JP2006275623A - Ground resistance measurement method - Google Patents

Ground resistance measurement method Download PDF

Info

Publication number
JP2006275623A
JP2006275623A JP2005092207A JP2005092207A JP2006275623A JP 2006275623 A JP2006275623 A JP 2006275623A JP 2005092207 A JP2005092207 A JP 2005092207A JP 2005092207 A JP2005092207 A JP 2005092207A JP 2006275623 A JP2006275623 A JP 2006275623A
Authority
JP
Japan
Prior art keywords
embedded object
buried
ground resistance
measuring
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005092207A
Other languages
Japanese (ja)
Inventor
Yasunari Furukawa
泰成 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2005092207A priority Critical patent/JP2006275623A/en
Publication of JP2006275623A publication Critical patent/JP2006275623A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ground resistance measurement method for making measurement rapid and easy even if a buried pipe is buried below a place, such as a basement, making ground resistance measurement difficult. <P>SOLUTION: This ground resistance measurement method is for measuring ground resistance of a first buried object 1 which is a measuring object between the buried object 1 partly coming out of a medium and a second buried object 2. This method includes: a process for deriving series resistance of the buried objects 1 and 2 through the medium 10; a process for providing a power source electrode 6 grounded through the medium 10 to place a potential difference across the source electrode 6 and a contact 7, with the contact 7 provided between the buried objects 1 and 2; a process for severally measuring a first electric current flowing through the buried object 1 and contact 7, and a second electric current flowing through the buried object 2 and contact 7; and a process for proportionally dividing the series resistance at a ratio between the first and second electric currents. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、媒質に埋設されている複数の埋設物のうち、測定対象である埋設物の接地抵抗を測定する方法に関する。より詳細には、本発明は、測定対象である埋設配管等の埋設物における腐食状態の診断に利用する接地抵抗を測定する方法に関する。   The present invention relates to a method for measuring the ground resistance of an embedded object to be measured among a plurality of embedded objects embedded in a medium. More specifically, the present invention relates to a method for measuring a ground resistance used for diagnosis of a corrosion state in an embedded object such as an embedded pipe to be measured.

地中には水やガスなどのユーティリティを、消費者が生活する建物内へ供給するための様々な種類の配管が埋設されている。このような配管は、道路の下などに埋設された本支管(外管)を介して各建物の敷地内へ内管として引き込まれ、建物内部へ至る。   Various types of pipes are buried in the ground to supply utilities such as water and gas into buildings where consumers live. Such piping is drawn into the site of each building as an inner pipe via a main branch pipe (outer pipe) buried under the road or the like, and reaches the inside of the building.

このような埋設配管において腐食が発生した場合、その腐食部分から水漏れやガス漏れといった問題が発生することがある。この問題を避けるため、配管の防食方法や、配管の腐食状態検査方法が種々提案されている。なお、配管が道路の下などの地中に埋設されている場合、建物の地下に埋設されている場合、建物内部のコンクリート中または建物の地下に埋設されている場合等には、配管を掘り出すこと無しに配管の腐食の有無を検査することが要求される。   When corrosion occurs in such a buried pipe, problems such as water leakage and gas leakage may occur from the corroded portion. In order to avoid this problem, various anticorrosion methods for pipes and corrosion state inspection methods for pipes have been proposed. In addition, when piping is buried underground such as under a road, underground in a building, concrete in a building or underground in a building, the piping is dug out. It is required to inspect pipes for corrosion without any problems.

従来の埋設配管の診断方法の一つとして、測定対象としての埋設配管の接地抵抗(インピーダンス)を測定することによって、その埋設配管の腐食状態を判定する方法があった(例えば、特許文献1を参照)。特許文献1の方法では、測定した接地抵抗の値が予め定めた閾値を下回った場合に、埋設配管に損傷(腐食)が発生しているとの判定を行っている。   As one of the conventional methods for diagnosing buried piping, there is a method for determining the corrosion state of the buried piping by measuring the ground resistance (impedance) of the buried piping as a measurement target (for example, Patent Document 1). reference). In the method of Patent Document 1, it is determined that damage (corrosion) has occurred in the buried piping when the measured value of the ground resistance falls below a predetermined threshold value.

特開2003−232764号公報(第1図)Japanese Patent Laying-Open No. 2003-232764 (FIG. 1)

ところが、特許文献1の方法では、測定対象である埋設配管の接地抵抗を測定するために、少なくとも二つの電極を設置する必要がある。このため、埋設配管の測定部位が、例えば、地下室のコンクリート壁の外側部や、アスファルト舗装されている路面の下や、硬い地盤の下にある場等では、電極の設置作業に手間が掛かり、作業者に大きな負担を強いることになる。   However, in the method of Patent Document 1, it is necessary to install at least two electrodes in order to measure the ground resistance of the buried piping that is the measurement target. For this reason, the measurement site of the buried piping, for example, on the outside of the concrete wall of the basement, under the asphalt-paved road surface, or under a hard ground, takes time to install the electrode, This places a heavy burden on the worker.

また、測定対象としての埋設配管は、電極の設置可能な場所から遠く離れている位置に存在することもある。このような場合においては、電極に接続するリード線を引き回すことが困難となる。   Moreover, the buried piping as a measurement target may exist at a position far from a place where the electrode can be installed. In such a case, it is difficult to route the lead wire connected to the electrode.

さらに、埋設配管と電極とが離れている場合では、測定の度に電極とリード線とをセッティングする作業は作業者にとって大変煩わしいものであり、作業効率が悪い。   Further, when the buried piping and the electrode are separated from each other, the work of setting the electrode and the lead wire every measurement is very troublesome for the operator and the work efficiency is poor.

本発明は上記の問題点に鑑みてなされたものであり、その目的は、測定対象物である埋設配管が、地下室の外側部等の通常接地抵抗の測定が困難な場所に埋設されている場合であっても、迅速かつ容易に接地抵抗の測定が可能である接地抵抗測定方法を提供することにある。   The present invention has been made in view of the above-described problems, and the purpose thereof is when the buried pipe as the measurement object is buried in a place where it is difficult to measure the normal grounding resistance, such as the outside of the basement. Even so, an object of the present invention is to provide a ground resistance measurement method capable of measuring the ground resistance quickly and easily.

本発明に係る接地抵抗測定方法の特徴構成は、媒質から一部が露出している第1埋設物および第2埋設物のうち、測定対象である第1埋設物の接地抵抗を測定する接地抵抗測定方法であって、前記第1埋設物および前記第2埋設物における前記媒質を介した直列抵抗を導出する工程と、前記媒質に接地された電源電極を設け、この電源電極と前記第1埋設物および前記第2埋設物の間に設けた接点との間に電位差を印加する工程と、前記第1埋設物と前記接点との間に流れる第1電流、および、前記第2埋設物と前記接点との間に流れる第2電流をそれぞれ計測する工程と、前記直列抵抗を、前記第1電流および前記第2電流の比率で按分する工程とを包含する点にある。   The characteristic configuration of the ground resistance measuring method according to the present invention is that a ground resistance for measuring the ground resistance of the first embedded object to be measured among the first embedded object and the second embedded object partially exposed from the medium. A measuring method, wherein a step of deriving a series resistance through the medium in the first embedded object and the second embedded object, and a power supply electrode grounded to the medium are provided, the power supply electrode and the first embedded object A step of applying a potential difference between an object and a contact provided between the second embedded object, a first current flowing between the first embedded object and the contact, and the second embedded object and the The method includes a step of measuring each second current flowing between the contacts and a step of dividing the series resistance by a ratio of the first current and the second current.

本構成の接地抵抗測定方法であれば、例えば、地下室等において媒質(例えば、コンクリート壁や土壌等)から露出している埋設物の一部を利用して、この埋設物の埋設部分における接地抵抗を測定することができる。従って、従来のように、接地抵抗を測定するために電極を媒質に設置するという必要がなくなり、迅速かつ容易な測定が可能となる。また、このことによって、作業者の負担が低減され、作業効率が向上する。   With the ground resistance measurement method of this configuration, for example, using a part of the buried object exposed from a medium (for example, a concrete wall or soil) in a basement or the like, the ground resistance in the buried part of the buried object is used. Can be measured. Therefore, it is not necessary to install an electrode on the medium in order to measure the ground resistance as in the prior art, and quick and easy measurement is possible. This also reduces the burden on the operator and improves the work efficiency.

本発明の接地抵抗測定方法では、前記直列抵抗を算出する工程は、前記第1埋設物と前記第2埋設物との間に電位差を印加する工程と、前記第1埋設物および前記第2埋設物に流れる全体電流を計測する工程とを包含し、前記電位差と前記全体電流とから、前記直列抵抗を導出することも可能である。   In the ground resistance measuring method of the present invention, the step of calculating the series resistance includes the step of applying a potential difference between the first embedded object and the second embedded object, and the first embedded object and the second embedded object. And measuring the total current flowing through the object, and the series resistance can be derived from the potential difference and the total current.

本構成の接地抵抗測定方法であれば、第1埋設物と第2埋設物との間に電位差を印加して、そのときに流れる電流を計測するという比較的簡単な作業で、直列抵抗を容易に測定することができる。   With the ground resistance measurement method of this configuration, series resistance can be easily achieved by applying a potential difference between the first embedded object and the second embedded object and measuring the current flowing at that time. Can be measured.

本発明の接地抵抗測定方法では、前記第1埋設物と前記第2埋設物とが露出部において導電体を介して電気的に接続されていてもよい。   In the ground resistance measurement method of the present invention, the first embedded object and the second embedded object may be electrically connected to each other through a conductor at the exposed portion.

本構成の接地抵抗測定方法であれば、測定対象である第1埋設物が非測定対象である第2埋設物と導電体を介して導通状態にある場合、これら埋設物の少なくとも一部が媒質から露出した状態であれば、前記と同様、接地抵抗を測定するための電極を媒質に設置する必要がなくなり、迅速かつ容易な測定が可能となる。よって、作業者の負担が低減され、作業効率が向上する。   In the ground resistance measurement method of this configuration, when the first embedded object to be measured is in conduction with the second embedded object to be measured and the conductor, at least a part of these embedded objects is a medium. If it is in an exposed state, it is not necessary to install an electrode for measuring the ground resistance on the medium, as described above, and quick and easy measurement is possible. Therefore, the burden on the worker is reduced and the work efficiency is improved.

本発明の接地抵抗測定方法では、前記電源電極を、既設の電力アース線とすることも可能である。   In the ground resistance measuring method of the present invention, the power supply electrode can be an existing power ground wire.

本構成の接地抵抗測定方法であれば、埋設物の接地抵抗を測定するための電源電極として既設の電力アース線を利用できるので、接地抵抗測定のためにわざわざ電源電極を設置する必要がなく、より一層の作業の効率化を図ることができる。また、電源電極の設置が不要な分、測定にかかるコストを低減することができる。   With the ground resistance measurement method of this configuration, since the existing power ground wire can be used as the power electrode for measuring the ground resistance of the buried object, there is no need to bother installing the power electrode for ground resistance measurement. Further work efficiency can be improved. In addition, the measurement cost can be reduced by the amount that the power supply electrode is not required.

<測定原理>
先ず初めに、本発明の接地抵抗測定方法の測定原理について、図1および図2を参照して説明する。図1は測定対象である第1埋設物1と非測定対象である第2埋設物2とが導通していない場合の測定モデル(以後、非導通埋設物測定モデルと称する)であり、図2は第1埋設物1と第2埋設物2とが導通している場合の測定モデル(以後、導通埋設物測定モデルと称する)である。なお、本実施形態において説明する第1埋設物1および第2埋設物2としては、例えば、樹脂等で被覆された金属製の埋設配管などが挙げられる。
<Measurement principle>
First, the measurement principle of the ground resistance measurement method of the present invention will be described with reference to FIGS. FIG. 1 shows a measurement model (hereinafter referred to as a non-conductive buried object measurement model) when the first embedded object 1 as a measurement object and the second embedded object 2 as a non-measurement object are not conductive. Is a measurement model when the first embedded object 1 and the second embedded object 2 are conductive (hereinafter referred to as a conductive embedded object measurement model). In addition, as the 1st buried object 1 and the 2nd buried object 2 demonstrated in this embodiment, the metal buried piping etc. which were coat | covered with resin etc. are mentioned, for example.

〔1〕非導通埋設物測定モデル
図1に示す非導通埋設物測定モデルでは、媒質10から一部が露出している複数の埋設物のうち、測定対象である第1埋設物1の接地抵抗を測定するケースについて説明する。図1(a)のように、第1埋設物1と第2埋設物2は、コンクリート等の媒質10から一部が露出した状態にある。このような第1埋設物1および第2埋設物2に対し、図1(b)のようにリード線3等を用いて電気的に接続した状態を形成する。この電気的接続状態で、第1埋設物1および第2埋設物2に電源装置4を接続して電位差(全体電圧Eと称する)を印加する。本発明では、電源装置4として交流電源を使用しているが、直流電源を使用することも可能である。
[1] Non-conductive buried object measurement model In the non-conductive buried object measurement model shown in FIG. 1, the ground resistance of the first embedded object 1 to be measured among a plurality of embedded objects partially exposed from the medium 10. A case of measuring the will be described. As shown in FIG. 1A, the first embedded object 1 and the second embedded object 2 are partially exposed from a medium 10 such as concrete. A state of being electrically connected to the first embedded object 1 and the second embedded object 2 using the lead wire 3 or the like as shown in FIG. 1B is formed. In this electrical connection state, the power supply device 4 is connected to the first embedded object 1 and the second embedded object 2 to apply a potential difference (referred to as an overall voltage E). In the present invention, an AC power supply is used as the power supply device 4, but a DC power supply can also be used.

次に、第1埋設物1および第2埋設物2の全体に流れる電流(全体電流Iと称する)を電流計5で計測する。そして、上記の全体電圧Eと全体電流Iとから、第1埋設物および第2埋設物における媒質を介した直列抵抗Rを算出する。すなわち、以下の式(1):
直列抵抗R = 全体電圧E / 全体電流I ・・・ (1)
として直列抵抗Rが求められる。
Next, an ammeter 5 measures a current (referred to as a total current I) flowing through the entire first embedded object 1 and the second embedded object 2. Then, the series resistance R through the medium in the first embedded object and the second embedded object is calculated from the overall voltage E and the overall current I. That is, the following formula (1):
Series resistance R = total voltage E / total current I (1)
As a result, a series resistance R is obtained.

次に、図1(c)のように、媒質10に電源電極6を設け、この電源電極6と第1埋設物1および第2埋設物2の間に設けた接点7との間に電源装置4´によって電位差を印加する。電源装置4´は、先に使用した電源装置4と同一のものを使用してもよいし、別個のものであってもよい。電位差を付与すると、第1埋設物1と接点7との間には第1電流Iが流れ、第2埋設物2と接点7との間には第2電流Iが流れるので、これらを電流計11および12でそれぞれ計測する。そして、前記直列抵抗Rを、第1電流Iおよび第2電流Cの比率で按分すると、第1埋設物1の接地抵抗Rは、以下の式(2):
= I / (I+I) × R ・・・ (2)
として求められる。
Next, as shown in FIG. 1C, a power supply electrode 6 is provided on the medium 10, and a power supply device is provided between the power supply electrode 6 and the contact 7 provided between the first embedded object 1 and the second embedded object 2. A potential difference is applied by 4 '. The power supply device 4 ′ may be the same as the previously used power supply device 4 or may be separate. When the potential difference is applied, the first current I 1 flows between the first embedded object 1 and the contact 7, and the second current I 2 flows between the second embedded object 2 and the contact 7. It measures with the ammeters 11 and 12, respectively. When the series resistance R is apportioned by the ratio of the first current I 1 and the second current C, the ground resistance R 1 of the first embedded object 1 is expressed by the following formula (2):
R 1 = I 2 / (I 1 + I 2 ) × R (2)
As required.

〔2〕導通埋設物測定モデル
図2に示す導通埋設物測定モデルを用いて、第1埋設物1の接地抵抗を測定するケースについて説明する。図2(a)のように、第1埋設物1と第2埋設物2は、コンクリート等の媒質10から一部が露出した状態にあり、さらに本モデルでは第1埋設物1および第2埋設物2は金属管等の導電体20を介して導通状態にされており、これによって電気的に接続した状態が形成されている。
[2] Conductive buried object measurement model A case where the ground resistance of the first buried object 1 is measured using the conductive buried object measurement model shown in FIG. 2 will be described. As shown in FIG. 2A, the first embedded object 1 and the second embedded object 2 are partially exposed from the medium 10 such as concrete, and in this model, the first embedded object 1 and the second embedded object 2 are also exposed. The object 2 is in a conductive state via a conductor 20 such as a metal tube, thereby forming an electrically connected state.

図2(b)のように、導電体20にクランプ接地抵抗計30を取り付ける。クランプ接地抵抗計30は、導通体20の周りに環状磁界を発生させる外磁コイルユニット31と、外磁コイルユニット31に設定電圧Esを印加する電源手段32と、環状磁界によって導通体20を流れる電流、すなわち第1埋設物1および第2埋設物2の全体に流れる全体電流Iを測定する電流測定手段33とを備えている。クランプ接地抵抗計30による測定結果から、第1埋設物および第2埋設物における媒質を介した直列抵抗Rを算出することができる。すなわち、以下の式(3):
直列抵抗R = 全体電圧E / 全体電流I ・・・ (3)
となる。ここで、全体電圧Eは、
E = a×Es + b ・・・ (4)
a:周囲温度によって定まる定数
b:周辺電磁波によるノイズによって定まる定数
で規定される。全体電圧Eは、例えば、設定電圧Esとの関係を示す相関マップ等を予め作成しておき、それから導くようにしてもよい。
A clamp ground resistance meter 30 is attached to the conductor 20 as shown in FIG. The clamp ground resistance meter 30 flows through the conductive body 20 by the annular magnetic field, an external magnetic coil unit 31 that generates an annular magnetic field around the conductive body 20, a power supply means 32 that applies a set voltage Es to the external magnetic coil unit 31. Current measuring means 33 for measuring the current, that is, the total current I flowing through the entire first embedded object 1 and the second embedded object 2 is provided. From the measurement result by the clamp ground resistance meter 30, the series resistance R through the medium in the first embedded object and the second embedded object can be calculated. That is, the following formula (3):
Series resistance R = total voltage E / total current I (3)
It becomes. Here, the total voltage E is
E = a × Es + b (4)
a: Constant determined by ambient temperature b: Defined by a constant determined by noise caused by ambient electromagnetic waves. For example, a correlation map indicating a relationship with the set voltage Es may be created in advance for the entire voltage E, and the whole voltage E may be derived therefrom.

次に、図2(c)において接地抵抗Rを求めるが、このステップについては、上記非導通埋設物測定モデルにおいて図1(c)を参照して説明したステップと同様に行うことができる。つまり、接点7の両側に流れる第1電流Iおよび第2電流Iを、それぞれクランプ電流計11´および12´で求め、これらの電流値と直列抵抗Rとから、第1埋設物1の接地抵抗Rを求めることができる。 Next, determine the ground resistance R 1 in FIG. 2 (c), the for this step can be performed in the same manner as the steps described with reference to FIG. 1 (c) in the non-conductive buried objects measurement model. That is, the first current I 1 and the second current I 2 flowing on both sides of the contact 7 are obtained by the clamp ammeters 11 ′ and 12 ′, respectively, and from these current values and the series resistance R, the first embedded object 1 it can be determined grounding resistance R 1.

上記〔1〕において説明した非導通埋設物測定モデルでは、直列抵抗Rを求めるにあたり、図1(b)に示したように、全体電圧Eを印加するための電源装置4と、第1埋設物1および第2埋設物2に流れる全体電流Iを計測するための電流計5とを用いていたが、〔2〕において説明した導通埋設物測定モデルと同様に、クランプ接地抵抗計30によって求めることも可能である。すなわち、第1埋設物1と第2埋設物2とをリード線などで電気的に接続した後、リード線にクランプ接地抵抗計30を取り付け、上述の手順と同様にして接地抵抗Rを求めるようにしてもよい。 In the non-conductive buried measurement model described in [1] above, when obtaining the series resistance R, as shown in FIG. 1B, the power supply device 4 for applying the entire voltage E and the first buried object The ammeter 5 for measuring the total current I flowing through the first and second buried objects 2 is used, but it is obtained by the clamp ground resistance meter 30 as in the conductive buried object measuring model described in [2]. Is also possible. That is, after the first embedded object 1 and the second embedded object 2 are electrically connected with a lead wire or the like, the clamp ground resistance meter 30 is attached to the lead wire, and the ground resistance R 1 is obtained in the same manner as described above. You may do it.

<実施例>
本発明の接地抵抗測定方法の実施例について、図3を参照して説明する。図3は、地下室60内に一部が露出された状態で埋設されているユーティリティ管50を概略的に示している。このユーティリティ管50は、主管51と、複数の支管52(例えば、支管52a、52b、52c)とから構成され、主管51と支管52とは絶縁継手53で接続されている。主管51の上流および支管52の下流は、地下室60の壁部61を貫通して土壌中に埋設された状態となっている。さらに支管52の下流は、土壌中において建物の鉄筋70と接触し、導通状態を形成している。このような状況において、主管51の接地抵抗Rの測定は、以下のような手順で行う
<Example>
An embodiment of the ground resistance measuring method of the present invention will be described with reference to FIG. FIG. 3 schematically shows the utility pipe 50 embedded in the basement 60 with a part thereof exposed. The utility pipe 50 includes a main pipe 51 and a plurality of branch pipes 52 (for example, branch pipes 52 a, 52 b, 52 c). The main pipe 51 and the branch pipe 52 are connected by an insulating joint 53. The upstream side of the main pipe 51 and the downstream side of the branch pipe 52 are in a state where they pass through the wall portion 61 of the basement 60 and are buried in the soil. Furthermore, the downstream of the branch pipe 52 is in contact with the building rebar 70 in the soil to form a conductive state. In this context, measurement of the ground resistance R 1 of the main pipe 51 is performed by the following procedure

先ず、図3(a)に示すように、主管51と支管52(例えば、支管52a)とをリード線3で接続し、このリード線3にクランプ接地抵抗計30の外磁コイルユニット31および電流測定手段33を取り付ける。そして、上述した測定原理に従って、全体電圧Eおよび全体電流Iをから主管51と支管52との直列抵抗Rを求める。本実施例では、クランプ接地抵抗計30に内蔵される電源手段32(1kHzの交流電源)によって外磁コイルユニット31を電磁誘導し、リード線3に流れる電流から接地抵抗を求めた。その結果、接地抵抗値は2980Ωであった。   First, as shown in FIG. 3A, the main pipe 51 and the branch pipe 52 (for example, the branch pipe 52a) are connected by the lead wire 3, and the external magnetic coil unit 31 and the current of the clamp ground resistance meter 30 are connected to the lead wire 3. A measuring means 33 is attached. Then, in accordance with the measurement principle described above, the series resistance R between the main pipe 51 and the branch pipe 52 is obtained from the total voltage E and the total current I. In this example, the external magnetic coil unit 31 was electromagnetically induced by the power source means 32 (1 kHz AC power source) built in the clamp ground resistance meter 30, and the ground resistance was obtained from the current flowing in the lead wire 3. As a result, the ground resistance value was 2980Ω.

次に、クランプ接地抵抗計30を取り外し、図3(b)のように、リード線3に設けた接点7と電源電極として利用可能な電力アース線6とを別のリード線3´で接続し、ここに電源装置4´(例えば、500Hzの交流電圧)を設けて電位差(例えば、29V)を印加する。このとき、主管51と接点7との間に流れる第1電流Iと、支管52と接点7との間に流れる第21電流Iとを、クランプ電流計11および12でそれぞれ計測した。その結果、I=0.1mA、I=11.5mAであった。 Next, the clamp ground resistance meter 30 is removed, and as shown in FIG. 3B, the contact 7 provided on the lead wire 3 and the power ground wire 6 that can be used as the power supply electrode are connected by another lead wire 3 ′. Here, a power supply device 4 ′ (for example, an AC voltage of 500 Hz) is provided to apply a potential difference (for example, 29 V). At this time, the first current I 1 flowing between the main pipe 51 and the contact 7 and the 21st current I 2 flowing between the branch pipe 52 and the contact 7 were measured by the clamp ammeters 11 and 12, respectively. As a result, I 1 = 0.1 mA and I 2 = 11.5 mA.

従って、上記の式(2)を適用すると、主管51の接地抵抗Rは、
接地抵抗R= 2980Ω × 11.5mA/(0.1mA+11.5mA)
= 2954Ω
として求められる。このように、本実施例では、主管51の接地抵抗Rが大きな値となった。この結果から、主管51は被覆管であると判定することができる。
Therefore, when the above equation (2) is applied, the ground resistance R 1 of the main pipe 51 is
Ground resistance R 1 = 2980Ω × 11.5 mA / (0.1 mA + 11.5 mA)
= 2954Ω
As required. Thus, in this embodiment, grounding resistance R 1 of the main pipe 51 becomes a large value. From this result, it can be determined that the main pipe 51 is a cladding pipe.

このように、本発明の接地抵抗測定方法では、地下室における媒質(例えば、コンクリート壁や土壌)から露出しているユーティリティ管50の一部を利用して、このユーティリティ管50の埋設部分における接地抵抗を容易に測定することができる。従って、従来のように、接地抵抗を測定するために電極を媒質に設置するという必要がなくなり、迅速かつ容易な測定が可能となる。また、このことによって、作業者の負担が低減され、作業効率が向上する。なお、上記接地抵抗を求めるためにはユーティリティ管50の直列抵抗を求めておく必要があるが、本発明の接地抵抗測定方法であれば、ユーティリティ管50に電位差を印加して、そのときに流れる電流を計測するという比較的簡単な作業で、直列抵抗を容易に測定することができる。   Thus, in the grounding resistance measuring method of the present invention, the grounding resistance in the buried portion of the utility pipe 50 is utilized by using a part of the utility pipe 50 exposed from the medium (for example, concrete wall or soil) in the basement. Can be easily measured. Therefore, it is not necessary to install an electrode on the medium in order to measure the ground resistance as in the prior art, and quick and easy measurement is possible. This also reduces the burden on the operator and improves the work efficiency. In order to obtain the ground resistance, it is necessary to obtain the series resistance of the utility tube 50. However, in the ground resistance measurement method of the present invention, a potential difference is applied to the utility tube 50 and the current flows at that time. The series resistance can be easily measured by a relatively simple operation of measuring the current.

また、本発明では、主管51と支管52とから構成されるユーティリティ管50において、その一部が媒質から露出していれば、両者が導通しているか否かを問わずに接地抵抗の測定が可能である。   In the present invention, if a part of the utility pipe 50 composed of the main pipe 51 and the branch pipe 52 is exposed from the medium, the ground resistance can be measured regardless of whether or not both are conductive. Is possible.

さらに、上記実施例のように、ユーティリティ管50の接地抵抗を測定するための電源電極として既設の電力アース線6を利用すれば、接地抵抗測定のためにわざわざ電源電極を設置する必要がなくなり、より一層の作業の効率化を図ることができる。さらに、電源電極の設置が不要な分、測定にかかるコストを低減することもできるという点においても有効である。   Furthermore, if the existing power ground wire 6 is used as a power supply electrode for measuring the ground resistance of the utility tube 50 as in the above embodiment, it is not necessary to install a power supply electrode for ground resistance measurement. Further work efficiency can be improved. Furthermore, it is also effective in that the cost for measurement can be reduced because the installation of the power supply electrode is unnecessary.

本発明の接地抵抗測定方法は、種々のユーティリティ管における接地抵抗の測定に利用可能である。例えば、地中に埋設されているガス管、上下水道管、各種ケーブル管等、あるいは、建物の壁部に隠蔽されている各種配管についての接地抵抗の測定に用いることができる。   The ground resistance measuring method of the present invention can be used for measuring ground resistance in various utility tubes. For example, it can be used to measure the ground resistance of gas pipes buried in the ground, water and sewage pipes, various cable pipes, etc., or various pipes concealed on the wall of a building.

第1埋設物と第2埋設物とが導通していない場合の非導通埋設物測定モデルを示す図The figure which shows the non-conductive buried object measurement model in case the 1st buried object and the 2nd buried object are not connected. 第1埋設物と第2埋設物とが導通している場合の導通埋設物測定モデルを示す図The figure which shows the conduction | electrical_connection buried object measurement model in case the 1st buried object and the 2nd buried object are conducting. 地下室内に一部が露出された状態で埋設されているユーティリティ管の概略図Schematic of a utility pipe that is buried with a part exposed in the basement

符号の説明Explanation of symbols

1 第1埋設物
2 第2埋設物
6 電源電極(電力アース線)
7 接点
10 媒質
20 導電体
1 First buried object 2 Second buried object 6 Power supply electrode (electric power ground wire)
7 Contact 10 Medium 20 Conductor

Claims (4)

媒質から一部が露出している第1埋設物および第2埋設物のうち、測定対象である第1埋設物の接地抵抗を測定する接地抵抗測定方法であって、
前記第1埋設物および前記第2埋設物における前記媒質を介した直列抵抗を導出する工程と、
前記媒質に接地された電源電極を設け、この電源電極と前記第1埋設物および前記第2埋設物の間に設けた接点との間に電位差を印加する工程と、
前記第1埋設物と前記接点との間に流れる第1電流、および、前記第2埋設物と前記接点との間に流れる第2電流をそれぞれ計測する工程と、
前記直列抵抗を、前記第1電流および前記第2電流の比率で按分する工程とを包含する接地抵抗測定方法。
A ground resistance measurement method for measuring a ground resistance of a first embedded object to be measured among a first embedded object and a second embedded object partially exposed from a medium,
Deriving a series resistance through the medium in the first embedded object and the second embedded object;
Providing a grounded power supply electrode to the medium, and applying a potential difference between the power supply electrode and a contact provided between the first embedded object and the second embedded object;
Measuring a first current flowing between the first embedded object and the contact and a second current flowing between the second embedded object and the contact;
And a step of dividing the series resistance by a ratio of the first current and the second current.
前記直列抵抗を算出する工程は、前記第1埋設物と前記第2埋設物との間に電位差を印加する工程と、前記第1埋設物および前記第2埋設物に流れる全体電流を計測する工程とを包含し、前記電位差と前記全体電流とから、前記直列抵抗を導出する請求項1に記載の接地抵抗測定方法。   The step of calculating the series resistance includes a step of applying a potential difference between the first embedded object and the second embedded object, and a step of measuring an entire current flowing through the first embedded object and the second embedded object. The ground resistance measurement method according to claim 1, wherein the series resistance is derived from the potential difference and the total current. 前記第1埋設物と前記第2埋設物とが露出部において導電体を介して電気的に接続されている請求項1または2に記載の接地抵抗測定方法。   The ground resistance measuring method according to claim 1 or 2, wherein the first embedded object and the second embedded object are electrically connected to each other through a conductor at an exposed portion. 前記電源電極は、既設の電力アース線である請求項1から3のいずれか一項に記載の接地抵抗測定方法。   The grounding resistance measuring method according to any one of claims 1 to 3, wherein the power supply electrode is an existing power ground wire.
JP2005092207A 2005-03-28 2005-03-28 Ground resistance measurement method Pending JP2006275623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092207A JP2006275623A (en) 2005-03-28 2005-03-28 Ground resistance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092207A JP2006275623A (en) 2005-03-28 2005-03-28 Ground resistance measurement method

Publications (1)

Publication Number Publication Date
JP2006275623A true JP2006275623A (en) 2006-10-12

Family

ID=37210556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092207A Pending JP2006275623A (en) 2005-03-28 2005-03-28 Ground resistance measurement method

Country Status (1)

Country Link
JP (1) JP2006275623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123059A (en) * 2009-11-24 2011-06-23 Fluke Corp Grounding tester using remote control
CN104181399A (en) * 2014-09-17 2014-12-03 重庆市防雷中心 Ground resistance testing device and method for structures or buildings in water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123059A (en) * 2009-11-24 2011-06-23 Fluke Corp Grounding tester using remote control
CN104181399A (en) * 2014-09-17 2014-12-03 重庆市防雷中心 Ground resistance testing device and method for structures or buildings in water
CN104181399B (en) * 2014-09-17 2016-10-05 重庆市防雷中心 Structures or building earth resistance device and method in water

Similar Documents

Publication Publication Date Title
CN106987845B (en) Method for measuring regional cathodic protection current demand
CN105695997A (en) Safety protection method for underground metal pipeline
JP4857136B2 (en) Abnormally low ground contact point detection method and detection system for buried metal pipeline
CN109813764A (en) Method and device for evaluating insulating property of anticorrosive coating of pipeline at crossing section
JP4632434B2 (en) Piping diagnostic device
JP2004198410A (en) Method for inspecting defect in coated pipe, and method for diagnosing corrosion
JP2006275623A (en) Ground resistance measurement method
JP4599203B2 (en) Embedded pipe corrosion diagnosis system and buried pipe corrosion diagnosis method
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JP2010053423A (en) Cathodic corrosion prevention method for pipeline
JPH09236507A (en) Method for detecting water leakage portion of pipe embedded in the ground, cable for detecting water leakage portion, and pipe embedded in the ground
CN111519192B (en) Method for measuring open type cathodic protection current magnitude and potential distribution
JP5086287B2 (en) Soundness measurement evaluation method of plastic coating in buried metal pipeline
JP2013096958A (en) Method and apparatus for estimating potential of coating defect part of underground pipe, and method and apparatus for electric protection management
JP4614804B2 (en) Corrosion location estimation method
JP2005274508A (en) External magnetic coil unit and pipe corrosion state diagnostic method using it
JP4522289B2 (en) Corrosion estimation method
JP2005315864A (en) Impedance measuring method and diagnostic method for piping corroded condition
RU2315329C1 (en) Method of detecting damage of insulation of underground pipeline
JPH11351869A (en) Coupling-position detecting apparatus
JP2848850B2 (en) Corrosion protection system for steel pipes for gas transport
JP2015121467A (en) Inspection method of installed pipe
JP2003232764A (en) Device and method for monitoring damage of pipe buried in ground
JP6291295B2 (en) Inspection method of laying pipe
CN111220536A (en) Method, device and system for detecting corrosion probability of pipeline