JP3932282B2 - Corrosion protection coating damage detection device for buried piping - Google Patents

Corrosion protection coating damage detection device for buried piping Download PDF

Info

Publication number
JP3932282B2
JP3932282B2 JP2003003866A JP2003003866A JP3932282B2 JP 3932282 B2 JP3932282 B2 JP 3932282B2 JP 2003003866 A JP2003003866 A JP 2003003866A JP 2003003866 A JP2003003866 A JP 2003003866A JP 3932282 B2 JP3932282 B2 JP 3932282B2
Authority
JP
Japan
Prior art keywords
signal
detecting
potential difference
pipe
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003003866A
Other languages
Japanese (ja)
Other versions
JP2004219124A (en
Inventor
弘次 藤原
Original Assignee
住友金属パイプエンジ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属パイプエンジ株式会社 filed Critical 住友金属パイプエンジ株式会社
Priority to JP2003003866A priority Critical patent/JP3932282B2/en
Publication of JP2004219124A publication Critical patent/JP2004219124A/en
Application granted granted Critical
Publication of JP3932282B2 publication Critical patent/JP3932282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【0001】
本発明は、地中に埋設された外面に防食被覆(塗装膜等)が施された金属製の配管における防食被覆の損傷を地表面から非開削で検知する埋設配管の防食被覆損傷検知装置に関する。
【0002】
【従来の技術】
一般に、ガス管など、地中に埋設される金属製の配管には、腐食を防止するべく、塗装膜等の防食被覆が施されているが、経年変化や工事ミスなどによって、防食被覆に損傷が生じる場合がある。特に、金属面にまで達するような防食被覆の損傷を放置すれば、当該金属面が土壌等の電解質に接触することによって腐食が進行し、ガス漏れ等の事故に通じるおそれがある一方、配管が設置された全ての地盤を掘削して損傷の有無を検査することは、極めて効率が悪いという問題がある。そこで、斯かる防食被覆の損傷を地表面から非開削で検知する手法が種々提案されている。
【0003】
例えば、前記手法として、固定した発信器から配管に交流電流を通電し、防食被覆の損傷部位から漏れる電流によって生じる地表面の電位差を、地表面を移動する受信装置に装着した車輪電極によって検出することにより、防食被覆の損傷位置を検知する技術が知られている(例えば、特許文献1参照)。
【0004】
ここで、地表面で検出し得る電位差は極めて微小であるため、ノイズを抑制して電位差を精度良く検出するには、埋設した配管に通電する交流電流信号を参照信号として、検出した電位差信号を同期検波(ロックイン)することが有効である。しかしながら、配管に通電する交流電流信号を、同期検波の参照信号として使用するべく、有線や無線で受信装置に伝送することは、装置の設置環境が制約される等の観点から、実際上は適用が困難であるという問題がある。
【0005】
そこで、前記特許文献1には、前記参照信号を得る方法として、前記交流電流信号と同一周波数の参照信号発信器を受信装置に搭載することが開示されている。
【0006】
しかしながら、前記特許文献1に開示された技術では、交流電流を通電するための発信器と、参照信号を得るための参照信号発信器とが独立別個の構成であるため、完全に同一周波数の参照信号を得ることは実際上困難であり、一般的には周波数のズレによって、検出した電位差信号の位相が時間と共にドリフトし、防食被覆の検知精度が低下するという問題がある。
【0007】
【特許文献1】
特公平7−52166号公報
【0008】
本発明は、斯かる従来技術の問題点を解決するべくなされたものであり設置環境等の制約を受けずに精度良く防食被覆の損傷を検知する埋設配管の防食被覆損傷検知装置を提供することを課題とする。
【0009】
前記課題を解決するべく、本発明の発明者らは、鋭意検討した結果、地表面の電位差を検出するべく配管に交流電流を通電することで自ずと生じる当該配管の周囲の交流磁界を利用することに想到し、本発明を完成させた。すなわち、本発明は、請求項1に記載の如く、地盤に埋設した対電極を具備し、地中に埋設され外面に防食被覆が施された金属製の配管と前記対電極との間に交流電流を通電する発信装置と、前記配管の直上における地表面を移動可能な車輪電極を具備し、当該車輪電極によって地表面の電位差を検出して、当該検出した電位差信号を同期検波する受信装置とを備えた防食被覆の損傷を検知する装置であって、前記受信装置は、前記交流電流を配管に通電することによって生じる磁場を検出するためのコイルを具備し、当該コイルによって検出した磁場信号を前記同期検波における参照信号として用いることを特徴とする埋設配管の防食被覆損傷検知装置を提供するものである。
【0010】
本発明に係る埋設配管の防食被覆損傷検知装置によれば、交流電流を配管に通電することによって生じる磁場を検出し、当該検出した磁場信号を同期検波における参照信号として用いるので、交流電流信号の周波数と、参照信号の周波数とを完全に同一にすることができる。従って、検出した電位差信号を前記参照信号で同期検波することにより、参照信号の位相ドリフトを生じることなく、精度良く防食被覆の損傷を検知することが可能である。また、本発明に係る埋設配管の防食被覆損傷検知装置によれば、磁場信号を検出するコイルが同期検波を行う受信装置に具備されている。そのため、本発明に係る埋設配管の防食被覆損傷検知装置は、配管に通電する交流電流信号を同期検波のために有線や無線で発信装置から受信装置に伝送する必要がないため設置環境等の制約を受けることはないという利点を有する。
【0012】
【発明の実施の形態】
以下、添付図面を参照しつつ、本発明の一実施形態について説明する。
【0013】
図1は、本発明の一実施形態に係る防食被覆損傷検知装置を示す概略構成図である。図1に示すように、防食被覆損傷検知装置(以下、検知装置という)100は、発信装置23と、受信装置13とを備え、地中に埋設され外面に防食被覆(塗装膜)20が施された鋼管19における塗膜損傷部21を検知するものである。
【0014】
発信装置23は、地盤22に埋設した対電極18を具備し、鋼管19と対電極18との間に交流電流を通電するように構成されている。より具体的には、発信装置23は、電力増幅器17を具備し、当該電力増幅器17に対電極18及び鋼管19が接続されることにより(電力増幅器17と鋼管19とは結線15を介して接続される)、前記交流電流が通電することになる。ここで、本実施形態に係る発信装置23は、発信器14を具備し、当該発振器14は、後述するように、磁場をコイルで感度良く検出するのに適した200Hz〜1kHz程度(本実施形態では約443Hz)の周波数を有する信号を出力し、電力増幅器17に送信するように構成されている。これにより、電力増幅器17は、前記周波数の交流電流を鋼管19に通電することになる。なお、前記周波数範囲(200Hz〜1kHz)より低い周波数であると、後述するコイル2による磁場の検出感度が低くなる一方、逆に高い周波数であると鋼管19での減衰が大きくなるため、前記範囲内の周波数に設定するのが好ましい。
【0015】
一方、受信装置13は、鋼管19の直上における地表面に、当該鋼管19の長手方向に沿って間隔を隔てて配置された導電性ゴムからなる2つの車輪電極1を具備し、これにより地表面を移動可能とされている。受信装置13は、車輪電極1によって地表面の電位差を検出し、当該検出した電位差信号を同期検波することにより塗膜損傷部21を検知する。また、受信装置13は、前述したように、交流電流を鋼管19に通電することによって生じる磁場を有効に検出する方向に配置(鋼管19の周方向に沿って形成される磁束が略直交に貫通するような向きに配置)されたコイル(ループコイル)2を具備し、当該コイル2によって検出した磁場信号を前記同期検波における参照信号として用いるように構成されている。
【0016】
本実施形態に係る受信装置13は、検出した地表面の電位差信号を同期検波して塗膜損傷部21を検知するべく、前述した車輪電極1及びコイル2の他、バンドパスフィルタ3、第1交流増幅器4、第2交流増幅器24、第1同期検波器5、第2同期検波器6、第1ローパスフィルタ7、第2ローパスフィルタ8、第1直流増幅器9、第2直流増幅器10、演算回路11及び表示器12を備えている。
【0017】
次に、以上に説明した構成を有する検知装置100によって、塗膜損傷部21を検知する方法について説明する。まず最初に、鋼管19の直上の地表面に対して、当該地表面と車輪電極1との接触抵抗を小さくするべく、予め当該鋼管19に沿って散水した後、発信装置23によって、鋼管19と対電極18との間に前述した周波数の交流電流を通電すると共に、車輪電極1を鋼管19に沿って移動させ、地表面の2点間(各車輪電極1の間)の電位差を検出する。検出された電位差信号は、受信器13のバンドバスフィルタ3に入力され、当該バンドパスフィルタ3によって、高周波及び低周波の雑音が除去される。つまり、前記周波数成分を除く雑音成分が除去される。バンドパスフィルタ3の出力は、第1交流増幅器4で増幅された後、第1同期検波器5及び第2同期検波器6に入力され、後述する参照信号の位相に同期した成分が抽出される。ここで、第1同期検波器5及び第2同期検波器6は、それぞれ2信号の掛算器であるため、第1同期検波器5及び第2同期検波器6の出力信号には、参照信号の周波数成分が含まれることになる。そこで、第1ローパスフィルタ7及び第2ローパスフィルタ8によって、それぞれ第1同期検波器5及び第2同期検波器6の出力信号中の参照信号の周波数成分を除去し、準直流成分に変換する。準直流成分に変換された第1ローパスフィルタ7及び第2ローパスフィルタ8の出力信号は、それぞれ第1直流増幅器9及び第2直流増幅器10に入力されて増幅された後、演算回路11によって演算処理(例えば、絶対値化処理等)を施され、表示器12に入力される。
【0018】
一方、コイル2によって検出された磁場信号は、第2交流増幅器24で増幅された後、参照信号生成器25に入力され、当該参照信号生成器25によって、0度及び90度の位相を有する参照信号が作成される。作成された参照信号は、第1同期検波器5及び第2同期検波器6にそれぞれ入力され、同期検波に供される。このように、コイル2によって検出された磁場信号は、同期検波における参照信号とされるため、参照信号の周波数と、前記交流電流の周波数とを完全に同一にすることが可能である。
【0019】
図2は、表示器12において表示される信号波形例を示す。ここで、図2(a)は振幅A(演算回路11によって絶対値化処理を施された後の電位差信号)の波形を、(b)はAcosφの波形を、(c)はAsinφの波形を、(d)は位相φの波形を、それぞれ示す。なお、図2(b)及び(c)は、それぞれ第1ローパスフィルタ7及び第2ローパスフィルタ8の出力信号波形を直接観測した場合と同等の波形である。また、図2の横軸は、塗膜損傷部21からの距離(縦軸との交点が塗膜損傷部21の直上に相当する)を、図2(a)〜(c)の縦軸は電位差を、図2(d)の縦軸は位相の大きさを、それぞれ示す。
【0020】
表示器12においては、図2(a)〜(d)に示す波形が表示されるが、図2(a)においては、電位差の極小位置が塗膜損傷部21の位置を、図2(c)及び(d)においては、電位差の正負の反転位置が塗膜損傷部21の位置を、図2(d)においては、位相の反転位置が塗膜損傷部21の位置を、それぞれ示すものであるため、各波形から塗膜損傷部21の位置を容易に検知することができる(波形を目視することによって検知することの他、極小位置や反転位置を検出する手段を別途設けることにより自動的に検知することも可能である)。
【0021】
以上に説明したように、本発明に係る埋設配管の防食被覆損傷検知装置によれば、交流電流を配管に通電することによって生じる磁場を検出し、当該検出した磁場信号を同期検波における参照信号として用いるので、交流電流信号の周波数と、参照信号の周波数とを完全に同一にすることができる。従って、検出した電位差信号を前記参照信号で同期検波することにより。電位差信号の位相ドリフトを生じることなく、精度良く防食被覆の損傷を検知することが可能である。また、本発明に係る埋設配管の防食被覆損傷検知装置によれば、磁場信号を検出するコイルが同期検波を行う受信装置に具備されている。そのため、本発明に係る埋設配管の防食被覆損傷検知装置は、配管に通電する交流電流信号を同期検波のために有線や無線で発信装置から受信装置に伝送する必要がないため設置環境等の制約を受けることはないという利点を有する。
【図面の簡単な説明】
【図1】 図1は、本発明の一実施形態に係る防食被覆損傷検知装置を示す概略構成図である。
【図2】 図2は、図1に示す表示器において表示される信号波形例を示す。
【符号の説明】
1…車輪電極 2…コイル 13…受信器 14…基準発信器
15…分周器 16…混合器 18…対電極 19…鋼管(配管)
20…塗装膜(防食被覆) 21…塗膜損傷部 23…発信器
100…防食被覆損傷検知装置
[0001]
The present invention relates to an anticorrosion coating damage detection device for buried piping that detects damage of the anticorrosion coating in a metal pipe having an anticorrosion coating (painted film or the like) embedded in the ground from the ground surface by non-cutting. .
[0002]
[Prior art]
In general, metal pipes buried in the ground, such as gas pipes, are provided with anti-corrosion coatings such as paint films to prevent corrosion, but the anti-corrosion coatings are damaged due to secular changes and construction errors. May occur. In particular, if the corrosion protection coating that reaches the metal surface is left untouched, the metal surface may come into contact with electrolytes such as soil, which may lead to corrosion and lead to accidents such as gas leakage. There is a problem that it is extremely inefficient to excavate all installed ground and inspect for damage. Therefore, various methods for detecting such damage of the anticorrosion coating from the ground surface by non-cutting have been proposed.
[0003]
For example, as the method, an alternating current is supplied to a pipe from a fixed transmitter, and a potential difference on the ground surface caused by a current leaking from a damaged portion of the anticorrosion coating is detected by a wheel electrode attached to a receiver that moves on the ground surface. Thus, a technique for detecting the damage position of the anticorrosion coating is known (for example, see Patent Document 1).
[0004]
Here, since the potential difference that can be detected on the ground surface is extremely small, in order to suppress the noise and detect the potential difference with high accuracy, the detected potential difference signal is obtained using the alternating current signal that is energized in the embedded pipe as a reference signal. Synchronous detection (lock-in) is effective. However, it is practically applicable to transmit the AC current signal to the pipe to the receiving device by wire or wirelessly so that it can be used as a reference signal for synchronous detection from the viewpoint that the installation environment of the device is restricted. There is a problem that is difficult.
[0005]
Therefore, Patent Document 1 discloses that a reference signal transmitter having the same frequency as that of the alternating current signal is mounted on a receiving device as a method for obtaining the reference signal.
[0006]
However, in the technique disclosed in Patent Document 1, the transmitter for energizing the alternating current and the reference signal transmitter for obtaining the reference signal have independent and separate configurations. In practice, it is difficult to obtain a signal, and generally, there is a problem that the phase of the detected potential difference signal drifts with time due to a frequency shift, and the detection accuracy of the anticorrosion coating decreases.
[0007]
[Patent Document 1]
Japanese Examined Patent Publication No. 7-52166 [0008]
The present invention has been made to solve the problems of such prior art and provides an anticorrosive coating damage detection device buried pipe for detecting damage to accurately anticorrosion coating without restrictions such as installation environment This is the issue.
[0009]
In order to solve the above-mentioned problems, the inventors of the present invention have made extensive studies, and as a result, use an alternating magnetic field around the pipe that is naturally generated by supplying an alternating current to the pipe in order to detect a potential difference on the ground surface. The present invention has been completed. That is, according to the present invention, the counter electrode is provided between the counter electrode and the metal pipe having the counter electrode embedded in the ground and having the anticorrosion coating on the outer surface. A transmitting device for energizing a current; and a receiving device that includes a wheel electrode capable of moving on the ground surface directly above the pipe, detects a potential difference on the ground surface by the wheel electrode, and synchronously detects the detected potential difference signal; An apparatus for detecting damage to the anticorrosion coating, comprising: a coil for detecting a magnetic field generated by passing the alternating current through a pipe, and a magnetic field signal detected by the coil An object of the present invention is to provide an anticorrosion coating damage detection device for buried piping, which is used as a reference signal in the synchronous detection.
[0010]
According to the anticorrosion coating damage detection apparatus for buried pipes according to the present invention, the magnetic field generated by energizing the pipe with an alternating current is detected, and the detected magnetic field signal is used as a reference signal in synchronous detection. The frequency and the frequency of the reference signal can be made completely the same. Therefore, by synchronously detecting the detected potential difference signal with the reference signal, it is possible to accurately detect damage to the anticorrosion coating without causing a phase drift of the reference signal. Moreover, according to the anticorrosion coating damage detection apparatus for buried piping according to the present invention, the coil for detecting the magnetic field signal is provided in the receiving apparatus for performing synchronous detection. Therefore, anti-corrosion coating damage detection device buried pipe of this invention, since an alternating current signal to be supplied to the pipe from the transmitter in a wired or wireless for synchronous detection is not necessary to be transmitted to the receiving device, such as the installation environment It has the advantage of not being constrained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
[0013]
FIG. 1 is a schematic configuration diagram showing an anticorrosion coating damage detection apparatus according to an embodiment of the present invention. As shown in FIG. 1, an anticorrosion coating damage detection device (hereinafter referred to as a detection device) 100 includes a transmission device 23 and a reception device 13, and is embedded in the ground and provided with an anticorrosion coating (paint film) 20 on the outer surface. The coating film damaged portion 21 in the steel pipe 19 is detected.
[0014]
The transmission device 23 includes a counter electrode 18 embedded in the ground 22 and is configured to pass an alternating current between the steel pipe 19 and the counter electrode 18. More specifically, the transmission device 23 includes a power amplifier 17, and a counter electrode 18 and a steel pipe 19 are connected to the power amplifier 17 (the power amplifier 17 and the steel pipe 19 are connected via a connection 15. The alternating current is energized. Here, the transmission device 23 according to the present embodiment includes a transmitter 14, and the oscillator 14 is about 200 Hz to 1 kHz suitable for detecting a magnetic field with a coil with high sensitivity as will be described later (this embodiment). In this case, a signal having a frequency of about 443 Hz is output and transmitted to the power amplifier 17. As a result, the power amplifier 17 energizes the steel pipe 19 with an alternating current having the above frequency. In addition, when the frequency is lower than the frequency range (200 Hz to 1 kHz), the sensitivity of magnetic field detection by the coil 2 to be described later is lowered. On the other hand, when the frequency is higher, the attenuation in the steel pipe 19 is increased. It is preferable to set the frequency within the range.
[0015]
On the other hand, the receiving device 13 includes two wheel electrodes 1 made of conductive rubber arranged at intervals along the longitudinal direction of the steel pipe 19 on the ground surface immediately above the steel pipe 19, thereby the ground surface. Can be moved. The receiving device 13 detects the ground surface potential difference by the wheel electrode 1 and detects the coating film damaged portion 21 by synchronously detecting the detected potential difference signal. Further, as described above, the receiver 13 is arranged in a direction in which a magnetic field generated by energizing the steel pipe 19 with an alternating current is effectively detected (the magnetic flux formed along the circumferential direction of the steel pipe 19 penetrates substantially orthogonally. And a magnetic field signal detected by the coil 2 is used as a reference signal in the synchronous detection.
[0016]
In order to detect the coating film damaged part 21 by synchronously detecting the detected potential difference signal on the ground surface, the receiving device 13 according to the present embodiment includes the band pass filter 3, the first in addition to the wheel electrode 1 and the coil 2 described above. AC amplifier 4, second AC amplifier 24, first synchronous detector 5, second synchronous detector 6, first low-pass filter 7, second low-pass filter 8, first DC amplifier 9, second DC amplifier 10, arithmetic circuit 11 and a display 12 are provided.
[0017]
Next, a method for detecting the coating film damaged portion 21 by the detection device 100 having the above-described configuration will be described. First, in order to reduce the contact resistance between the ground surface and the wheel electrode 1 with respect to the ground surface directly above the steel pipe 19, water is sprayed along the steel pipe 19 in advance, and then the steel pipe 19 is While passing the alternating current of the frequency mentioned above between the counter electrodes 18, the wheel electrode 1 is moved along the steel pipe 19, and the potential difference between two points on the ground surface (between each wheel electrode 1) is detected. The detected potential difference signal is input to the band-pass filter 3 of the receiver 13, and high-frequency and low-frequency noises are removed by the band-pass filter 3. That is, the noise component excluding the frequency component is removed. The output of the bandpass filter 3 is amplified by the first AC amplifier 4 and then input to the first synchronous detector 5 and the second synchronous detector 6, and a component synchronized with the phase of the reference signal described later is extracted. . Here, since each of the first synchronous detector 5 and the second synchronous detector 6 is a multiplier for two signals, the output signal of the first synchronous detector 5 and the second synchronous detector 6 includes the reference signal. A frequency component will be included. Therefore, the first low-pass filter 7 and the second low-pass filter 8 remove the frequency components of the reference signal from the output signals of the first synchronous detector 5 and the second synchronous detector 6, respectively, and convert them into quasi-DC components. The output signals of the first low-pass filter 7 and the second low-pass filter 8 converted into the quasi-DC component are respectively input to the first DC amplifier 9 and the second DC amplifier 10 and amplified, and then subjected to arithmetic processing by the arithmetic circuit 11. (For example, absolute value processing) is performed and input to the display 12.
[0018]
On the other hand, the magnetic field signal detected by the coil 2 is amplified by the second AC amplifier 24 and then input to the reference signal generator 25. The reference signal generator 25 has a reference having a phase of 0 degree and 90 degrees. A signal is created. The created reference signals are input to the first synchronous detector 5 and the second synchronous detector 6, respectively, and used for synchronous detection. Thus, since the magnetic field signal detected by the coil 2 is used as a reference signal in synchronous detection, the frequency of the reference signal and the frequency of the alternating current can be made completely the same.
[0019]
FIG. 2 shows an example of a signal waveform displayed on the display 12. 2A shows the waveform of the amplitude A (potential difference signal after being subjected to the absolute value processing by the arithmetic circuit 11), FIG. 2B shows the waveform of Acosφ, and FIG. 2C shows the waveform of Asinφ. , (D) show the waveforms of the phase φ. 2B and 2C are waveforms equivalent to those obtained when the output signal waveforms of the first low-pass filter 7 and the second low-pass filter 8 are directly observed, respectively. Moreover, the horizontal axis of FIG. 2 represents the distance from the coating film damaged part 21 (the intersection with the vertical axis corresponds to the position immediately above the coating film damaged part 21), and the vertical axes of FIGS. The vertical axis of FIG. 2D shows the potential difference, and the magnitude of the phase.
[0020]
On the display 12, the waveforms shown in FIGS. 2A to 2D are displayed. In FIG. 2A, the minimum position of the potential difference indicates the position of the coating film damaged portion 21, and FIG. ) And (d), the positive / negative reversal position of the potential difference indicates the position of the coating film damaged portion 21, and in FIG. 2 (d), the phase reversal position indicates the position of the coating film damage portion 21. Therefore, it is possible to easily detect the position of the coating film damaged portion 21 from each waveform (in addition to detecting by visually observing the waveform, automatically providing a means for detecting the minimum position and the reverse position) Can also be detected).
[0021]
As described above, according to the anticorrosion coating damage detection device for buried piping according to the present invention, a magnetic field generated by energizing the piping with an alternating current is detected, and the detected magnetic field signal is used as a reference signal in synchronous detection. Since it uses, the frequency of an alternating current signal and the frequency of a reference signal can be made completely the same. Therefore, by detecting synchronously the detected potential difference signal with the reference signal. It is possible to accurately detect damage to the anticorrosion coating without causing a phase drift of the potential difference signal. Moreover, according to the anticorrosion coating damage detection apparatus for buried piping according to the present invention, the coil for detecting the magnetic field signal is provided in the receiving apparatus for performing synchronous detection. Therefore, anti-corrosion coating damage detection device buried pipe of this invention, since an alternating current signal to be supplied to the pipe from the transmitter in a wired or wireless for synchronous detection is not necessary to be transmitted to the receiving device, such as the installation environment It has the advantage of not being constrained.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an anticorrosion coating damage detection apparatus according to an embodiment of the present invention.
FIG. 2 shows an example of signal waveforms displayed on the display shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Wheel electrode 2 ... Coil 13 ... Receiver 14 ... Reference | standard transmitter 15 ... Frequency divider 16 ... Mixer 18 ... Counter electrode 19 ... Steel pipe (piping)
DESCRIPTION OF SYMBOLS 20 ... Paint film (anticorrosion coating) 21 ... Paint film damaged part 23 ... Transmitter 100 ... Anticorrosion coating damage detection apparatus

Claims (1)

地盤に埋設した対電極を具備し、地中に埋設され外面に防食被覆が施された金属製の配管と前記対電極との間に交流電流を通電する発信装置と、Transmitter device comprising a counter electrode embedded in the ground, energizing an alternating current between the counter electrode and a metal pipe embedded in the ground and coated with anticorrosion coating on the outer surface;
前記配管の直上における地表面を移動可能な車輪電極を具備し、当該車輪電極によって地表面の電位差を検出して、当該検出した電位差信号を同期検波する受信装置とを備えた防食被覆の損傷を検知する装置であって、Damage to the anti-corrosion coating comprising a wheel electrode that can move on the ground surface directly above the pipe, and detecting a potential difference on the ground surface by the wheel electrode and synchronously detecting the detected potential difference signal. A device for detecting,
前記受信装置は、前記交流電流を配管に通電することによって生じる磁場を検出するためのコイルを具備し、当該コイルによって検出した磁場信号を前記同期検波における参照信号として用いることを特徴とする埋設配管の防食被覆損傷検知装置。The receiving apparatus includes a coil for detecting a magnetic field generated by applying the alternating current to the pipe, and uses the magnetic field signal detected by the coil as a reference signal in the synchronous detection. Corrosion protection coating damage detection device.
JP2003003866A 2003-01-10 2003-01-10 Corrosion protection coating damage detection device for buried piping Expired - Fee Related JP3932282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003866A JP3932282B2 (en) 2003-01-10 2003-01-10 Corrosion protection coating damage detection device for buried piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003866A JP3932282B2 (en) 2003-01-10 2003-01-10 Corrosion protection coating damage detection device for buried piping

Publications (2)

Publication Number Publication Date
JP2004219124A JP2004219124A (en) 2004-08-05
JP3932282B2 true JP3932282B2 (en) 2007-06-20

Family

ID=32895005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003866A Expired - Fee Related JP3932282B2 (en) 2003-01-10 2003-01-10 Corrosion protection coating damage detection device for buried piping

Country Status (1)

Country Link
JP (1) JP3932282B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408625B (en) * 2008-11-25 2011-05-18 刘崧 Method for detecting underground steel pipe corrosion condition by ground artificial magnetization
AU2014353729B2 (en) * 2013-11-19 2019-10-03 Hyun Chang Lee Mobile electric leakage detection device and method

Also Published As

Publication number Publication date
JP2004219124A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
CN101358827B (en) TEM detecting method for pipe wall thickness and intelligent detector for GBH pipe corrosion
JPH10206390A (en) Method for detecting damage of covering of buried steel pipe
JP4044303B2 (en) Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals
JP3932282B2 (en) Corrosion protection coating damage detection device for buried piping
US8358120B2 (en) Non-intrusive detection of live electrical lines
JP3995630B2 (en) Corrosion protection coating damage detection method and detector for buried piping
GB2143331A (en) Apparatus for detecting the defective portion of a metallic tube
JP5438068B2 (en) Obstacle search device for excavator and obstacle search method for excavator
JP2018109589A (en) Estimation system and estimation method for metal pipe corrosion
JP3167654B2 (en) Method and apparatus for locating corrosion protection coating on buried metal pipes
JPH0196584A (en) Method for surveying position of piping buried under ground
JP3670241B2 (en) Damage monitoring device and damage monitoring method for underground pipe
JPH0752166B2 (en) Corrosion-proof coating damage detection method for buried metal pipes
JP2009244123A (en) Method and apparatus for monitoring damage on coating of underground pipe
JP2000249687A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
JP2001004575A (en) Detecting method for damage of paint film on buried painted and covered steel tube
JP2000249685A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
JP2006038504A (en) Method for detecting damage in corrosion-proof coating of embedded pipe, and detector therefor
JP2000249686A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
JPS6345555A (en) Inspection method for pitting corrosion of steel tube
JP3451348B2 (en) Method for detecting paint film damage on buried coated steel pipe
JPH0712950A (en) Method and device for detecting position of buried pipe and corrosion preventing current
KR101949768B1 (en) Detecting method of pore area in underground pipes
JPH0326983A (en) Method and apparatus for detecting position of ground embedded pipe
JP2003004686A (en) Method for detecting damaged location in corrosion-proof coating of embedded metal pipes using integrating means

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Ref document number: 3932282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees