JP2009139095A - Apparatus and method for monitoring coating damage on underground pipe - Google Patents

Apparatus and method for monitoring coating damage on underground pipe Download PDF

Info

Publication number
JP2009139095A
JP2009139095A JP2007312377A JP2007312377A JP2009139095A JP 2009139095 A JP2009139095 A JP 2009139095A JP 2007312377 A JP2007312377 A JP 2007312377A JP 2007312377 A JP2007312377 A JP 2007312377A JP 2009139095 A JP2009139095 A JP 2009139095A
Authority
JP
Japan
Prior art keywords
coating damage
pipe
frequency
underground
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007312377A
Other languages
Japanese (ja)
Inventor
Kenichi Haraga
健一 原賀
Morio Sumiyama
守男 炭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
JFE Koken Co Ltd
Original Assignee
JFE Engineering Corp
JFE Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp, JFE Koken Co Ltd filed Critical JFE Engineering Corp
Priority to JP2007312377A priority Critical patent/JP2009139095A/en
Publication of JP2009139095A publication Critical patent/JP2009139095A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for monitoring coating damage by using frequencies in which presence or absence of coating damage and its location are easier to determine even on a long pipe and the number of measuring instruments for determining the damaged section can be reduced. <P>SOLUTION: A monitoring apparatus 100 for coating damage on an underground pipe comprises: a signal transmitter 20 for transmitting an asynchronous pseudo-random signal with a plurality of fundamental frequencies from at least one transmission location 12 on the underground pipe 10; a receiver 30 for receiving the asynchronous pseudo-random signal at the transmission location 12; a receiver 40 for receiving the asynchronous pseudo-random signal at a distant location on the underground pipe from the transmission location 12; and a computer 50 for monitoring the pipe-to-ground potential and energization current and monitoring coating damage occurrence and its section on the underground pipe based on changes in the ground resistance and the pipe-to-ground potential of the underground pipe due to changes in the correlation peak value of the asynchronous pseudo-random signal with the plurality of fundamental frequencies. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地中埋設管の塗覆装損傷監視装置および塗覆装損傷監視方法に関する。   The present invention relates to a coating damage monitoring apparatus and a coating damage monitoring method for underground pipes.

地中に埋設された被覆鋼管は鋼自体の腐食を防ぐため、外面を塗覆装して土壌と絶縁している。この被覆鋼管の塗覆装が例えば土木工事等で掘削機械等に接触して傷が付くと、鋼自体が土壌と接触して腐食する可能性がある。この鋼自体に腐食が生じることを防止するため地中に埋設された塗覆装(被膜)鋼管の塗覆装に対する損傷の状態を常時監視することが必要である。   In order to prevent corrosion of the steel itself, the coated steel pipe buried in the ground is coated with the outer surface to insulate it from the soil. If the coating of the coated steel pipe comes into contact with a drilling machine or the like, for example, during civil engineering work, the steel itself may come into contact with the soil and corrode. In order to prevent corrosion of the steel itself, it is necessary to constantly monitor the state of damage to the coating of the coated (coated) steel pipe embedded in the ground.

地中埋設管の塗覆装損傷監視装置および塗覆装損傷監視方法としては例えば、下記特許文献1〜3の報告がある。   As the coating damage monitoring apparatus and coating damage monitoring method for underground pipes, for example, the following patent documents 1 to 3 are reported.

特許文献1に記載の地中埋設管の塗覆装損傷監視方法は、被覆鋼管の基準位置に埋設した印加電極と管体との間に交流信号を印加し、計測区間毎に検出した管対地電位と管対管電位及び管体の導電率から演算した接地抵抗の変化から被覆鋼管の損傷有無を判定し、管対管電位の変化から損傷が発生した計測区間を特定するものである。損傷が発生した計測区間の基準位置P側の検出地点の両側に隣接する検出地点の管対管電位から演算した管内電流と、損傷が発生した計測区間の基準位置側の検出地点の管対管電位と、計測区間の距離及び管体の導電率から、損傷が発生した計測区間の基準位置側の検出地点から損傷が発生した位置までの距離を演算する方法である。   The underground coating damage monitoring method described in Patent Document 1 applies an AC signal between an application electrode embedded in a reference position of a coated steel pipe and a pipe body, and detects the pipe-to-ground detection for each measurement section. The presence or absence of damage to the coated steel pipe is determined from the change in ground resistance calculated from the potential, the pipe-to-tube potential, and the conductivity of the pipe body, and the measurement section where the damage has occurred is specified from the change in the pipe-to-tube potential. In-tube current calculated from the tube-to-tube potential of the detection point adjacent to both sides of the detection point on the reference position P side of the measurement section where the damage occurred, and the tube-to-tube of the detection point on the reference position side of the measurement section where the damage occurred This is a method of calculating the distance from the detection point on the reference position side of the measurement section where the damage has occurred to the position where the damage has occurred from the potential, the distance of the measurement section, and the conductivity of the tube.

特許文献2に記載の地中埋設管の塗覆装損傷監視方法は、地中に埋設された金属導管を測定対象とし、監視対象とする区間を包括するように設置した2箇所以上の計測地点を設ける方法である。すなわち、各計測地点での管内電流及び管対地電圧の各振幅、及び管内電流及び管対地電圧と交流電源の同一周波数で同一位相を発生する標準信号発生手段との位相差から、計測点間の特性インピーダンス及び伝搬定数を算出し、損傷位置と損傷程度
の推定を、監視区域の前記各算出値の複素平面上の変動量と過去に投入した模擬損傷による変動量との比較で行い、分布定数の回路式により模擬損傷間の補完を行なう方法である。
The method for monitoring the coating damage of underground pipes described in Patent Document 2 is to measure two or more measurement points installed so as to cover the section to be monitored, with metal conduits buried in the ground as measurement targets It is a method of providing. That is, from the amplitude of the tube current and tube-to-ground voltage at each measurement point, and the phase difference between the tube current and tube-to-ground voltage and the standard signal generating means that generates the same phase at the same frequency of the AC power supply, between the measurement points Calculate the characteristic impedance and propagation constant, and estimate the damage position and damage level by comparing the amount of fluctuation of each calculated value of the monitored area on the complex plane with the amount of fluctuation caused by simulated damage that has been applied in the past. This is a method of complementing between simulated damages using the circuit formula.

特許文献3に記載の地中埋設管の塗覆装損傷監視方法は、被覆鋼管の基準位置に埋設した印加電極と管体との間に一定電圧のM系列信号を印加し、計測区間毎に検出した管対地電位と管対管電位及び管体の導電率から演算した接地抵抗の変化から被覆鋼管の損傷有無を判定し、管対管電位の変化から損傷が発生した計測区間を特定する方法である。すなわち、損傷が発生した計測区間の基準位置側の検出地点の両側に隣接する検出地点の管対管電位から演算した管内電流と、損傷が発生した計測区間の基準位置側の検出地点の管対管電位と、計測区間の距離及び管体の導電率から、損傷が発生した計測区間の基準位置側の検出地点から損傷が発生した位置までの距離を演算する方法である。   In the method for monitoring coating damage of underground pipes described in Patent Document 3, an M-sequence signal having a constant voltage is applied between an application electrode embedded in a reference position of a coated steel pipe and a pipe body, and is measured for each measurement section. A method to determine the presence or absence of damage to a coated steel pipe from the change in ground resistance calculated from the detected tube-to-ground potential, the tube-to-tube potential, and the conductivity of the tube body, and to identify the measurement section where the damage occurred from the change in the tube-to-tube potential It is. That is, the in-tube current calculated from the tube-to-tube potential of the detection point adjacent to both sides of the detection point on the reference position side of the measurement section where the damage occurred, and the tube pair of the detection point on the reference position side of the measurement section where the damage occurred. This is a method of calculating the distance from the detection point on the reference position side of the measurement section where the damage has occurred to the position where the damage has occurred, from the tube potential, the distance of the measurement section, and the conductivity of the tube body.

これら特許文献1〜3に記載の塗覆装損傷塗覆装損傷監視装置および塗覆装損傷監視方方法は、地中に埋設された金属導管について、土木機械等の重機類の接触事故を原因とする塗覆装の損傷の位置並びに損傷の程度を容易に検知できると報告されている。
特開平9−189505号公報 特開2001−116714号公報 特開2003−232764号公報
The coating damage coating damage monitoring device and the coating damage monitoring method described in Patent Documents 1 to 3 cause a contact accident of heavy machinery such as a civil engineering machine with respect to a metal conduit buried in the ground. It is reported that the position of damage and the degree of damage can be easily detected.
JP-A-9-189505 JP 2001-116714 A Japanese Patent Laid-Open No. 2003-232764

しかし、これら特許文献1〜3に記載の塗覆装損傷塗覆装損傷監視方法では、損傷区間を求めるために多数の測定器を多数設置し、管対地電位と管内電流を測定することが必要である。したがって、これら多数の装置は勿論のこと、多数の装置を設置するための用地が必要となり、設置が難しい場合がある。   However, in the coating damage coating damage monitoring methods described in Patent Documents 1 to 3, it is necessary to install a large number of measuring devices and measure the tube-to-ground potential and the tube current in order to obtain the damaged section. It is. Accordingly, a site for installing a large number of devices as well as the large number of devices is required, which may be difficult to install.

特許文献2に記載の地中埋設管の塗覆装損傷監視方法は、塗覆装損傷位置を監視するために区間毎に周波数を変えた少なくとも2つの電源と2つの計測点を設置することが必要である。この多数の電源と計測点に係る装置によって特性インピーダンスと伝搬定数を算出すると共に予め模擬抵抗で求めたインピーダンスをコンピュータ内で比較演算し、位置を求めている。また、当該文献に開示された塗覆装損傷監視装置は、ロックインアンプであり、信号送信機と信号受信機とが離れていると長期間詳細な同期をとることが困難であり、位相調整機器を用いて長期間詳細な同期をとり精度を上げている。   The method for monitoring coating damage of underground pipes described in Patent Document 2 is to install at least two power sources and two measurement points with different frequencies for each section in order to monitor the coating damage position. is necessary. The characteristic impedance and the propagation constant are calculated by the devices related to the large number of power sources and measurement points, and the impedance obtained in advance by the simulated resistance is compared in the computer to obtain the position. The coating damage monitoring device disclosed in the document is a lock-in amplifier, and it is difficult to synchronize for a long period of time if the signal transmitter and the signal receiver are separated from each other, and phase adjustment The precision is improved by using the equipment for long-term detailed synchronization.

また、特許文献3に記載の地中埋設管の塗覆装損傷監視方法は、塗覆装損傷発生を区間検知するためには区間毎の管対地電位と管内電流を計測する測定器と管路に沿って電線と通信線を布設する必要もある。   In addition, the coating damage monitoring method for underground pipes described in Patent Document 3 is a measuring instrument and a pipe for measuring the pipe-to-ground potential and the pipe current for each section in order to detect the section of the occurrence of coating damage. It is also necessary to lay an electric wire and a communication line along the line.

また、周波数による塗覆装損傷監視は管が長いと塗覆装損傷の有無、場所の確認が難しくなる場合がある。   In addition, when monitoring the coating damage by frequency, if the pipe is long, it may be difficult to confirm the presence / absence of the coating damage and the location.

本発明は、上記課題等を解決することに鑑みてなされたものであり、周波数による塗覆装損傷監視は管が長くても塗覆装損傷の有無、場所の確認がよりしやすく、かつ、損傷区間を求めるための測定器数をより少数とし、あわせて装置を設置するための用地もより少なくて済む地中埋設管の塗覆装損傷監視装置および塗覆装損傷監視方法の提供をその主な目的とする。   The present invention has been made in view of solving the above-mentioned problems, etc., and coating damage monitoring by frequency makes it easier to check the presence or absence of coating damage and the location even if the tube is long, and Providing a coating damage monitoring device and coating damage monitoring method for underground pipes that require fewer measuring instruments to determine the damage zone and require less land to install the equipment. Main purpose.

本発明は、地中埋設管の塗覆装損傷監視装置であって、埋設管の少なくとも一点の発信地点から複数の基本周波数をもつ非同期擬似ランダム信号を発信する信号発信機と、前記発信地点で前記非同期擬似ランダム信号を受信する受信機と、前記複数の基本周波数をもつ非同期擬似ランダム信号の相関ピーク値の変化による前記地中埋設管の接地抵抗と管対地電位の変化により、前記埋設管の塗覆装損傷発生区間と塗覆装損傷発生とを監視する監視機と、を含むことを特徴とする。   The present invention is a coating damage monitoring apparatus for underground pipes, a signal transmitter for transmitting an asynchronous pseudo-random signal having a plurality of fundamental frequencies from at least one transmission point of the buried pipe, and the transmission point A receiver that receives the asynchronous pseudo-random signal, and a change in ground resistance and tube-to-ground potential of the underground buried pipe due to a change in a correlation peak value of the asynchronous pseudo-random signal having the plurality of fundamental frequencies. And a monitoring device for monitoring the occurrence of coating damage and the occurrence of coating damage.

前記地中埋設管の塗覆装損傷監視装置であって、前記複数の基本周波数は、塗覆装損傷が発生すると電流が増加する第1の周波数と、前記第1の周波数とは異なり、塗覆装損傷が発生するとその場所によって管対地電位が減少し、かつ、電流が増減する第2の周波数と、を含むと好適である。   The coating damage monitoring apparatus for the underground pipe, wherein the plurality of fundamental frequencies are different from a first frequency at which a current increases when coating damage occurs, and a coating frequency different from the first frequency. It is preferable to include a second frequency at which the tube-to-ground potential decreases depending on the location of the covering damage and the current increases or decreases.

前記地中埋設管の塗覆装損傷監視装置であって、さらに前記受信機に加えて前記発信地点からの距離が離れた第2の受信機とを含むと好適である。   It is preferable that the device is a coating damage monitoring apparatus for the underground pipe, and further includes a second receiver that is separated from the transmission point in addition to the receiver.

本発明は、地中埋設管の塗覆装損傷監視方法であって、埋設管の少なくとも一点の発信地点から複数の基本周波数をもつ非同期擬似ランダム信号を発信し、前記発信地点で前記非同期擬似ランダム信号を受信し、前記複数の基本周波数をもつ非同期擬似ランダム信号の相関ピーク値の変化による前記地中埋設管の接地抵抗と管対地電位の変化により、前記埋設管の塗覆装損傷発生区間と塗覆装損傷発生とを監視することを特徴とする。   The present invention is a coating damage monitoring method for underground pipes, which transmits an asynchronous pseudo-random signal having a plurality of fundamental frequencies from at least one transmission point of the embedded pipe, and the asynchronous pseudo-random signal at the transmission point. Receiving the signal, the grounding resistance of the underground pipe due to the change of the correlation peak value of the asynchronous pseudo-random signal having the plurality of fundamental frequencies, and the change in the ground potential of the underground pipe, It is characterized by monitoring the occurrence of coating damage.

前記地中埋設管の塗覆装損傷監視方法であって、前記複数の基本周波数は、塗覆装損傷が発生すると電流が増加する第1の周波数と、前記第1の周波数とは異なり、塗覆装損傷が発生するとその場所によって管対地電位が減少し、かつ、電流が増減する第2の周波数と、を含むと好適である。   The method for monitoring coating damage to underground pipes, wherein the plurality of fundamental frequencies are different from a first frequency at which a current increases when coating damage occurs, and the first frequency. It is preferable to include a second frequency at which the tube-to-ground potential decreases depending on the location of the covering damage and the current increases or decreases.

前記地中埋設管の塗覆装損傷監視方法であって、さらに前記受信に加えて前記発信地点からの距離が離れた第2の受信とを含むと好適である。   It is preferable that the method for monitoring coating damage to the underground pipe further includes a second reception that is separated from the transmission point in addition to the reception.

周波数による塗覆装損傷監視は管が長くても塗覆装損傷の有無、場所の確認がよりしやすく、かつ、損傷区間を求めるための測定器数をより少数とし、あわせて装置を設置するための用地もより少なくて済む地中埋設管の塗覆装損傷監視装置および塗覆装損傷監視方法の提供地中埋設管の塗覆装損傷監視装置および塗覆装損傷監視方法を提供できる。   For coating damage monitoring by frequency, even if the pipe is long, it is easier to check the presence or absence of the coating damage and the location, and the number of measuring instruments to determine the damage section is reduced, and the equipment is installed together It is possible to provide a coating damage monitoring apparatus and a coating damage monitoring method for a buried underground pipe and a coating damage monitoring method.

図1はこの発明の被覆(塗覆装)鋼管10の塗覆装損傷監視装置100の構成を示す説明図である。塗覆装損傷監視装置100は、地中に埋設された被覆鋼管10に、被覆鋼管10へ発信地点12から複数の基本周波数をもつ非同期擬似ランダム信号を発信する信号発信機20と、発信地点12にて信号発信機20からの非同期擬似ランダム信号を受信する信号受信機30と、鋼管10の発信地点12から地中埋設管の離れた地点で信号発信機20からの非同期擬似ランダム信号を受信する信号受信機40と、信号受信機30、40からの受信された情報に対して管対地電位と通電電流を前記複数の基本周波数をもつ非同期擬似ランダム信号の相関ピーク値の変化による前記地中埋設管の接地抵抗と管対地電位の変化により、前記埋設管の塗覆装損傷発生区間と塗覆装損傷発生とを監視する監視機としてコンピュータ50とで構成されている。コンピュータ50は、信号発信機20、信号受信機30および40に対して制御・演算できるように接続されている。   FIG. 1 is an explanatory diagram showing the configuration of a coating damage monitoring apparatus 100 for a coated (coated) steel pipe 10 according to the present invention. The coating damage monitoring apparatus 100 includes a signal transmitter 20 that transmits an asynchronous pseudo-random signal having a plurality of fundamental frequencies from a transmission point 12 to the coated steel pipe 10 embedded in the ground, and a transmission point 12. The signal receiver 30 that receives the asynchronous pseudo-random signal from the signal transmitter 20 and the asynchronous pseudo-random signal from the signal transmitter 20 are received at a point away from the transmission point 12 of the steel pipe 10 and the underground pipe. The signal receiver 40, and the underground burial by the change of the correlation peak value of the asynchronous pseudo-random signal having the plurality of fundamental frequencies, with respect to the information received from the signal receiver 40 and the signal receiver 30, 40. A computer 50 is configured as a monitoring device for monitoring the coating damage occurrence section and the coating damage occurrence of the buried pipe according to changes in the pipe ground resistance and the pipe ground potential.The computer 50 is connected to the signal transmitter 20 and the signal receivers 30 and 40 so that they can be controlled and operated.

信号発信機20は通電電極21と非同期擬似ランダム信号を鋼管10の発信地点12から発信するための発信電極22とを備えている。通電電極21、発信電極22は電流増幅器23に接続されている。電流増幅器23には第1の周波数を発信する発信器25と第2の周波数を発信する発信器26を加算する加算機24が接続されている。このような構成により第1の周波数と第2の周波数とが加算されてなる非同期擬似ランダム信号を鋼管10の発信地点12から発信電極22を通じて発信できるようになっている。   The signal transmitter 20 includes an energization electrode 21 and a transmission electrode 22 for transmitting an asynchronous pseudorandom signal from the transmission point 12 of the steel pipe 10. The energizing electrode 21 and the transmitting electrode 22 are connected to a current amplifier 23. The current amplifier 23 is connected to an adder 24 that adds a transmitter 25 that transmits a first frequency and a transmitter 26 that transmits a second frequency. With such a configuration, an asynchronous pseudorandom signal obtained by adding the first frequency and the second frequency can be transmitted from the transmission point 12 of the steel pipe 10 through the transmission electrode 22.

発信器25からは、塗覆装損傷が発生すると電流が増加する第1の周波数(周波数1)が、発信器26からは、第1の周波数とは異なり、塗覆装損傷が発生するとその場所によって管対地電位が減少し、かつ、電流が増減する第2の周波数(周波数2)とがそれぞれ発信され、周波数1と周波数2が加算機24によって加算されて非同期擬似ランダム信号が構成される。   From the transmitter 25, the first frequency (frequency 1) at which the current increases when coating damage occurs, is different from the first frequency from the transmitter 26, and when the coating damage occurs, its location The second frequency (frequency 2) at which the tube ground potential decreases and the current increases / decreases is transmitted, and the frequency 1 and the frequency 2 are added by the adder 24 to form an asynchronous pseudo-random signal.

信号受信機30は、鋼管10の発信地点12から発信電極22を通じて発信機20から発信された非同期擬似ランダム信号を受信するように受信電極31が鋼管10に接続された状態とされ、さらに受信電極31からの周波数1を受信する受信器35と受信電極31からの周波数2を受信する受信器36と、受信器35、36に接続される照合電極34
とを含んで構成されている。受信器35、36からの情報はコンピュータ50へと送信される。受信器35、36は別個でなく一個体としてであってもよい。
The signal receiver 30 is configured such that the reception electrode 31 is connected to the steel pipe 10 so as to receive an asynchronous pseudorandom signal transmitted from the transmitter 20 from the transmission point 12 of the steel pipe 10 through the transmission electrode 22, and further, the reception electrode A receiver 35 that receives frequency 1 from 31, a receiver 36 that receives frequency 2 from the receiving electrode 31, and a matching electrode 34 connected to the receivers 35, 36.
It is comprised including. Information from the receivers 35 and 36 is transmitted to the computer 50. The receivers 35 and 36 may not be separate but may be a single unit.

信号受信機40は、鋼管10の発信地点12から発信電極22を通じて発信機20から発信された非同期擬似ランダム信号を受信するように受信電極41が鋼管10に接続された状態とされ、さらに受信電極41からの周波数1を受信する受信器45と受信電極41からの周波数2を受信する受信器46と、受信器45、46に接続される照合電極44
とを含んで構成されている。受信器45、46からの情報はコンピュータ50へと送信される。受信器45、46は別個でなく一個体としてであってもよい。
The signal receiver 40 is configured such that the reception electrode 41 is connected to the steel pipe 10 so as to receive an asynchronous pseudorandom signal transmitted from the transmitter 20 from the transmission point 12 of the steel pipe 10 through the transmission electrode 22. Receiver 45 for receiving frequency 1 from receiver 41, receiver 46 for receiving frequency 2 from receiver electrode 41, and reference electrode 44 connected to receivers 45 and 46.
It is comprised including. Information from the receivers 45 and 46 is transmitted to the computer 50. The receivers 45 and 46 may not be separate but may be a single unit.

信号受信機30は発信地点12に、信号受信機40は発信地点12遠方となるように被覆鋼管10に受信電極31、41が接続されて配置されている。以下図1に示されるように、発信地点12であり、被覆鋼管10の受信電極31が設けられる方を通電側、受信電極41が設けられる方を遠方側とし間を中央側と区間を定義して呼ぶ。   The receiving electrodes 31 and 41 are connected to the coated steel pipe 10 so that the signal receiver 30 is at the transmitting point 12 and the signal receiver 40 is far from the transmitting point 12. As shown in FIG. 1, the transmission point 12 is defined as follows: the direction where the receiving electrode 31 of the coated steel pipe 10 is provided is the energizing side, the direction where the receiving electrode 41 is provided is the far side, and the interval is defined as the center side. Call it.

信号受信機として通電側の信号受信機30、遠方側の信号受信機40に加えて中央側に信号受信機を設けて信号を受信してもよい。信号受信機は単数であってもよく、複数あっても発信地点と対とならずに同じ位置側に配されていてもよい。   In addition to the energization side signal receiver 30 and the far side signal receiver 40 as the signal receiver, a signal receiver may be provided on the center side to receive signals. There may be a single signal receiver, or even a plurality of signal receivers may be arranged on the same position side without being paired with the transmission point.

周波数1は、傷の有無を確認するのに適した低周波とし、周波数2は傷の場所を特定するのに適した高周波とする。周波数1は40Hz以下が好ましく、周波数2は、100Hz以上1000Hz以下が好ましいがこれに限られず適宜選択して採用することができる。周波数はフェランチ効果(発信地点12から遠方側が通電側よりも電位が上昇する効果)を考慮することにより適宜適切な周波数を選択して用いればよい。フェランチ効果を利用し、周波数による接地抵抗の低下、管対地電位の低下を実路線試験を予め行い、これとコンピュータ50で比較することで損傷した場所を特定することができる。   Frequency 1 is a low frequency suitable for confirming the presence or absence of a flaw, and frequency 2 is a high frequency suitable for identifying the location of a flaw. The frequency 1 is preferably 40 Hz or less, and the frequency 2 is preferably 100 Hz or more and 1000 Hz or less, but is not limited to this, and can be appropriately selected and adopted. As for the frequency, an appropriate frequency may be appropriately selected and used in consideration of the ferrant effect (effect in which the potential farther from the transmission point 12 is higher than the energization side). Using the ferrant effect, an actual line test is performed in advance to reduce the ground resistance and the tube-to-ground potential due to the frequency, and by comparing this with the computer 50, the damaged place can be specified.

塗覆装損傷監視装置100により被覆鋼管10の塗覆装損傷監視を行うと、多数の装置は勿論のこと、多数の装置を設置するための用地が必要となることを防止できる。塗覆装損傷位置を監視するために区間毎に周波数を変えた少なくとも2つの電源と2つの計測点を設置することが必要ではなく、ロックインアンプでもないため、信号送信機と信号受信機とが離れていると長期間詳細な同期をとることが困難でなく位相調整装置も必要とならない。また、塗覆装損傷発生を区間検知するためには区間毎の管対地電位と管内電流を計測する測定器と管路に沿って電線と通信線を布設する必要もない。   If the coating damage monitoring of the coated steel pipe 10 is performed by the coating damage monitoring apparatus 100, it is possible to prevent the necessity of a site for installing a large number of apparatuses as well as a large number of apparatuses. It is not necessary to install at least two power sources and two measurement points with different frequencies for each section in order to monitor the coating damage position, and since it is not a lock-in amplifier, a signal transmitter and a signal receiver If the distance is long, it is difficult to achieve detailed synchronization for a long period of time, and a phase adjustment device is not required. In addition, in order to detect the occurrence of coating damage, it is not necessary to lay an electric wire and a communication line along a pipe and a measuring instrument for measuring the pipe-to-ground potential and pipe current for each section.

また、周波数による塗覆装損傷監視は管が長いと塗覆装損傷の有無、場所の確認が難しくなる場合があるが、傷の有無を確認するのに適した低周波とし、傷の場所を特定するのに適した高周波としているので管が長くても周波数による塗覆装損傷監視をより高精度に行うことができる。   In addition, when monitoring the coating damage by frequency, it may be difficult to confirm the presence or absence of the coating coating and the location if the pipe is long. Since the high frequency is suitable for identification, even if the pipe is long, it is possible to monitor the coating damage by the frequency with higher accuracy.

以上により周波数による塗覆装損傷監視は管が長くても塗覆装損傷の有無、場所の確認がよりしやすく、かつ、損傷区間を求めるための測定器数をより少数とし、あわせて装置を設置するための用地もより少なくて済む地中埋設管の塗覆装損傷監視方法を提供できる。   As described above, monitoring of coating damage by frequency makes it easier to confirm the presence or absence of coating damage and the location even if the pipe is long, and the number of measuring instruments to determine the damaged section is reduced, and the device is also installed. It is possible to provide a coating damage monitoring method for underground pipes that requires less land for installation.

上記塗覆装損傷監視装置100により被覆鋼管10の塗覆装損傷監視を行った結果を図2に示す。なお実施例ではさらに中央側にも鋼管10に接続された受信機を設け、第1の周波数、第2の周波数をコンピュータ50で検出している。   FIG. 2 shows the result of monitoring the coating damage of the coated steel pipe 10 by the coating damage monitoring apparatus 100. In the embodiment, a receiver connected to the steel pipe 10 is further provided on the center side, and the first frequency and the second frequency are detected by the computer 50.

なお、第1の周波数は20Hzであり、第2の周波数は200Hzである。   Note that the first frequency is 20 Hz, and the second frequency is 200 Hz.

通電側が損傷した場合には、周波数1の接地抵抗および周波数2の接地抵抗が共に低下したが、周波数2の管対地電位は殆ど変わらなかった。   When the energized side was damaged, both the ground resistance at frequency 1 and the ground resistance at frequency 2 were lowered, but the tube-to-ground potential at frequency 2 was hardly changed.

中央側が損傷した場合には、周波数1の接地抵抗および周波数2の管対地電位が共に低下したが、周波数2の接地抵抗は多少程度しか低下した。   When the center side was damaged, the ground resistance at frequency 1 and the tube-to-ground potential at frequency 2 both decreased, but the ground resistance at frequency 2 decreased only to a certain extent.

遠方側が損傷した場合には、周波数1の接地抵抗および周波数2の管対地電位が共に低下したが、周波数2の接地抵抗は上昇した。   When the far side was damaged, the ground resistance at frequency 1 and the tube-to-ground potential at frequency 2 both decreased, but the ground resistance at frequency 2 increased.

このように区間の通電側、中央側、遠方側で周波数1の接地抵抗、周波数2の接地抵抗、周波数2の管対地電位のそれぞれが特徴有る挙動として現れていることがわかった。したがって、このような周波数1の接地抵抗、周波数2の接地抵抗、周波数2の管対地電位の挙動の相違を用いて損傷の発生に加えて損傷箇所の特定を有効に行えることがわかった。したがって、この挙動を予めデータとして入手しておくことでこのデータが出たときに通電側、中央側、遠方側どの場所で損傷が発生しているかを知ることができる。   Thus, it has been found that the ground resistance at frequency 1, the ground resistance at frequency 2, and the tube-to-ground potential at frequency 2 appear as characteristic behaviors on the energizing side, the center side, and the far side of the section. Therefore, it was found that the use of the difference in the behavior of the frequency 1 ground resistance, the frequency 2 ground resistance, and the frequency 2 tube-to-ground potential enables effective identification of the damaged portion in addition to the occurrence of damage. Therefore, by acquiring this behavior as data in advance, it is possible to know where the damage has occurred at the energized side, the center side, or the far side when this data is output.

本実施形態に係る塗覆装損傷監視装置を示す模式図である。It is a schematic diagram which shows the coating damage monitoring apparatus which concerns on this embodiment. 本実施例に係る損傷発生と損傷場所の特定に係るデータ図である。It is a data figure which concerns on the generation | occurrence | production of damage based on a present Example, and specification of a damage location.

符号の説明Explanation of symbols

100…塗覆装損傷監視装置
10…被覆鋼管
20…信号発信機
30、40…信号受信機
50…コンピュータ
DESCRIPTION OF SYMBOLS 100 ... Coating damage monitoring apparatus 10 ... Coated steel pipe 20 ... Signal transmitter 30, 40 ... Signal receiver 50 ... Computer

Claims (6)

地中埋設管の塗覆装損傷監視装置であって、
埋設管の少なくとも一点の発信地点から複数の基本周波数をもつ非同期擬似ランダム信号を発信する信号発信機と、
前記発信地点で前記非同期擬似ランダム信号を受信する受信機と、
前記複数の基本周波数をもつ非同期擬似ランダム信号の相関ピーク値の変化による前記地中埋設管の接地抵抗と管対地電位の変化により、前記埋設管の塗覆装損傷発生区間と塗覆装損傷発生とを監視する監視機と、を含む地中埋設管の塗覆装損傷監視装置。
A coating damage monitoring device for underground pipes,
A signal transmitter for transmitting an asynchronous pseudorandom signal having a plurality of fundamental frequencies from at least one transmission point of the buried pipe;
A receiver for receiving the asynchronous pseudo-random signal at the transmission point;
Due to changes in ground resistance and pipe-to-ground potential of the underground pipe due to changes in correlation peak values of the asynchronous pseudo-random signals having the plurality of fundamental frequencies, the coating damage occurrence section and the coating damage occurrence of the buried pipe A monitoring device for monitoring the coating damage monitoring device for buried underground pipes.
請求項1に記載の地中埋設管の塗覆装損傷監視装置であって、
前記複数の基本周波数は、
塗覆装損傷が発生すると電流が増加する第1の周波数と、
前記第1の周波数とは異なり、塗覆装損傷が発生すると、その場所によって管対地電位が減少し、かつ、電流が増減する第2の周波数と、を含む地中埋設管の塗覆装損傷監視装置。
It is a coating damage monitoring device for underground buried pipes according to claim 1,
The plurality of fundamental frequencies are:
A first frequency at which the current increases when coating damage occurs;
Unlike the first frequency, when a coating damage occurs, the coating damage to the underground pipe including the second frequency at which the pipe-to-ground potential decreases and the current increases or decreases depending on the location. Monitoring device.
請求項1または2に記載の地中埋設管の塗覆装損傷監視装置であって、
さらに前記受信機に加え、前記発信地点から離れた第2の受信機とを含む塗覆装損傷監視装置。
A coating damage monitoring apparatus for underground pipes according to claim 1 or 2,
Furthermore, the coating damage monitoring apparatus containing the 2nd receiver away from the said transmission point in addition to the said receiver.
地中埋設管の塗覆装損傷監視方法であって、
埋設管の少なくとも一点の発信地点から複数の基本周波数をもつ非同期擬似ランダム信号を発信し、
前記発信地点で前記非同期擬似ランダム信号を受信し、
前記複数の基本周波数をもつ非同期擬似ランダム信号の相関ピーク値の変化による前記地中埋設管の接地抵抗と管対地電位の変化により、前記埋設管の塗覆装損傷発生区間と塗覆装損傷発生とを監視する地中埋設管の塗覆装損傷監視方法。
A coating damage monitoring method for underground pipes,
Asynchronous pseudorandom signals with multiple fundamental frequencies are transmitted from at least one transmission point of the buried pipe,
Receiving the asynchronous pseudo-random signal at the origination point;
Due to changes in ground resistance and pipe-to-ground potential of the underground pipe due to changes in correlation peak values of the asynchronous pseudo-random signals having the plurality of fundamental frequencies, the coating damage occurrence section and the coating damage occurrence of the buried pipe A method for monitoring the coating damage of underground pipes.
請求項4に記載の地中埋設管の塗覆装損傷監視方法であって、
前記複数の基本周波数は、
塗覆装損傷があると電流が増加する第1の周波数と、
前記第1の周波数とは異なり、塗覆装損傷が発生すると、その場所によって管対地電位が減少し、かつ、電流が増減する第2の周波数と、を含む地中埋設管の塗覆装損傷監視方法。
It is a coating damage monitoring method for underground buried pipes according to claim 4,
The plurality of fundamental frequencies are:
A first frequency at which the current increases when there is a coating damage;
Unlike the first frequency, when a coating damage occurs, the coating damage to the underground pipe including the second frequency at which the pipe-to-ground potential decreases and the current increases or decreases depending on the location. Monitoring method.
請求項4または5に記載の地中埋設管の塗覆装損傷監視方法であって、
さらに前記受信に加え前記第1の受信よりも前記発信地点から離れた第2の受信とを含む損傷監視方法。
It is a coating damage monitoring method for underground buried pipe according to claim 4 or 5,
Furthermore, in addition to the reception, the damage monitoring method includes a second reception farther away from the transmission point than the first reception.
JP2007312377A 2007-12-03 2007-12-03 Apparatus and method for monitoring coating damage on underground pipe Pending JP2009139095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312377A JP2009139095A (en) 2007-12-03 2007-12-03 Apparatus and method for monitoring coating damage on underground pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007312377A JP2009139095A (en) 2007-12-03 2007-12-03 Apparatus and method for monitoring coating damage on underground pipe

Publications (1)

Publication Number Publication Date
JP2009139095A true JP2009139095A (en) 2009-06-25

Family

ID=40869863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312377A Pending JP2009139095A (en) 2007-12-03 2007-12-03 Apparatus and method for monitoring coating damage on underground pipe

Country Status (1)

Country Link
JP (1) JP2009139095A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204523A (en) * 2008-02-28 2009-09-10 Jfe Engineering Corp Coating layer damage monitor device of underground embedded pipe and coating layer damage monitoring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145658A (en) * 1995-11-17 1997-06-06 Tokyo Gas Co Ltd Noise suppressing method in damage monitoring system in burried pipe
JPH10239267A (en) * 1997-02-26 1998-09-11 Nkk Corp Method and device for detecting damaged part of paint film of buried steel pipe
JPH1164266A (en) * 1997-08-25 1999-03-05 Tokyo Gas Co Ltd Apparatus for detecting position and level of damage of coated buried metallic conductor
JP2001004575A (en) * 1999-06-23 2001-01-12 Nkk Corp Detecting method for damage of paint film on buried painted and covered steel tube
JP2003232764A (en) * 2002-02-12 2003-08-22 Toho Gas Co Ltd Device and method for monitoring damage of pipe buried in ground

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145658A (en) * 1995-11-17 1997-06-06 Tokyo Gas Co Ltd Noise suppressing method in damage monitoring system in burried pipe
JPH10239267A (en) * 1997-02-26 1998-09-11 Nkk Corp Method and device for detecting damaged part of paint film of buried steel pipe
JPH1164266A (en) * 1997-08-25 1999-03-05 Tokyo Gas Co Ltd Apparatus for detecting position and level of damage of coated buried metallic conductor
JP2001004575A (en) * 1999-06-23 2001-01-12 Nkk Corp Detecting method for damage of paint film on buried painted and covered steel tube
JP2003232764A (en) * 2002-02-12 2003-08-22 Toho Gas Co Ltd Device and method for monitoring damage of pipe buried in ground

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204523A (en) * 2008-02-28 2009-09-10 Jfe Engineering Corp Coating layer damage monitor device of underground embedded pipe and coating layer damage monitoring method

Similar Documents

Publication Publication Date Title
CN101358827B (en) TEM detecting method for pipe wall thickness and intelligent detector for GBH pipe corrosion
US8228078B2 (en) Method and device for monitoring and detecting the coating defects of underground or underwater pipelines
CN103439747A (en) Ultra-deep pipeline vertical section detection method
US7095222B2 (en) Leak detection method and system in nonmetallic underground pipes
US20130292265A1 (en) Impressed current cathodic protection
JP2009139095A (en) Apparatus and method for monitoring coating damage on underground pipe
JP4044303B2 (en) Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals
JP4698318B2 (en) Anticorrosion state monitoring method and system
JP3670241B2 (en) Damage monitoring device and damage monitoring method for underground pipe
JP2009244123A (en) Method and apparatus for monitoring damage on coating of underground pipe
JPH0196584A (en) Method for surveying position of piping buried under ground
JP2009204523A (en) Coating layer damage monitor device of underground embedded pipe and coating layer damage monitoring method
JP4050433B2 (en) Damage determination apparatus and damage determination method for coated buried metal conductor
Cataldo et al. An electromagnetic-based method for pinpointing leaks in buried pipes: a practical validation
JP2008304457A (en) Apparatus for subsurface exploration
CN111220536A (en) Method, device and system for detecting corrosion probability of pipeline
JPH07128272A (en) Method for monitoring degree of damage of covered steel pipe, and device therefor
RU2582301C2 (en) Method to detect extended anode earthing device damage point
JP6437866B2 (en) Method for setting transmission signal for detection of buried metal and detection device using this setting method
JP3451348B2 (en) Method for detecting paint film damage on buried coated steel pipe
JP3932282B2 (en) Corrosion protection coating damage detection device for buried piping
JP4867932B2 (en) Embedded pipe damage monitoring method and buried pipe damage monitoring apparatus
JP2006275623A (en) Ground resistance measurement method
JPH09281069A (en) Method for monitoring damage degree of coated steel pipe and method for reducing erroneous judgment
CN114624547A (en) Cable fault point positioning method and system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306