積分していき、もっとも積分値が大きくなった箇所としてもよい。
切取りエリアが決定されると、光沢プロファイルのうち決定された切取りエリアの範囲内における受光強度Riを求める。受光強度Riを求めるためには、例えば、切取りエリアの範囲内における光沢プロファイルのカウント値の総和を求めればよい。なお、切取りエリアの端部にかかる部分のカウント値においては、切取りエリアの範囲に応じてカウント値を按分してもよいし、その他の補間手法を用いてもかまわない。
受光強度Riが求まると、それを用いて光沢値を求める。例えば、値付けされた校正板を測定したときの受光強度をCsとし、校正板に値付けされた光沢値をGcとすると、光沢値Guは、以下に示す式(4)で表される。
Figure 2009145071
さらに、光学特性演算部31cは、傾き角度に対応したフレネル反射特性に基づいて、求めた光沢値を補正する。前述のように、正規姿勢の場合は、角度θ1およびθ2は所定の角度のままで60度であり、受光素子p1の出力が最も高くなるはずである。しかし、図5(A)に示しているように、出力が最も高いのは受光素子p3である。このことから、正規姿勢ではなく傾いており、変化後の角度θ1およびθ2は62度であることが角度検出部31eにより検出される。光学特性演算部31cは各角度における、フレネル反射率を予め記憶するか、あるいは補間演算などにより取得する。なお、式(3)に表したフレネル反射率を計算する場合には、ユーザが入力した測定試料SMの屈折率、角度θ2などを用いる。
光学特性演算部31cは、角度θ2が正規姿勢の場合の所定の角度(正規角度)である60度である場合のフレネル反射率Bを求める。また、測定試料表面SMaの法線Gと反射光とのなす角度である、角度検出部31eにより検出された変化後の角度θ2の角度(62度)に対するフレネル反射率Aを求める。これらフレネル反射率AおよびBから補正係数を求める。なお、補正係数は、フレネル反射率Bをフレネル反射率Aで除したものである。光学特性演算部31cは、この補正係数B/Aを、求めた光沢値に乗ずることで、補正後の光沢値を得る。
反射角である変化後の角度θ2が60度付近であれば、変化後の角度θ2が大きいほどフレネル反射率も大きく、変化後の角度θ2が小さいほどフレネル反射率が小さくなる傾向にある。したがって、変化後の角度θ2が62度である場合は、受光部21で受光する光は正規姿勢の場合に比べて大きくなっているはずであり、それに基づいて求めた光沢値も正確な値に比べて大きくなっている。また、フレネル反射率AはBよりも大きいはずであるから、補正係数B/Aは1よりも小さな値である。したがって、光沢値に補正係数B/Aを乗ずることで、光沢値はフレネル反射特性の影響で大きくなった分引き下げられ、補正後の光沢値は正しい値に近づく。また、傾いた場合の角度に対するフレネル反射率Aが、規定された所定の角度に対するフレネル反射率Bよりも小さい場合は、求めた光沢値は実際の出力値に比べて小さくなるはずである。その場合は、補正係数B/Aは1よりも大きくなるので、補正係数B/Aを光沢値に乗ずることで、光沢値は引き上げられ、補正後の光沢値は正しい値に近づく。
このように、本実施形態の光学特性測定装置によれば、試料表面が正規姿勢ではなく傾いていることに起因するフレネル反射特性の影響を除去して、より正確な光学特性の測定ができる。
なお、フレネル反射特性は正反射光に対して該当する原理であり、拡散光には該当しないことから、上記光沢値などの光学特性値を導出する場合には、拡散成分を除去した正反射成分のみの光沢プロファイルを用いることが望ましい。拡散成分を分離するためには、公知の方法を用いればよい。例えば、対比光沢度を求めるための公知の方法、すなわち正反射の受光光学系と同様の光学系を、試料表面SMaに対して垂直方向などの拡散方向にも配置し、正反射光と拡散反射光の比を求める方法を用いればよい。
上述した、光学特性測定装置による補正した光沢値の導出方法は、まず補正をせずに光沢値を導出し、導出された光沢値を補正している。これとは別に、各受光素子p0〜p6からの出力を補正して、補正した出力値から光沢プロファイルを導出し、その光沢プロファイルを用いてさらに光沢値を得てもよい。以下、他の実施形態に係る光学特性測定装置の動作として、補正した光沢プロファイルを基に光沢値を得る場合の光学特性演算部31cの動作について図6を用いて説明する。なお、受光部21で略正反射方向の成分21aの光を受光し、その画素出力を求めるまでは、上述の光沢値を補正する方法と同様である。
図6は他の実施形態における光学特性の演算手順を説明するための図である。図6(A)は受光部における各受光素子の出力値を示す図である。また、図6(B)は補正した後の各受光素子の出力値を示す図である。図6(A)および図6(B)において、その横軸は受光素子pn(n=0〜6)を表し、その縦軸は受光素子pnの出力値Pnおよび補正後の出力値Rnを示す。図6(C)は補正後の受光部の出力を基に導出された強度分布(光沢プロファイル)を示す図である。図6(C)の横軸はx軸であり、その縦軸は出力を表す。
図6(A)に示すように、各受光素子p0〜p6での受光出力値がそれぞれP0〜P6であったとする。例えば、受光素子p0では受光出力値P0が出力され、受光素子p1では受光出力値P1が出力され、受光素子p2では受光出力値P2が出力され、受光素子p3では受光出力値P3が出力され、受光素子p4では受光出力値P4が出力され、受光素子p5では受光出力値P5が出力され、そして、受光素子p6では受光出力値P6が出力される。ここで、図6(A)に示すように、出力が最も高いのは受光素子p3である。このことから、正規姿勢ではなく傾いており、変化後の角度θ1およびθ2は62度であることが角度検出部31eにより検出される。
また、光学特性演算部31cは、角度θ2が正規姿勢の場合の所定の角度(正規角度)である60度である場合のフレネル反射率Bを求める。また、測定試料表面SMaの法線Gと反射光とのなす角度である、角度検出部31eにより検出された変化後の角度θ2の角度(62度)に対するフレネル反射率Aを求める。これらフレネル反射率AおよびBから補正係数を求める。なお、補正係数は、フレネル反射率Bをフレネル反射率Aで除したものである。光学特性演算部31cは、この補正係数B/Aを、各受光素子p0〜p6の受光出力値P0〜P6に一律に乗ずることで、図6(B)に示すように、補正した受光出力値R0〜R6を得ることができる。
反射角である変化後の角度θ2が60度付近であれば、変化後の角度θ2が大きいほどフレネル反射率も大きく、変化後の角度θ2が小さいほどフレネル反射率が小さくなる傾向にある。したがって、変化後の角度θ2が62度である場合は、受光部21で受光する光は正規姿勢の場合に比べて大きくなっているはずである。また、フレネル反射率AはBよりも大きいはずであるから、補正係数B/Aは1よりも小さな値である。したがって、受光出力値P0〜P6に補正係数B/Aを乗ずることで、受光出力値P0〜P6は引き下げられ、補正した受光出力値R0〜R6は正しい値に近づく。また、傾いた場合の角度に対するフレネル反射率Aが、規定された所定の角度に対するフレネル反射率Bよりも小さい場合は、測定した受光出力値は実際の出力値に比べて小さくなるはずである。その場合は、補正係数B/Aは1よりも大きくなるので、補正係数B/Aを受光出力値P0〜P6に乗ずることで、受光出力値P0〜P6は引き上げられ、補正した受光出力値R0〜R6は正しい値に近づく。
光学特性演算部31cは、図6(C)に示すように、このようにして求めた補正した受光出力値R0〜R6に基づいて、上記x軸に沿った反射光の受光量の分布を表す補正した光沢プロファイルを求める。求めた光沢プロファイルについて、切取りエリアを決定し、その範囲における受光強度を算出し、それに基づいて光沢値を求める。切取りエリアの決定方法および光沢値の求め方は、上述した方法を用いればよい。
次に、補正に用いるフレネル反射率の計算に用いる測定試料SMの屈折率の設定方法について説明する。より正確な補正を行うためには正確なフレネル反射率を用いて補正すればよい。そのためには、フレネル反射率の計算において測定試料SMの正確な屈折率を用いることが好ましい。ユーザが測定試料SMの屈折率を知っている場合には、入力操作部
(屈折率入力部)36により測定試料SMの屈折率を入力することが好ましい。それにより、光学特性演算部31cはユーザにより入力された屈折率を用いてフレネル反射率を算出し、それを用いて補正を行う。このように、ユーザが測定試料SMの屈折率を入力することで、光学特性測定装置1はより正確な補正を行うことができる。なお、ユーザが屈折率を入力した際には表示制御部31dは表示部35に、入力した屈折率を表示させてもよい。
また、ユーザが測定試料SMの屈折率を入力しない場合であっても、光学特性測定装置1は導出した光沢値に基づいて測定試料SMの屈折率を推定して、その推定した屈折率を用いて算出したフレネル反射率を用いて補正を行うこととしてもよい。
図7は銀とガラスとのフレネル反射特性を示す図である。なお、銀は金属であり、屈折率は∞(無限大)である。また、図7で示したガラスは屈折率を1.567とした。図7からもわかるように、ガラスと銀ではフレネル反射特性が大きく異なる。図7に示しているように、銀の反射率は反射角度にあまり依存せず、ほぼ一定値である。しかし、ガラスの反射率は、反射角度が60度程度まではほぼ一定であるが、反射角度がそれ以上になると反射率が急激に高くなる。また、ガラスと銀は光沢値においても異なる。具体的には、光沢値が100GU以上の物質の屈折率は金属の屈折率に近く、光沢値が100GU未満の物質の屈折率はガラスの屈折率に近い傾向にある。このことを利用して、測定試料SMを屈折率が金属に近い物質またはガラスに近い物質に分類し、その分類によって測定試料SMの屈折率を推定することができる。例えば、100GUを境界として、100GU以上であれば金属とし、100GU未満であればガラスと推定することとすればよい。
具体的には、まず光学特性測定装置1において、補正をせずに測定試料SMの光沢値を求める。光学特性演算部31cは、あらかじめ無限大と1.567との屈折率を記憶しておき、その光沢値が100GU以上であれば屈折率を無限大としてフレネル反射率を算出し、その値が100GU未満であれば屈折率を1.567としてフレネル反射率を算出する。そして、光学特性演算部31cは、算出したフレネル反射率を用いて、上述の補正を行うことでおおよそではあるが十分な補正を行うことができる。なお、上述の説明では、光沢値が100GUを基準として2つの屈折率を推定することとしたが、これ以外の光沢値を基準としてもよいし、基準の数をさらに増やして推定する屈折率の数を増やしてもかまわない。
なお、本発明の実施形態に係る光学特性測定装置1の受光部21はx軸方向に受光素子p0〜p6が並んでいる構成であり、いわゆる一次元の配置としている。しかし、本発明の光学特性測定装置は、この配置に限定されるわけではなく、例えば受光素子を二次元の配置としてもよい。その場合も、一次元の配置の場合と同様に、各受光素子が光のピークとなった場合の試料表面SMaの法線Gと反射光との成す角度と求めることができるよう、各受光素子を配置すればよい。それにより各受光素子の出力をもとにフレネル反射率を算出し、補正を行うことができる。
以上説明してきたように、本発明の実施形態に係る光学特性測定装置は、フレネル反射特性による影響を補正して正確な光学特性を測定することができるという効果を奏する。なお、上述において、本発明の光学特性測定装置により光沢値を測定する場合を説明したが、光沢値だけでなく、ヘーズ値や表色系の値など、その他の光学特性を測定することもできる。
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
実施形態の光学特性測定装置における光学系の構成を示す図である。 実施形態の光学特性測定装置における開口板の構成を示す図である。 実施形態の光学特性測定装置における受光部の構成を示す図である。 実施形態の光学特性測定装置における電気的な構成を示す図である。 実施形態における光学特性の演算手順を説明するための図であって、図5(A)は受光部における各受光素子の出力値を示す図であり、図5(B)は受光部の出力を基に導出された強度分布を示す図であり、図5(C)は強度分布で表された出力の切り出し位置を説明する図である。 他の実施形態における光学特性の演算手順を説明するための図であって、図6(A)は受光部における各受光素子の出力値を示す図であり、図6(B)は補正した後の各受光素子の出力値を示す図であり、図6(C)は補正後の受光部の出力を基に導出された強度分布(光沢プロファイル)を示す図である。 銀とガラスとのフレネル反射特性を示す図である。 背景技術における光学特性測定装置の光学的な構成を示す図である。 背景技術における光学特性測定装置の補正方法を説明する図であって、図9(A)は正規姿勢での受光部に形成された像を示す図であり、図9(B)は正規姿勢でなく傾いた状態での受光部に形成された像を示す図であり、図9(C)は切取りエリアが像を追従している状態を示す図である。 フレネル反射特性を説明するための特性図である。
符号の説明
1、100 光学特性測定装置、
10、110 照明側光学系
11、111 光源部
11a、111a 平行光束
12、112 照明側開口板
12a、112a 照明側開口
13、113 照明レンズ
13a、113a 光軸
20、120 受光側光学系
21、121 受光部
21a、121a 略正反射方向の成分
22a、122a 光軸
22、122 受光レンズ
31 制御部
31a 発光制御部
31b 受光制御部
31c 光学特性演算部
31d 表示制御部
31e 角度検出部
32 発光駆動部
33 A/D変換部
34 記憶部
35 表示部
36 入力操作部
121b 像
130 切取りエリア

Claims (13)

  1. 測定試料に光を照射する光照射部と、前記光照射部から照射された光が前記測定試料で反射された反射光を受光する複数の受光素子を有する受光部と、前記受光部の出力に基づいて光学特性を導出する光学特性演算部とを備える光学特性測定装置であって、
    前記測定試料表面の法線と前記反射光とのなす角度を検出する角度検出部を備え、
    前記光学特性演算部は、前記角度検出部により検出した前記角度とフレネル反射特性とに基づいて補正した光学特性を導出する光学特性測定装置。
  2. 前記光学特性演算部は、前記受光部の出力に基づいて導出した光学特性を、前記角度検出部により検出した前記角度に応じたフレネル反射特性に基づいて補正し、前記補正した光学特性を導出する請求項1に記載の光学特性測定装置。
  3. 前記光学特性演算部は、前記測定試料表面の法線と前記反射光とのなす角度が正規角度である場合のフレネル反射率を、前記角度検出部により検出した前記角度によるフレネル反射率で除した補正係数を、前記受光部の出力に基づいて導出した光学特性に乗じることで前記補正した光学特性を導出する請求項2に記載の光学特性測定装置。
  4. 前記光学特性演算部は、前記受光部の出力を、前記角度検出部により検出した前記角度に応じたフレネル反射特性に基づいて補正し、
    前記補正した受光部の出力に基づいて光学特性を導出することで、前記補正した光学特性を導出する請求項1に記載の光学特性測定装置。
  5. 前記光学特性演算部は、前記測定試料表面の法線と前記反射光とのなす角度が正規角度である場合のフレネル反射率を、前記角度検出部により検出した前記角度によるフレネル反射率で除した補正係数を、前記受光部の出力に乗じることで、前記受光部の出力を補正する請求項4に記載の光学特性測定装置。
  6. 前記光学特性演算部は、前記受光部の出力のうち所定の切取り範囲における出力に基づいて、前記光学特性を導出する請求項1に記載の光学特性測定装置。
  7. 前記切取り範囲は、前記受光部の出力のうち最大強度となる箇所の近傍とする請求項6に記載の光学特性測定装置。
  8. 前記フレネル反射特性は、前記測定試料に対応する屈折率を用いて算出される請求項1に記載の光学特性測定装置。
  9. 前記光学特性演算部は、前記受光部の出力に基づいて前記屈折率を推定する請求項8に記載の光学特性測定装置。
  10. さらに、屈折率入力部を備え、前記屈折率は、前記屈折率入力部により入力された屈折率である請求項8に記載の光学特性測定装置。
  11. 測定試料に光を照射して、照射された光が前記測定試料で反射された反射光の出力に基づいて光学特性を導出する光学特性測定方法であって、
    前記測定試料表面の法線と前記反射光とのなす角度とフレネル反射特性とに基づいて補正した光学特性を導出する光学特性測定方法。
  12. 前記反射光の出力に基づいて導出された光学特性を、前記測定試料表面の法線と前記反射光とのなす角度に応じたフレネル反射特性に基づいて補正することで、前記補正した光学特性を導出する請求項11に記載の光学特性測定方法。
  13. 前記反射光の出力を、前記測定試料表面の法線と前記反射光とのなす角度に応じたフレネル反射特性に基づいて補正し、
    前記補正した反射光の出力に基づいて光学特性を導出することで、前記補正した光学特性を導出する請求項11に記載の光学特性測定方法。
JP2007319773A 2007-12-11 2007-12-11 光学特性測定装置及び光学特性測定方法 Pending JP2009145071A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007319773A JP2009145071A (ja) 2007-12-11 2007-12-11 光学特性測定装置及び光学特性測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007319773A JP2009145071A (ja) 2007-12-11 2007-12-11 光学特性測定装置及び光学特性測定方法

Publications (1)

Publication Number Publication Date
JP2009145071A true JP2009145071A (ja) 2009-07-02

Family

ID=40915845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319773A Pending JP2009145071A (ja) 2007-12-11 2007-12-11 光学特性測定装置及び光学特性測定方法

Country Status (1)

Country Link
JP (1) JP2009145071A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184320A (ja) * 2018-04-04 2019-10-24 日本電気硝子株式会社 透明物品の評価方法、及び透明物品の製造方法
CN112634415A (zh) * 2020-12-11 2021-04-09 北方信息控制研究院集团有限公司 一种基于人体骨骼模型的人员动作实时仿真方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184320A (ja) * 2018-04-04 2019-10-24 日本電気硝子株式会社 透明物品の評価方法、及び透明物品の製造方法
CN112634415A (zh) * 2020-12-11 2021-04-09 北方信息控制研究院集团有限公司 一种基于人体骨骼模型的人员动作实时仿真方法

Similar Documents

Publication Publication Date Title
JP2008256454A (ja) 光学特性測定装置および該方法
JP6291707B2 (ja) 密着イメージセンサ、密着イメージセンサ用出力補正装置及び密着イメージセンサ用出力補正方法
US7719687B2 (en) Apparatus for measuring reflection characteristics of object surfaces
EP2397840A2 (en) Image inspecting apparatus, image inspecting method, image forming apparatus
US9329025B2 (en) Measuring device
JP5871242B2 (ja) 膜厚測定装置及び膜厚測定方法
WO2012042943A1 (ja) 投光ビームの調整方法
US8085409B2 (en) Surface profile measuring apparatus
JP2009080044A (ja) 光学特性測定装置
US7436516B2 (en) Reflection characteristic measuring apparatus
KR20120137274A (ko) 평면도 측정장치 및 평면도 측정방법
JP2009145071A (ja) 光学特性測定装置及び光学特性測定方法
JP4775946B2 (ja) エッジ検出装置
KR20090033097A (ko) 에지검출장치
JP6818403B2 (ja) 光学特性の測定装置
JP2009156789A (ja) 光学特性測定装置及び光学特性測定方法
WO2010021266A1 (ja) 測色システム及び白色校正ユニット
CN109716105B (zh) 衰减全反射光谱仪
JP7419029B2 (ja) 光学測定装置のリニアリティ補正方法、光学測定方法及び光学測定装置
JP4911113B2 (ja) 高さ測定装置および高さ測定方法
CN115104000A (zh) 膜厚测定装置及膜厚测定方法
JP2010085327A (ja) 測色装置及び白色校正方法
JP2016188822A (ja) 材料認識装置、材料認識方法及びプログラム
JP2008256539A (ja) 光学的測定装置及び光学的測定方法
CN114660048B (zh) 预测数值校正方法、光谱设备、计算机设备和存储介质