JP3451348B2 - Method for detecting paint film damage on buried coated steel pipe - Google Patents

Method for detecting paint film damage on buried coated steel pipe

Info

Publication number
JP3451348B2
JP3451348B2 JP18457698A JP18457698A JP3451348B2 JP 3451348 B2 JP3451348 B2 JP 3451348B2 JP 18457698 A JP18457698 A JP 18457698A JP 18457698 A JP18457698 A JP 18457698A JP 3451348 B2 JP3451348 B2 JP 3451348B2
Authority
JP
Japan
Prior art keywords
steel pipe
potential difference
buried
damage
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18457698A
Other languages
Japanese (ja)
Other versions
JP2000019156A (en
Inventor
浩一 手塚
幸二 藤本
修二 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP18457698A priority Critical patent/JP3451348B2/en
Publication of JP2000019156A publication Critical patent/JP2000019156A/en
Application granted granted Critical
Publication of JP3451348B2 publication Critical patent/JP3451348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、地中に埋設された
塗覆装鋼管の塗膜損傷位置を地表より非接触で検出する
埋設塗覆装鋼管の塗膜損傷検出方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating film damage detection method for a buried coating steel pipe, which detects a coating film damage position of a coating steel pipe buried in the ground in a non-contact manner from the ground surface.

【0002】[0002]

【従来の技術】地中に埋設された塗覆装鋼管の塗膜損傷
(欠陥)を地表面より非接触で検出する方法として、例
えば塗覆装鋼管と地中の接地極との間に交流電圧を印加
して、鋼管中に電流を流し、塗覆装損傷から地中に流れ
出た電流により地表面に生成される電位分布を計測する
ことにより損傷位置を計測する、電位法と呼ばれる方法
がある。実際の電位法による塗膜損傷検出においては、
埋設塗覆装鋼管に設けられた電気防食用ターミナルとM
g陽極(接地極)とを利用し、埋設塗覆装鋼管と地中の
接地極との間に低周波の正弦波信号を印加し、低周波の
交流電流を流す。そして、塗覆装鋼管に沿って地表面に
一定間隔の2個の電極を配置し、その2個の電極を埋設
塗覆装鋼管に沿って走査し、2個の電極により2点の電
極間の電位差信号を順次検出して、その信号の検波を行
う事により電位差分布の強度及び位相の測定を行う。そ
して、地表面の電位差分布の変化パターンから、埋設塗
覆装鋼管の損傷から流出する電流により生成される電位
差分布を検出し、損傷位置を推定する。
2. Description of the Related Art As a method for detecting a coating film damage (defect) of a coated steel pipe buried in the ground in a non-contact manner from the ground surface, for example, an alternating current is applied between the coated steel pipe and a grounding electrode in the ground. There is a method called the potential method that measures the damage position by applying a voltage, passing a current through the steel pipe, and measuring the potential distribution generated on the ground surface by the current flowing into the ground from the coating damage. is there. In coating film damage detection by the actual potential method,
A terminal for cathodic protection provided on the buried coated steel pipe and M
Using a positive electrode (ground electrode), a low frequency sine wave signal is applied between the buried coated steel pipe and the ground electrode in the ground to flow a low frequency alternating current. Then, two electrodes with a constant interval are arranged on the ground surface along the coated steel pipe, and the two electrodes are scanned along the buried coated steel pipe, and the two electrodes are used to separate the two electrodes. The potential difference signals are sequentially detected and the signals are detected to measure the intensity and phase of the potential difference distribution. Then, the potential difference distribution generated by the current flowing out from the damage of the buried coating steel pipe is detected from the change pattern of the potential difference distribution on the ground surface, and the damage position is estimated.

【0003】[0003]

【発明が解決しようとする課題】従来の埋設塗覆装鋼管
の塗膜損傷検出方法においては、上述のように、2個の
電極を埋設塗覆装鋼管に沿って走査して、この2個の電
極により検出される地表面の電位差の変化パターンか
ら、埋設塗覆装鋼管の損傷から流出する電流により生成
される電位差分布を検出し、損傷位置を推定している。
塗覆装の損傷からの流出電流により生成される地表面に
おける電位分布は、損傷の直上位置が最大となり損傷か
らの距離が増えるに連れ減少していく局所的な分布とな
るが、塗覆装鋼管に複数の損傷がある場合には、複数の
損傷のうち最も大きな損傷から流出する電流により生成
される電位分布の影響が支配的になり、より小さな損傷
により生成される電位分布を検出することは困難となる
という問題点がある。
In the conventional coating film damage detecting method for a buried coating steel pipe, as described above, the two electrodes are scanned along the buried coating steel pipe and the two electrodes are scanned. The potential difference distribution generated by the current flowing out from the damage of the buried coated steel pipe is detected from the change pattern of the potential difference on the ground surface detected by the electrode of No. 1, and the damage position is estimated.
The potential distribution on the ground surface, which is generated by the outflow current from the damage of the coating, is a local distribution in which the position immediately above the damage is maximum and decreases as the distance from the damage increases. When the steel pipe has multiple damages, the influence of the potential distribution generated by the current flowing out from the largest damage of the multiple damages becomes dominant, and the potential distribution generated by the smaller damage should be detected. Is difficult.

【0004】また、実際の塗膜損傷の検出においては、
埋設塗覆装鋼管の1点から印加した信号により数Kmの
範囲にわたって損傷の検出を行うことが可能であるが、
鋼管の数Kmの範囲に複数の損傷がある場合には、各損
傷部からの流出電流により鋼管に沿って管軸方向に定常
的な電流が流れる事になる。埋設塗覆装鋼管に沿った任
意の地表面に2個の電極の電極を配置すると、定常的に
流れる電流に起因する電位差が検出されるため、塗覆装
に微小な損傷が存在する場合にも、その損傷に起因する
微小な電位分布の変化を検出することが困難であり、微
小な損傷の検出が困難となる。
In actual detection of coating film damage,
Although it is possible to detect damage over a range of several Km by a signal applied from one point of the buried coating steel pipe,
When there is a plurality of damages in the range of several kilometers of the steel pipe, a steady current flows in the pipe axial direction along the steel pipe due to the outflow current from each damaged portion. If two electrodes are placed on an arbitrary ground surface along the buried coating steel pipe, the potential difference due to the steady-state current is detected, so if there is slight damage to the coating. However, it is difficult to detect minute changes in the potential distribution due to the damage, and it is difficult to detect minute damage.

【0005】本発明は、上記の問題点を解決するために
なされたものであり、他の損傷の影響を抑制し、埋設塗
覆装装鋼管の微小な損傷の検出を可能にした埋設塗覆装
鋼管の塗膜損傷検出方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and suppresses the influence of other damages and makes it possible to detect minute damages to the steel pipes for the buried coating. An object of the present invention is to provide a coating film damage detection method for a steel pipe.

【0006】[0006]

【課題を解決するための手段】(1)本発明の1つの態
様による埋設塗覆装鋼管の塗膜損傷検出方法は、埋設塗
覆装鋼管と地中の接地極との間にランダム信号又は擬似
ランダム信号に係る低周波の交流電圧を印加し、埋設塗
覆装鋼管の管軸方向に対して直交する方向に沿って配置
された2個の電極により2点間の電位差を検出して相関
処理を行うとともに、その位置を変更することによっ
て、埋設塗覆装鋼管の管軸方向に対して直交する方向の
地表面の電位差分布を求め、そして、その地表面の電位
差分布に基づいて埋設塗覆装鋼管の損傷位置を検出す
る。
(1) A coating film damage detection method for a buried coating steel pipe according to an aspect of the present invention is a random signal or a signal between a buried coating steel pipe and a grounding electrode in the ground. pseudo
A low-frequency AC voltage related to a random signal is applied, and the potential difference between two points is detected and correlated by two electrodes arranged along the direction orthogonal to the pipe axis direction of the buried coated steel pipe.
By performing the treatment and changing its position, the potential difference distribution on the ground surface in the direction orthogonal to the pipe axis direction of the buried coating steel pipe is obtained, and the buried coating is calculated based on the potential difference distribution on the ground surface. Detects the damaged position of the covered steel pipe.

【0007】本発明の1つの態様による塗膜損傷検出方
法においては、埋設塗覆装鋼管の一点と地中の接地極と
の間にランダム信号又は擬似ランダム信号に係る低周波
の交流電圧を印加し、埋設塗覆装鋼管中に交流電流を流
入させる。鋼管の塗覆装に損傷があり鋼管自体と地中と
が接触していると、鋼管を流れる電流の一部が地中に流
出し、この損傷部から流出する電流により電位が発生す
る。地表面における電位分布は損傷の直上位置を中心に
直上位置が最大となり、損傷からの距離の増加につれ減
少していく局所的な電位分布となる。塗覆装鋼管に損傷
が単独で存在する場合には損傷部位周辺の電位分布は1
つの損傷からの電流により生成されるもののみとなり、
損傷を中心に各方向に均等な分布となる。しかし、塗覆
装に複数の損傷がある場合には、各損傷からその損傷サ
イズに応じて流出した電流による電位分布が生成される
ため、任意の位置における電位は複数の電位分布が重な
ったものとなり、損傷上部においても単一の損傷の場合
と異なり、他の損傷に起因する電位分布の影響により電
位分布は均一なものとはならない。
In the coating film damage detection method according to one aspect of the present invention, a low-frequency AC voltage relating to a random signal or a pseudo-random signal is applied between one point of a buried coated steel pipe and a grounding electrode in the ground. Then, an alternating current is caused to flow into the buried coated steel pipe. When the coating of the steel pipe is damaged and the steel pipe itself and the ground are in contact with each other, a part of the electric current flowing through the steel pipe flows into the ground, and a potential is generated by the current flowing out from the damaged portion. The potential distribution on the ground surface is a local potential distribution in which the position immediately above the damage is the maximum, and the position is directly above the damage and decreases as the distance from the damage increases. If there is a single damage to the coated steel pipe, the potential distribution around the damaged site is 1
Only those produced by the current from one damage,
The distribution is even in each direction centered on the damage. However, when there are multiple damages to the coating, a potential distribution is generated by the current flowing out from each damage according to the damage size, so the potential at any position is a combination of multiple potential distributions. Therefore, unlike the case of a single damage, the potential distribution on the upper part of the damage is not uniform due to the influence of the potential distribution caused by other damages.

【0008】ここで、例えば一定間隔の2個の電極を地
表面に配置して2電極間の電位差を計測すると、各電極
の設置位置と塗覆装鋼管の損傷からの流出電流により生
成される電位分布によってきまる電位差が得られる。
Here, for example, when two electrodes with a constant interval are arranged on the ground surface and the potential difference between the two electrodes is measured, it is generated by the outflow current from the installation position of each electrode and the damage of the coated steel pipe. A potential difference determined by the potential distribution can be obtained.

【0009】従来の塗膜損傷検出方法においては、2電
極を埋設塗覆装鋼管の管軸方向に配置して、管軸方向の
2点間の電位差を計測している。損傷が単独の場合に
は、図9(A)に示されるように、2電極間の電位差は
各電極の位置と単独の損傷が生成する損傷を中心とした
均等な電位分布により決まり、2電極を管軸方向に走査
した場合には、2電極が損傷位置を中心に等距離の位置
では電位差は0となり、他の位置では2電極の損傷位置
からの距離の差により+または−の電位差が計測される
ので、これらの電位差の位置による変化から損傷位置を
推定する。
In the conventional coating film damage detection method, two electrodes are arranged in the pipe axis direction of a buried coated steel pipe and the potential difference between two points in the pipe axis direction is measured. When the damage is single, as shown in FIG. 9A, the potential difference between the two electrodes is determined by the position of each electrode and the uniform potential distribution centering on the damage generated by the single damage. When scanning is performed in the tube axis direction, the potential difference becomes 0 at a position equidistant from the damaged position of the two electrodes, and at other positions, a potential difference of + or − is caused by a difference in distance from the damaged position of the two electrodes. Since it is measured, the damage position is estimated from the change in the potential difference depending on the position.

【0010】図9(B)に示されるように、複数の損傷
4が存在する場合には、特に対象となる損傷の隣接位置
に損小面積(地中との接触面積)の大きい損傷が存在す
る場合には管軸方向設置された2個の電極により検出さ
れる電位差は、隣接した損傷により生成される電位分布
の影響を受け、管軸方向には+または−の電位差が存在
するため、対象となる損傷が小さい場合には、図9
(C)に示されるように、対象損傷による電位差の変化
が相対的に小さくなり、検出が困難となる。
As shown in FIG. 9B, when there are a plurality of damages 4, there is a damage with a large loss small area (contact area with the ground) especially at a position adjacent to the target damage. In this case, the potential difference detected by the two electrodes installed in the tube axis direction is affected by the potential distribution generated by the adjacent damage, and there is a + or − potential difference in the tube axis direction. If the target damage is small,
As shown in (C), the change in the potential difference due to the target damage becomes relatively small, which makes detection difficult.

【0011】本発明に係る埋設塗覆装鋼管の塗膜損傷検
出方法においては、鋼管の管軸に対して直交する方向に
地表面に配置された、一定間隔の2個の電極により地表
面の電位差を計測する。図10(A)に示されるよう
に、損傷が単独の場合には、電極を管軸に直交し損傷位
置を通る線上で走査すれば、電極を管軸方向に配置した
場合と同様な電位差分布が得られる。また、図10
(B)に示されるように、複数の損傷4があり、隣接し
て損傷面積の大きい損傷がある場合には、隣接する損傷
による電位分布が存在するが、2個の電極は管軸に直交
方向に配置されるため、各電極と隣接する損傷との距離
は同一であるとみなすことが可能であり、2個の電極間
に隣接する損傷が生成する電位分布に起因する電位差は
観察されない。一方、対象となる損傷については単独の
損傷の場合と同様に、2個の電極と損傷との距離の差に
応じた電位差信号が計測されるので、この結果、他の損
傷の影響を抑制し、微小な損傷による電位差を容易に検
出し、その位置を知ることが可能となる。
In the coating film damage detection method for a buried coated steel pipe according to the present invention, the ground surface is formed by two electrodes arranged at regular intervals on the ground surface in a direction orthogonal to the pipe axis of the steel pipe. Measure the potential difference. As shown in FIG. 10 (A), in the case of a single damage, if the electrodes are scanned on a line which is orthogonal to the tube axis and passes through the damage position, the potential difference distribution similar to that in the case where the electrodes are arranged in the tube axis direction is obtained. Is obtained. In addition, FIG.
As shown in (B), when there are a plurality of damages 4 and there is a damage with a large damage area adjacent to each other, there is a potential distribution due to the damages adjacent to each other, but the two electrodes are orthogonal to the tube axis. Since they are arranged in the same direction, the distance between each electrode and the adjacent damage can be considered to be the same, and the potential difference due to the potential distribution generated by the adjacent damage between the two electrodes is not observed. On the other hand, for the target damage, the potential difference signal according to the difference in the distance between the two electrodes and the damage is measured as in the case of the single damage, and as a result, the influence of other damage is suppressed. It becomes possible to easily detect the potential difference due to minute damage and to know its position.

【0012】(2)本発明の他の態様による埋設塗覆装
鋼管の塗膜損傷検出方法は、埋設塗覆装鋼管と地中の接
地極との間にランダム信号又は擬似ランダム信号に係る
低周波の交流電圧を印加し、埋設塗覆装鋼管の任意の位
置に関して、管軸方向又は管軸に直交方向に配置された
一定間隔の2個の電極の位置を、任意の位置を中心に一
定間隔のメッシュ状に変更し、そして、メッシュ状に変
更された電極の各位置において、埋設塗覆装鋼管の管軸
方向又は管軸方向に対して直交する方向の2点間の電位
差を検出して相関処理を行い、その相関処理された電位
信号により得られる任意の位置周辺の地表面の電位差
分布に基づいて埋設塗覆装鋼管の損傷位置を検出する。
(2) A coating film damage detection method for a buried coating steel pipe according to another aspect of the present invention relates to a random signal or a pseudo-random signal between the buried coating steel pipe and a grounding electrode in the ground. br /> With respect to an arbitrary position of the buried coated steel pipe, by applying a low frequency AC voltage, the positions of two electrodes at regular intervals arranged in the pipe axis direction or in the direction orthogonal to the pipe axis are changed to arbitrary positions. To a mesh shape with a constant interval around the center, and at each position of the electrode changed to the mesh shape, between the two points of the pipe axis direction of the embedded coating-covered steel pipe or the direction orthogonal to the pipe axis direction. A potential difference is detected and a correlation process is performed, and a damaged position of the buried coated steel pipe is detected based on a potential difference distribution on the ground surface around an arbitrary position obtained by the correlated potential signal .

【0013】本発明の他の態様による埋設塗覆装鋼管の
塗膜損傷探査方法では、管軸方向又は管軸に直交方向に
配置された一定間隔の2個の電極の位置を任意の位置を
中心に一定間隔のメッシュ状に変更して、地表面の電位
差の分布を求めるので、各計測点における電極間の電位
差が求められ、各電極の位置関係とその計測結果から任
意の範囲の相対的な電位差分布を求めることが可能とな
り、その電位差分布の変化から微小な損傷により生成さ
れる電位分布の影響による電位差分布の変化から損傷位
置が求められる。
In the method for investigating coating film damage of a buried coated steel pipe according to another aspect of the present invention, the positions of two electrodes arranged at regular intervals in the pipe axis direction or in the direction orthogonal to the pipe axis are set to arbitrary positions. Since the distribution of the potential difference on the ground surface is obtained by changing to a mesh shape with a fixed interval in the center, the potential difference between the electrodes at each measurement point can be obtained, and the relative position of each electrode and the relative result in an arbitrary range can be determined from the measurement results. It is possible to obtain a different potential difference distribution, and the damage position can be obtained from the change in the potential difference distribution due to the influence of the potential distribution generated by minute damage from the change in the potential difference distribution.

【0014】(3)本発明の他の態様による埋設塗覆装
鋼管の塗膜損傷検出方法は、埋設塗覆装鋼管と地中の接
地極との間にランダム信号又は擬似ランダム信号に係る
低周波の交流電圧を印加し、埋設塗覆装鋼管の任意の位
置に関して、任意の位置に第1の電極を配置し、該電極
を中心に一定距離の円周上に第2の電極を配置し、且
つ、第2の電極の円周上の位置を変更し、第1及び第2
の電極の各位置において2点間の電位差をそれぞれ検出
して相関処理を行い、その相関処理された電位差信号
より得られる任意の位置を中心とした地表面の電位差分
布に基づいて埋設塗覆装鋼管の損傷位置を検出する。
(3) A coating film damage detection method for a buried coating steel pipe according to another aspect of the present invention relates to a random signal or a pseudo-random signal between the buried coating steel pipe and a grounding electrode in the ground. An alternating voltage of low frequency is applied, a first electrode is arranged at an arbitrary position with respect to an arbitrary position of the buried coating steel pipe, and a second electrode is arranged on a circumference at a constant distance with the electrode as a center. Arranging the electrodes and changing the position of the second electrode on the circumference,
Based on the potential difference distribution on the ground surface centered on an arbitrary position obtained from the potential difference signal subjected to the correlation processing by detecting the potential difference between the two points at each position of the electrode To detect the damaged position of the buried coated steel pipe.

【0015】本発明の他の態様による埋設塗覆装鋼管の
塗膜損傷検出方法においては、任意の位置に第1の電極
を配置し、その電極を中心に一定距離の円周上に第2の
電極を配置し、第2の電極の円周上の位置を変更して、
第1及び第2の電極により地表面の電位差分布を求めて
おり、円周上の各点の電位差から任意の位置に関する相
対的な電位差分布を知ることが可能となり、特に、複数
の損傷が存在する場合に隣接した損傷により生成される
電位分布の影響を最小限に抑制し、微小な損傷により生
成される電位の変化を効率よく計測することが可能な電
極の方向を知り、より正確な損傷検出を実施することが
できる。
In a coating film damage detection method for a buried coating steel pipe according to another aspect of the present invention, a first electrode is arranged at an arbitrary position, and a second electrode is arranged on a circumference at a constant distance with the electrode as a center. Place the electrode of, and change the position on the circumference of the second electrode,
Since the potential difference distribution on the ground surface is obtained by the first and second electrodes, it becomes possible to know the relative potential difference distribution at any position from the potential difference at each point on the circumference, and in particular, there are multiple damages. In this case, the influence of the potential distribution generated by the adjacent damage can be minimized, and the change in the potential generated by minute damage can be efficiently measured. Detection can be performed.

【0016】(4)本発明の他の態様による埋設塗覆装
鋼管の塗膜損傷検出方法は、埋設塗覆装鋼管と地中の接
地極との間にランダム信号又は擬似ランダム信号に係る
低周波の交流電圧を印加し、埋設塗覆装鋼管の管軸方向
に直交する方向に複数の電極を一定間隔で配置し、その
複数の電極を埋設塗覆装鋼管の管軸方向に走査して、複
数の地点間の電位差をそれぞれ検出して相関処理を行
い、その相関処理された電位差信号により得られる埋設
塗覆装鋼管の管軸方向に直交する方向の地表面の電位差
分布に基づいて埋設塗覆装鋼管の損傷位置を検出する。
(4) A coating film damage detection method for a buried coating steel pipe according to another aspect of the present invention relates to a random signal or a pseudo-random signal between the buried coating steel pipe and a grounding electrode in the ground. br /> A low-frequency AC voltage is applied, a plurality of electrodes are arranged at regular intervals in a direction orthogonal to the pipe axis direction of the buried coated steel pipe, and the plurality of electrodes are arranged in the pipe axial direction of the buried coated steel pipe. To detect the potential difference between multiple points and perform correlation processing.
First, the damaged position of the buried coated steel pipe is detected based on the potential difference distribution on the ground surface in the direction orthogonal to the pipe axis direction of the buried coated steel pipe obtained from the correlated potential difference signal .

【0017】本発明の他の態様による埋設塗覆装鋼管の
塗膜損傷探査方法では、埋設塗覆装鋼管の管軸方向に直
交する方向に2個以上の複数の電極を一定間隔で配置す
るので、各電極間で計測される電位差は複数の損傷があ
る場合においても隣接する(距離の離れた)損傷の生成
する電位分布の影響を抑制し、近距離に存在する損傷の
生成する局所電位分布により決まるので、電極を埋設塗
覆装鋼管の管軸方向に走査し、電極間の電位差分布の変
化を求めることにより、損傷により生成される局所的な
電位分布の変化を効率よく求めて、埋設塗覆装鋼管の損
傷位置を検出することができる。
In the coating film damage inspection method for a buried coating steel pipe according to another aspect of the present invention, two or more electrodes are arranged at regular intervals in a direction orthogonal to the pipe axis direction of the filling coating steel pipe. Therefore, the potential difference measured between each electrode suppresses the influence of the potential distribution generated by adjacent (distanced) damages even when there are multiple damages, and the local potential generated by damages existing at a short distance. Since it is determined by the distribution, the electrodes are scanned in the direction of the pipe axis of the buried coated steel pipe, and the change in the potential difference distribution between the electrodes is determined to efficiently determine the change in the local potential distribution generated by damage, It is possible to detect the damaged position of the buried coating steel pipe.

【0018】(5)本発明の他の態様による埋設塗覆装
鋼管の塗膜損傷検出方法は、上記(1)〜(4)の検出
方法において、埋設塗覆装鋼管と地中の接地極との間に
印加される交流電圧として、ランダム信号又は擬似ラン
ダム信号に係る交流電圧を用い、そして、前記交流電圧
から抽出した参照信号と、前記電極間の電位差の検出信
号との間で相関処理を行い、そのピーク値を前記2点間
の電位差の代表値として電位差分布を求める。 (6)本発明の他の態様による埋設塗覆装鋼管の塗膜損
傷検出方法は、上記(1)〜(4)の検出方法におい
て、埋設塗覆装鋼管と地中の接地極との間に印加される
交流電圧として、擬似ランダム信号に係る交流電圧を用
い、そして、前記交流電圧と同一のパターンの参照信号
と、前記電極間の電位差の検出信号との間で相関処理を
行い、そのピーク値を前記2点間の電位差の代表値とし
て電位差分布を求める。
(5) A method for detecting coating film damage of a buried coating steel pipe according to another aspect of the present invention is the same as the above-mentioned detection methods (1) to (4). An alternating voltage applied to a random signal or a pseudo-random signal is used as an alternating voltage applied between the reference signal extracted from the alternating voltage and the detection signal of the potential difference between the electrodes. Then, the peak value is used as a representative value of the potential difference between the two points to obtain the potential difference distribution. (6) A coating film damage detection method for a buried coating steel pipe according to another aspect of the present invention is the method for detecting a coating film damage of a buried coating steel pipe between a buried coating steel pipe and a grounding electrode in the ground according to the above detection methods. As the AC voltage applied to the, using an AC voltage according to a pseudo-random signal, and perform a correlation process between the reference signal of the same pattern as the AC voltage, and the detection signal of the potential difference between the electrodes, The potential difference distribution is obtained using the peak value as a representative value of the potential difference between the two points.

【0019】本発明の他の態様による埋設塗覆装鋼管の
塗膜損傷検出方法においては、埋設塗膜装管に印加する
交流信号としてランダム信号又は擬似ランダム信号を使
用して相関処理を行うことにより、ノイズ成分を除去し
てS/Nを改善しているので、埋設塗膜装鋼管の塗膜損
傷位置を高感度で精度良く、確実に検出することができ
る。
In a coating film damage detection method for a buried coating steel pipe according to another aspect of the present invention, correlation processing is performed using a random signal or a pseudo-random signal as an AC signal applied to the buried coating pipe. As a result, the noise component is removed and the S / N is improved. Therefore, it is possible to detect the coating film damage position of the buried coating steel pipe with high sensitivity, accuracy and reliability.

【0020】[0020]

【発明の実施の形態】実施形態1.図1(A)(B)は
本発明の実施形態1に係る埋設塗覆装鋼管の塗膜損傷検
出方法が適用された装置の構成及びその動作波形図であ
る。図1(A)において、1、2は地表上を移動する電
極、3は埋設塗覆装鋼管、4は埋設塗覆装鋼管3の損
傷、5は検出装置、6はケーブルである、7は給電装
置、8はターミナル、9は接地極を表している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. 1A and 1B are a configuration of an apparatus to which a coating film damage detection method for a buried coating steel pipe according to a first embodiment of the present invention is applied and an operation waveform diagram thereof. In FIG. 1 (A), 1 and 2 are electrodes moving on the surface of the earth, 3 is a buried coating steel pipe, 4 is a damage to the buried coating steel pipe 3, 5 is a detection device, 6 is a cable, 7 is A power feeding device, 8 is a terminal, and 9 is a ground electrode.

【0021】本実施形態においては、給電装置7から埋
設塗覆装鋼管3のターミナル8と接地極9との間に低周
波(440Hz)の交流電圧を印加し、埋設塗覆装鋼管
3に交流電流を流入させる。この埋設塗装鋼管3に流入
する電流はターミナル8と接地極9との間に印加する交
流電圧の振幅と、ターミナル8と接地極9との間の抵抗
(鋼管の対地接地抵抗)により決まり、埋設塗覆装鋼管
3の埋設されている環境等により異なる。埋設塗膜装鋼
管3に損傷4があると、埋設塗膜装鋼管3に流れる電流
の一部が損傷4を介して地中に流出するので、埋設塗膜
装鋼管3を流れる電流値は給電点からの距離にしたがっ
て減少していくことになるが、通常の損傷検出試験にお
いては数kmの範囲にわたって損傷検出が可能なレベル
の電流値が維持できるように、電流値が1〜2Aとなる
ようにターミナル8から給電を行っている。
In the present embodiment, a low frequency (440 Hz) AC voltage is applied from the power supply device 7 between the terminal 8 and the ground electrode 9 of the buried coated steel pipe 3 to generate an alternating current to the buried coated steel pipe 3. Allow current to flow. The current flowing into the buried coated steel pipe 3 is determined by the amplitude of the AC voltage applied between the terminal 8 and the ground electrode 9 and the resistance between the terminal 8 and the ground electrode 9 (ground resistance of the steel pipe to the ground). It depends on the environment in which the coated steel pipe 3 is buried. When the buried coating steel pipe 3 is damaged 4, a part of the current flowing through the buried coating steel pipe 3 flows out into the ground through the damage 4, so that the current value flowing through the buried coating steel pipe 3 is fed. Although it will decrease according to the distance from the point, in the normal damage detection test, the current value becomes 1 to 2 A so that the current value at a level capable of damage detection can be maintained over a range of several km. The power is supplied from the terminal 8.

【0022】損傷4から流出する電流値も損傷位置にお
ける埋設塗膜装鋼管3の対地電圧値と損傷と地中との接
触抵抗により定まり、一般に損傷面積に比例する。そし
て、損傷4の上部の地表面には損傷から流出する電流に
より電位分布が生成される。地表面の電位分布は損傷か
ら流出する電流値、損傷の深度、地中の電気特性により
定まり、電流と同様に損傷面積に比例する。また、埋設
塗覆装鋼管3に流れているのは交流電流であるから、地
表面に生成される電位分布も電流周波数と同一の周波数
で変動する。
The current value flowing out from the damage 4 is also determined by the ground voltage value of the buried coating steel pipe 3 at the damaged position, the damage and the contact resistance with the ground, and is generally proportional to the damaged area. Then, on the ground surface above the damage 4, a potential distribution is generated by the current flowing out from the damage. The potential distribution on the ground surface is determined by the current value flowing out from the damage, the depth of damage, and the electrical characteristics of the ground, and is proportional to the damage area as well as the current. Further, since the alternating current is flowing in the buried coating steel pipe 3, the potential distribution generated on the ground surface also fluctuates at the same frequency as the current frequency.

【0023】地表面の管軸方向とは直交方向に配置され
た電極1,2はケーブル6を介して検出装置5に接続さ
れ、電極1,2間の電位差に応じた交流信号を検出装置
5に入力する。ここで、電極1,2としては路面への密
着性を高めるため導電性ゴムを使用し、これを1m間隔
になるように配置し、さらに、路面との接触抵抗を低減
するため路面には散水を行う。電極1,2は導電性を有
するものであればどのようなものでも使用可能であり、
地表面の条件にもよるが、金属ロッドを電極として地中
に直接挿入したものを使用することも可能であり、その
場合には電極と土面とが直接接触させることにより安定
して信号を検出することも可能である。
The electrodes 1 and 2 arranged in the direction orthogonal to the tube axis direction on the ground surface are connected to a detection device 5 via a cable 6, and an AC signal corresponding to the potential difference between the electrodes 1 and 2 is detected by the detection device 5. To enter. Here, as the electrodes 1 and 2, conductive rubber is used to improve the adhesion to the road surface, and the conductive rubber is arranged at intervals of 1 m. Further, to reduce the contact resistance with the road surface, water is sprayed on the road surface. I do. As the electrodes 1 and 2, any one having conductivity can be used,
Depending on the condition of the ground surface, it is also possible to use a metal rod that is directly inserted into the ground as an electrode.In that case, the electrode and the soil surface are brought into direct contact with each other to provide a stable signal. It is also possible to detect.

【0024】検出装置5では電極1,2により検出され
た交流信号の検波を行い、その強度及び位相をそれぞれ
計測する。本実施形態においては、損傷4の位置近傍で
電極1,2の位置を管軸に直交方向に変化させ、検出電
位差信号の強度、位相の変化を観察すると、電極1,2
の位置によって電位差分布は変化し、図1(B)に示さ
れるように、電極1,2が損傷(埋設塗覆装鋼管)から
等距離にある場合には0になり、前後の位置において電
位差信号が反転する結果が得られ、損傷4が存在するこ
とが確認される。また、電極1,2を走査する管軸方向
の位置を変化させた場合には、電位差の変化のパターン
は同一で強度が全体として変化する。ここで、最大の電
位差が検出されたときにその走査線上に損傷4があると
判断され、管軸上の損傷の正確な位置を知ることもでき
る。
The detector 5 detects the AC signal detected by the electrodes 1 and 2 and measures the intensity and phase thereof. In the present embodiment, when the positions of the electrodes 1 and 2 are changed in the direction orthogonal to the tube axis in the vicinity of the position of the damage 4 and changes in the intensity and phase of the detected potential difference signal are observed, the electrodes 1 and 2 are observed.
The potential difference distribution changes depending on the position of, and as shown in FIG. 1 (B), the potential difference becomes 0 when the electrodes 1 and 2 are equidistant from the damage (the buried coated steel pipe), and the potential difference at the front and rear positions. The result is that the signal is inverted, confirming that the damage 4 is present. Further, when the positions of the electrodes 1 and 2 in the tube axis direction for scanning are changed, the pattern of change in the potential difference is the same and the intensity changes as a whole. Here, when the maximum potential difference is detected, it is determined that the damage 4 exists on the scanning line, and the exact position of the damage on the tube axis can be known.

【0025】また、隣接する位置に大きな損傷が存在す
る場合の検出試験においても、同様の電位差の変化パタ
ーンが計測されることが確認される。ここで、従来の検
出試験と同様に、電極を管軸方向に配置し、電極の位置
を管軸方向、直交方向に変化させた場合には、電極の位
置によらずほぼ同一の電位差信号が検出され、変化が認
められない。これは、電極により検出されている電位差
信号が隣接する大きな損傷からの流出電流により生成さ
れる電位分布に起因するものが支配的となっているため
であり、従来の管軸方向に配置した電極では損傷の検
出、位置の特定を行うことは困難であり、直交方向に配
置した電極による検出が有効であることが確認される。
It is also confirmed that the same change pattern of the potential difference is measured in the detection test when there is a large damage at the adjacent position. Here, similarly to the conventional detection test, when the electrodes are arranged in the tube axis direction and the positions of the electrodes are changed in the tube axis direction and the orthogonal direction, almost the same potential difference signal is produced regardless of the electrode positions. Detected, no change observed. This is because the potential difference signal detected by the electrode is mainly due to the potential distribution generated by the outflow current from the adjacent large damage. Therefore, it is difficult to detect damage and specify the position, and it is confirmed that the detection by the electrodes arranged in the orthogonal direction is effective.

【0026】実施形態2.図2は本発明の実施形態2に
係る埋設塗覆装鋼管の塗膜損傷検出方法が適用された装
置の構成図である。本実施形態では、電極1,2を管軸
方向に対して直交する方向に配置し、電極1,2の位置
を管軸方向に対して直交する方向及び管軸方向にそれぞ
れ変化させて、マトリックス状に配置して電位差分布を
求める。このマトリックス状の配置に関しては、電極
1,2を管軸方向に配置し、電極1,2の位置を管軸方
向及び管軸方向に直交する方向にそれぞれ変化させても
よい。ここでは、電極間隔を0.5mとし、電極の位置
を電極間隔に等しい0.5m間隔で管軸方向及び直交方
向に変化させて計測を行っている。各計測信号は0.5
m間隔の電位差を示しているので各計測結果から相対的
な電位分布を求めることも可能となる。
Embodiment 2. FIG. 2 is a configuration diagram of an apparatus to which the coating film damage detection method for a buried coating steel pipe according to Embodiment 2 of the present invention is applied. In the present embodiment, the electrodes 1 and 2 are arranged in a direction orthogonal to the tube axis direction, and the positions of the electrodes 1 and 2 are changed respectively in the direction orthogonal to the tube axis direction and the tube axis direction to form a matrix. And arrange them in the shape of a circle to obtain the potential difference distribution. Regarding this matrix arrangement, the electrodes 1 and 2 may be arranged in the tube axis direction, and the positions of the electrodes 1 and 2 may be changed in the tube axis direction and the direction orthogonal to the tube axis direction, respectively. Here, the electrode interval is set to 0.5 m, and the position of the electrode is changed at intervals of 0.5 m, which is equal to the electrode interval, in the tube axis direction and the orthogonal direction for measurement. Each measurement signal is 0.5
Since the potential difference is shown at m intervals, it is possible to obtain a relative potential distribution from each measurement result.

【0027】損傷のない位置における計測結果からは、
管軸方向には単調に変化(増加、減少)し、直交方向に
は変化の少ない均一な電位分布があると推定される。こ
れは、埋設塗覆装鋼管に存在する複数の損傷から流出し
た電流により生成された電位分布と考えられ、損傷の有
無に関わらず塗覆装鋼管に沿った任意の位置に存在する
ものと考えられる。
From the measurement result at the position without damage,
It is estimated that there is a uniform potential distribution that changes monotonically (increases or decreases) in the tube axis direction and has little change in the orthogonal direction. This is considered to be the potential distribution generated by the current flowing out from multiple damages existing in the buried coated steel pipe, and it is considered that it exists at any position along the coated steel pipe regardless of the damage. To be

【0028】損傷位置の周辺における計測結果からは、
損傷のない位置に比べ局所的に変化する電位分布が存在
する。特に、損傷位置の近傍においては管軸とは直交方
向に電位分布が変化しており、この結果から損傷の検出
と位置の特定がされる。この方法によれば微小な損傷に
よる電位分布の微妙な変化を検出することが可能であ
り、従来の検出試験に対して高感度な損傷位置の検出が
可能となる。
From the measurement results around the damaged position,
There is a potential distribution that changes locally compared to the undamaged position. Particularly, in the vicinity of the damaged position, the potential distribution changes in the direction orthogonal to the tube axis, and from this result, the damage is detected and the position is specified. According to this method, it is possible to detect a subtle change in the potential distribution due to minute damage, and it is possible to detect a damaged position with high sensitivity with respect to the conventional detection test.

【0029】実施形態3.図3は本発明の実施形態3に
係る埋設塗覆装鋼管の塗膜損傷検出方法が適用された装
置の構成図である。本実施形態では電極1を地表面の埋
設塗覆装鋼管3の管軸上の任意の位置に設置し、電極2
を電極1を中心としてそこから一定距離の円周上配置
し、電極2の位置を変えて電極1,2間で電位差を計測
する。本実施形態では電極1と2との間の距離を1mと
して計測を行った。損傷がない位置での計測においては
計測される電位差信号は、埋設塗覆装鋼管3に存在する
複数の損傷から流出した電流により生成された電位分布
に起因するものであり、理想的には管軸方向が最大とな
り、直交方向には最小(0)となると考えられる。実際
には鋼管上に存在する損傷の位置関係、計測位置の地中
の電気的な状況等により理想的な電位分布とは異なる
が、本実施形態によれば任意の位置における電位分布を
把握することができる。また、損傷位置における計測で
は電極2の円周上の位置を細かく変えることにより他の
損傷等の影響を抑制し、局所的な電位分布による電位差
信号を効率よく計測することができる。
Embodiment 3. FIG. 3 is a configuration diagram of an apparatus to which a coating film damage detection method for a buried coating steel pipe according to a third embodiment of the present invention is applied. In the present embodiment, the electrode 1 is installed at an arbitrary position on the pipe axis of the buried coating steel pipe 3 on the ground surface, and the electrode 2
Is placed on the circumference of the electrode 1 at a constant distance from the center, and the position of the electrode 2 is changed to measure the potential difference between the electrodes 1 and 2. In this embodiment, the distance between the electrodes 1 and 2 was set to 1 m for measurement. The potential difference signal measured in the position where there is no damage is due to the potential distribution generated by the current flowing out from a plurality of damages existing in the buried coating steel pipe 3, and ideally the pipe It is considered that the axial direction becomes maximum and the orthogonal direction becomes minimum (0). Actually, the potential distribution differs from the ideal potential distribution due to the positional relationship of damage existing on the steel pipe, the electrical condition in the ground at the measurement position, etc., but according to the present embodiment, the potential distribution at any position can be grasped. be able to. Further, in the measurement at the damaged position, the influence of other damages can be suppressed by finely changing the position on the circumference of the electrode 2, and the potential difference signal due to the local potential distribution can be efficiently measured.

【0030】実施形態4.図4は本発明の実施形態4に
係る埋設塗覆装鋼管の塗膜損傷検出方法が適用された装
置の構成図である。本実施形態では3つの電極1,2,
10を管軸とは直交方向に配置し、電極2を管軸上にな
るように配置した、電極1と2の間と電極2と10の間
は等距離(1m)となるように配置した。電極1,2間
及び電極2,10間で検出される電位差信号は検出装置
5に入力され、それぞれの信号強度、位相が計測され
る。
Embodiment 4. FIG. 4 is a configuration diagram of an apparatus to which the coating film damage detection method for a buried coating steel pipe according to Embodiment 4 of the present invention is applied. In this embodiment, three electrodes 1, 2,
10 was arranged in the direction orthogonal to the tube axis, and the electrode 2 was arranged on the tube axis. The electrodes 1 and 2 and the electrodes 2 and 10 were arranged so as to be equidistant (1 m). . The potential difference signal detected between the electrodes 1 and 2 and between the electrodes 2 and 10 is input to the detection device 5, and the respective signal strengths and phases are measured.

【0031】電極1,2,10を同時に管軸方向に走査
すると、損傷のない位置においては電極1,2間及び電
極2,10間のいずれも直交方向の電位の変化が少ない
ため計測される電位差信号の強度は小さく、変化も少な
い。電極1,2,10を走査し、損傷位置に近づくと、
計測される電位差信号は徐々に増加し、損傷位置を通過
すると電位差信号は徐々に減少する、この時、電極1,
2間の電位差信号と電極2,10間の電位差信号は信号
強度はほぼ同一であるがその位相は反転しており、埋設
塗覆装鋼管の損傷からの流出電流による局所的な電位変
化によるものであると判断される。
When the electrodes 1, 2 and 10 are simultaneously scanned in the tube axis direction, the change in the potential in the orthogonal direction is small in both the electrodes 1 and 2 and between the electrodes 2 and 10 at a position where there is no damage, and therefore the measurement is performed. The intensity of the potential difference signal is small and changes little. When scanning the electrodes 1, 2 and 10 and approaching the damaged position,
The measured potential difference signal gradually increases, and the potential difference signal gradually decreases when passing through the damaged position. At this time, the electrodes 1,
The signal strength of the potential difference signal between the two electrodes and the potential difference signal between the electrodes 2 and 10 are almost the same, but the phases thereof are inverted, which is caused by the local potential change due to the outflow current from the damage of the buried coating steel pipe. Is determined.

【0032】ここで、電極1,2及び電極2,10間で
計測される電位差信号の強度が変動してもその位相が同
一であれば、それは損傷に起因するものではなく地中の
電気的性質の変化等他の要因によるものと判断され、損
傷のみを的確に検出することができる。
Here, even if the intensity of the potential difference signal measured between the electrodes 1 and 2 and the electrodes 2 and 10 varies, if the phases are the same, it is not caused by the damage but the electrical potential of the ground. Since it is determined that the damage is due to other factors such as a change in properties, only the damage can be accurately detected.

【0033】なお、本実施形態では3つの電極を使用す
る方法を述べたが、電極の数を増やし、電極間の組み合
わせを増加することにより電位の微小な変化を検出し微
小な損傷の検出を行うことも可能である。
Although the method of using three electrodes has been described in the present embodiment, by increasing the number of electrodes and the number of combinations between the electrodes, it is possible to detect a minute change in the potential and detect a minute damage. It is also possible to do so.

【0034】実施形態5.図5は本発明の実施形態5に
係る埋設塗覆装鋼管の塗膜損傷検出方法が適用された装
置の構成図である。本実施形態は、給電装置7からター
ミナル8と接地極9の間に印加される交流電圧としてM
系列信号を用いた例であり、電極1,2等の配置及び走
査については上述の実施形態1〜4のものが適用される
ものとし、ここではM系列信号の処理を中心に説明す
る。
Embodiment 5. FIG. 5 is a configuration diagram of an apparatus to which a coating film damage detection method for a buried coating steel pipe according to a fifth embodiment of the present invention is applied. In the present embodiment, the AC voltage applied from the power feeding device 7 between the terminal 8 and the ground electrode 9 is M
This is an example using a series signal, and the arrangements and scans of the electrodes 1 and 2 and the like described in the first to fourth embodiments are applied, and here, the processing of the M series signal will be mainly described.

【0035】給電装置7はM系列信号発生器21及び電
力増幅器22から構成されている。また、検出装置5は
M系列参照信号発生器23及び相関処理部24から構成
されている。M系列信号は、図6に示されるようなフィ
ードバックループを持つシフトレジスタによって発生さ
せることが可能である。図6に示される7段のシフトレ
ジスタ25によって得られる符号長は、27 −1=12
7である。
The power supply device 7 is composed of an M-sequence signal generator 21 and a power amplifier 22. The detection device 5 is composed of an M-sequence reference signal generator 23 and a correlation processing unit 24. The M-sequence signal can be generated by a shift register having a feedback loop as shown in FIG. The code length obtained by the seven-stage shift register 25 shown in FIG. 6 is 2 7 −1 = 12.
7

【0036】図7はM系列信号の信号波形とその自己相
関信号波形の例を示す図である。図7において、横軸は
時間、縦軸は信号の大きさ、τaはシフトレジスタに与
えられるクロックの周期である。
FIG. 7 is a diagram showing an example of the signal waveform of the M-sequence signal and its autocorrelation signal waveform. In FIG. 7, the horizontal axis represents time, the vertical axis represents signal magnitude, and τa is the cycle of the clock given to the shift register.

【0037】M系列信号は、周期性のある擬似ランダム
信号であり、ここでは符号長127の周期性を持つこと
から、自己相関をとると図7(b)に示すようなピーク
を周期的に持つ。このことから、他の信号との相互相関
をとれば、当該M系列信号とパターンの一致する信号の
みが高いピーク値を有する相互相関値を持つことがわか
る。本実施形態においては、この性質を利用してノイズ
信号の低減を図るものである。
Since the M-sequence signal is a pseudo-random signal having a periodicity and has a periodicity of a code length 127 here, when the autocorrelation is taken, the peaks shown in FIG. To have. From this, it can be seen that when the cross-correlation with other signals is taken, only the signal whose pattern matches the M-sequence signal has the cross-correlation value having a high peak value. In the present embodiment, this property is utilized to reduce the noise signal.

【0038】図5において、M系列信号発生器21から
のM系列信号は、電力増幅器22で増幅されて、埋設塗
膜装鋼管3と接地極9との間に電圧として印加される。
この状態で電極1,2の位置を上述の実施形態1〜4に
示されるように変更し、電極1,2はそれぞれが接触し
ている地面の電位を検出する。検出装置5はこれらの電
位差を取り込む。検出装置5のM系列参照信号発生器2
3は、M系列信号発生器21とは電気的に独立している
が、同じパルスパターンのM系列信号を発生するように
されている。
In FIG. 5, the M-sequence signal from the M-sequence signal generator 21 is amplified by the power amplifier 22 and applied as a voltage between the buried coating steel pipe 3 and the ground electrode 9.
In this state, the positions of the electrodes 1 and 2 are changed as shown in the above-described first to fourth embodiments, and the electrodes 1 and 2 detect the potential of the ground with which they are in contact. The detection device 5 takes in these potential differences. M-series reference signal generator 2 of detection device 5
Although 3 is electrically independent of the M-sequence signal generator 21, it is configured to generate an M-sequence signal having the same pulse pattern.

【0039】検出装置5の相関処理部24は、このM系
列参照信号発生器23からの参照信号と、電極1,2間
の電位差信号(検出信号)との相互相関演算を行う。即
ち、検出信号をf(t)、参照信号をg(t)とする
と、相互相関演算結果は以下のように示される。
The correlation processing section 24 of the detection device 5 performs a cross-correlation operation between the reference signal from the M-series reference signal generator 23 and the potential difference signal (detection signal) between the electrodes 1 and 2. That is, when the detection signal is f (t) and the reference signal is g (t), the cross-correlation calculation result is shown as follows.

【0040】[0040]

【数1】 ここに、Tは繰り返し周期である。[Equation 1] Here, T is a repetition period.

【0041】検出信号f(t)にはM系信号成分が含ま
れ、参照信号g(t)はこれと同じパターンのM系列信
号であるので、相互相関演算結果は、参照信号と同じ周
期のピーク値を有する。図8に相互相関演算結果の一例
を示す。図8において、横軸は(1)式におけるτ、縦
軸は(1)式におけるΦfg(τ)を示す。このピーク値
を検出して検出信号の代表値とすることにより、ノイズ
信号を抑制した高精度の電位差検出ができる。そして、
この代表値を用いて処理を行うことにより、塗膜の損傷
位置を高精度で確実に検出できる。
Since the detection signal f (t) contains an M-system signal component and the reference signal g (t) is an M-sequence signal having the same pattern as this, the cross-correlation calculation result has the same cycle as the reference signal. It has a peak value. FIG. 8 shows an example of the cross-correlation calculation result. In FIG. 8, the horizontal axis represents τ in equation (1) and the vertical axis represents Φfg (τ) in equation (1). By detecting this peak value and using it as the representative value of the detection signal, it is possible to detect the potential difference with high accuracy while suppressing the noise signal. And
By performing processing using this representative value, the damaged position of the coating film can be reliably detected with high accuracy.

【0042】この処理方法は、電位差検出においてノイ
ズ成分が抑制されているので、高精度で高感度な検出が
可能となっている。この処理方法を行うには、従来公知
である回路を使用すればよい。たとえば、電位差がゼロ
クロスする点を検出する回路による方法、電位差に閾値
を設け、電位差の絶対値がこの閾値を超えた後でゼロク
ロスする点を検出する回路による方法、正の電位差が最
大値を示す点と負の電位差が最大値を示す点との中点を
検出する回路による方法等がある。
Since this processing method suppresses the noise component in the potential difference detection, it is possible to perform detection with high accuracy and high sensitivity. A conventionally known circuit may be used to perform this processing method. For example, a circuit that detects the point where the potential difference crosses zero, a method that sets a threshold value for the potential difference, and a circuit that detects the point that crosses zero after the absolute value of the potential difference exceeds this threshold, and the positive potential difference indicates the maximum value. There is a method using a circuit that detects the midpoint between the point and the point where the negative potential difference shows the maximum value.

【0043】なお、上述の実施形態はM系列信号を用い
た例について説明したが、印加する交流電圧にランダム
信号を用いることもできる。その場合には、印加する交
流電圧からランダム信号を取り出してそれを参照信号と
して使用する。
In the above embodiment, an example using the M-sequence signal has been described, but a random signal can be used as the AC voltage to be applied. In that case, a random signal is extracted from the applied AC voltage and used as a reference signal.

【0044】[0044]

【発明の効果】以上のように本発明によれば、地表面に
設置した埋設塗覆装鋼管の管軸に直交方向に配置された
2個の電極により直交方向の電位差を計測することが可
能となるので、隣接した位置に存在する他の損傷からの
流出電流により生成される電位分布の影響を低減させ、
微小な損傷を検出することが出来る。また、任意の位置
を中心とした電位差分布を計測することにより電位分布
を推定することが可能となり、電位分布の変化から埋設
塗覆装鋼管の微小な損傷を検出することが出来る。更
に、埋設塗膜装管に印加する交流電圧としてランダム信
号又は擬似ランダム信号を使用して相関処理を行うこと
により、ノイズ成分を除去してS/Nを改善しているの
で、埋設塗膜装鋼管の塗膜損傷位置を高感度で精度良
く、確実に検出することができる。
As described above, according to the present invention, the potential difference in the orthogonal direction can be measured by the two electrodes arranged in the orthogonal direction to the pipe axis of the buried coating steel pipe installed on the ground surface. Therefore, the influence of the potential distribution generated by the outflow current from other damage existing at the adjacent position is reduced,
Minute damage can be detected. In addition, it is possible to estimate the potential distribution by measuring the potential difference distribution centered on an arbitrary position, and it is possible to detect minute damage to the buried coated steel pipe from the change in the potential distribution. Furthermore, by performing correlation processing using a random signal or a pseudo-random signal as an AC voltage applied to the embedded coating film pipe, noise components are removed and S / N is improved. It is possible to detect the coating film damage position on the steel pipe with high sensitivity, high accuracy, and certainty.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態1に係る埋設塗覆装鋼管の塗
膜損傷位置検出方法が適用された装置の構成図及び動作
説明図である。
FIG. 1 is a configuration diagram and an operation explanatory diagram of an apparatus to which a coating film damage position detecting method for a buried coating steel pipe according to a first embodiment of the present invention is applied.

【図2】本発明の実施形態2に係る埋設塗覆装鋼管の塗
膜損傷位置検出方法が適用された装置の構成図である。
FIG. 2 is a configuration diagram of an apparatus to which a coating film damage position detecting method for a buried coating steel pipe according to a second embodiment of the present invention is applied.

【図3】本発明の実施形態3に係る埋設塗覆装鋼管の塗
膜損傷位置検出方法が適用された装置の構成図である。
FIG. 3 is a configuration diagram of an apparatus to which a coating film damage position detection method for a buried coating steel pipe according to a third embodiment of the present invention is applied.

【図4】本発明の実施形態4に係る埋設塗覆装鋼管の塗
膜損傷位置検出方法が適用された装置の構成図である。
FIG. 4 is a configuration diagram of an apparatus to which a coating film damage position detecting method for a buried coating steel pipe according to a fourth embodiment of the present invention is applied.

【図5】本発明の実施形態5に係る埋設塗覆装鋼管の塗
膜損傷位置検出方法が適用された装置の構成図である。
FIG. 5 is a configuration diagram of an apparatus to which a coating film damage position detection method for a buried coating steel pipe according to a fifth embodiment of the present invention is applied.

【図6】M系列信号発生用シフトレジスタの例を示す図
である。
FIG. 6 is a diagram showing an example of an M-sequence signal generation shift register.

【図7】M系列信号波形とその自己相関信号波形の例を
示す図である。
FIG. 7 is a diagram showing an example of an M-sequence signal waveform and its autocorrelation signal waveform.

【図8】図5の実施形態による参照信号と検出信号との
相関波形の例を示す図である。
8 is a diagram showing an example of a correlation waveform between a reference signal and a detection signal according to the embodiment of FIG.

【図9】従来方法の動作を説明するための説明図であ
る。
FIG. 9 is an explanatory diagram for explaining the operation of the conventional method.

【図10】本発明の動作を説明するための説明図であ
る。
FIG. 10 is an explanatory diagram for explaining the operation of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千葉 修二 神奈川県横浜市鶴見区小野町88番地 日 本鋼管工事株式会社内 (56)参考文献 特開 昭63−205555(JP,A) 特開 平10−239267(JP,A) 特開 昭63−191049(JP,A) 実開 昭58−119755(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 27/00 - 27/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Chiba 88 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa Nihon Steel Pipe Works Co., Ltd. (56) Reference JP-A-63-205555 (JP, A) JP-A 10-239267 (JP, A) JP-A-63-191049 (JP, A) Actually developed 58-119755 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 27/00 -27/24

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 埋設塗覆装鋼管と地中の接地極との間に
ランダム信号又は擬似ランダム信号に係る低周波の交流
電圧を印加し、埋設塗覆装鋼管の管軸方向に対して直交
する方向に沿って配置された2個の電極により2点間の
電位差を検出して相関処理を行うとともに、その位置を
変更することによって、埋設塗覆装鋼管の管軸方向に対
して直交する方向の地表面の電位差分布を求め、そし
て、その地表面の電位差分布に基づいて埋設塗覆装鋼管
の損傷位置を検出する事を特徴とする埋設塗覆装鋼管の
塗膜損傷検出方法。
1. Between the buried coated steel pipe and the ground electrode in the ground
A low-frequency AC voltage related to a random signal or a pseudo-random signal is applied, and the potential difference between two points is detected by two electrodes arranged along the direction orthogonal to the pipe axis direction of the buried coated steel pipe. Correlation processing is performed and the position is changed to obtain the potential difference distribution on the ground surface in the direction orthogonal to the pipe axis direction of the buried coated steel pipe, and based on the potential difference distribution on the ground surface. A method for detecting coating film damage in a buried coated steel pipe, which comprises detecting a damaged position of the buried coated steel pipe.
【請求項2】 埋設塗覆装鋼管と地中の接地極との間に
ランダム信号又は擬似ランダム信号に係る低周波の交流
電圧を印加し、埋設塗覆装鋼管の任意の位置に関して、
管軸方向又は管軸に直交向に配置された一定間隔の2個
の電極の位置を、任意の位置を中心に一定間隔のメッシ
ュ状に変更し、そして、メッシュ状に変更された電極の
各位置において、埋設塗覆装鋼管の管軸方向又は管軸方
向に対して直交する方向の2点間の電位差を検出して
関処理を行い、その相関処理された電位差信号により得
られる任意の位置周辺の地表面の電位差分布に基づいて
埋設塗覆装鋼管の損傷位置を検出する事を特徴とする埋
設塗覆装鋼管の塗膜損傷検出方法。
2. Between the buried coated steel pipe and the ground electrode in the ground
Applying a low-frequency AC voltage related to a random signal or a pseudo-random signal, with respect to any position of the buried coated steel pipe,
The positions of two electrodes arranged at regular intervals in the tube axis direction or in the direction orthogonal to the tube axis are changed to a mesh shape at constant intervals around an arbitrary position, and each of the electrodes changed to the mesh shape. At the position, the phase difference is detected by detecting the potential difference between the two points of the buried coated steel pipe in the pipe axis direction or in the direction orthogonal to the pipe axis direction.
Of the buried coated steel pipe, which is characterized in that the damaged position of the buried coated steel pipe is detected based on the potential difference distribution on the ground surface around an arbitrary position obtained by the correlation processing and the correlated potential difference signal . Coating film damage detection method.
【請求項3】 埋設塗覆装鋼管と地中の接地極との間に
ランダム信号又は擬似ランダム信号に係る低周波の交流
電圧を印加し、埋設塗覆装鋼管の任意の位置に関して、
任意の位置に第1の電極を配置し、該電極を中心に一定
距離の円周上に第2の電極を配置し、且つ、第2の電極
の円周上の位置を変更し、第1及び第2の電極の各位置
において2点間の電位差をそれぞれ検出して相関処理を
行い、その相関処理された電位差信号により得られる任
意の位置を中心とした地表面の電位差分布に基づいて埋
設塗覆装鋼管の損傷位置を検出する事を特徴とする埋設
塗覆装鋼管の塗膜損傷検出方法。
3. Between the buried coating steel pipe and the ground electrode in the ground
Applying a low-frequency AC voltage related to a random signal or a pseudo-random signal, with respect to any position of the buried coated steel pipe,
The first electrode is arranged at an arbitrary position, the second electrode is arranged on the circumference of a constant distance with respect to the electrode, and the position on the circumference of the second electrode is changed to And the correlation processing by detecting the potential difference between the two points at each position of the second electrode.
And the coating position of the buried coated steel pipe characterized by detecting the damaged position of the buried coated steel pipe based on the potential difference distribution on the ground surface centered on an arbitrary position obtained by the correlated potential difference signal. Membrane damage detection method.
【請求項4】 埋設塗覆装鋼管と地中の接地極との間に
ランダム信号又は擬似ランダム信号に係る低周波の交流
電圧を印加し、埋設塗覆装鋼管の管軸方向に直交する方
向に複数の電極を一定間隔で配置し、その複数の電極を
埋設塗覆装鋼管の管軸方向に走査して、複数の地点間の
電位差をそれぞれ検出して相関処理を 行い、その相関処
理された電位差信号により得られる埋設塗覆装鋼管の管
軸方向に直交する方向の地表面の電位差分布に基づいて
埋設塗覆装鋼管の損傷位置を検出する事を特徴とする埋
設塗覆装鋼管の塗膜損傷検出方法。
4. Between the buried coating steel pipe and the ground electrode in the ground
A low-frequency AC voltage related to a random signal or a pseudo-random signal is applied, and a plurality of electrodes are arranged at regular intervals in the direction orthogonal to the pipe axis direction of the embedded coating steel pipe, and the multiple electrodes are embedded coating. Scan the steel pipe in the pipe axis direction, detect the potential differences between multiple points , and perform correlation processing.
The embedded coating is characterized by detecting the damage position of the embedded coating steel pipe based on the potential difference distribution on the ground surface in the direction orthogonal to the pipe axis direction of the embedded coating steel pipe obtained by the calculated potential difference signal. Method for detecting coating film damage on steel pipes.
【請求項5】 前記交流電圧から抽出した参照信号と、
前記電極間の電位差の検出信号との間で相関処理を行
い、そのピーク値を前記2点間の電位差の代表値として
電位差分布を求めることを特徴とする請求項1〜4の何
れかに記載の埋設塗覆装鋼管の塗膜損傷検出方法。
5. A reference signal extracted from the AC voltage,
The potential difference distribution is obtained by performing a correlation process with a detection signal of the potential difference between the electrodes and using the peak value as a representative value of the potential difference between the two points. Method for detecting coating film damage of buried coating steel pipe.
【請求項6】 前記交流電圧として擬似ランダム信号に
係る交流電圧を用い、そして、当該交流電圧と同一のパ
ターンの参照信号と、前記電極間の電位差の検出信号と
の間で相関処理を行い、そのピーク値を前記2点間の電
位差の代表値として電位差分布を求めることを特徴とす
る請求項1〜4の何れかに記載の埋設塗覆装鋼管の塗膜
損傷検出方法。
6. Using an AC voltage according to the pseudo-random signal as the AC voltage, and performs the reference signal of the AC voltage and the same pattern, the correlation process between the detection signal of the potential difference between the electrodes, The potential difference distribution is obtained by using the peak value as a representative value of the potential difference between the two points, and the coating film damage detection method for a buried coated steel pipe according to any one of claims 1 to 4, wherein:
JP18457698A 1998-06-30 1998-06-30 Method for detecting paint film damage on buried coated steel pipe Expired - Lifetime JP3451348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18457698A JP3451348B2 (en) 1998-06-30 1998-06-30 Method for detecting paint film damage on buried coated steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18457698A JP3451348B2 (en) 1998-06-30 1998-06-30 Method for detecting paint film damage on buried coated steel pipe

Publications (2)

Publication Number Publication Date
JP2000019156A JP2000019156A (en) 2000-01-21
JP3451348B2 true JP3451348B2 (en) 2003-09-29

Family

ID=16155632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18457698A Expired - Lifetime JP3451348B2 (en) 1998-06-30 1998-06-30 Method for detecting paint film damage on buried coated steel pipe

Country Status (1)

Country Link
JP (1) JP3451348B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522289B2 (en) * 2005-02-24 2010-08-11 大阪瓦斯株式会社 Corrosion estimation method
JP5086287B2 (en) * 2009-01-29 2012-11-28 東京瓦斯株式会社 Soundness measurement evaluation method of plastic coating in buried metal pipeline

Also Published As

Publication number Publication date
JP2000019156A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
US5828219A (en) Method of detecting faults in the insulation layer of an insulated concealed conductor
US8228078B2 (en) Method and device for monitoring and detecting the coating defects of underground or underwater pipelines
US20100039127A1 (en) System for assessing pipeline condition
US7095222B2 (en) Leak detection method and system in nonmetallic underground pipes
JP3451348B2 (en) Method for detecting paint film damage on buried coated steel pipe
JP5146360B2 (en) Method and apparatus for detecting rust in steel structures
JP4044303B2 (en) Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals
JP3007390B2 (en) Measuring method and measuring device for coating coverage area of underground pipe
US6262578B1 (en) Detection and location of current leakage paths and detection of oscillations
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JP3451349B2 (en) Method for detecting paint film damage on buried coated steel pipe
JP3180707B2 (en) Method and apparatus for detecting paint film damage position of buried steel pipe
JP3670241B2 (en) Damage monitoring device and damage monitoring method for underground pipe
JP2009244123A (en) Method and apparatus for monitoring damage on coating of underground pipe
JP2001004575A (en) Detecting method for damage of paint film on buried painted and covered steel tube
KR100508877B1 (en) method for detecting the coating defect and corrosion points of the pipelines in soil using the electrochemical impedance spectroscopy
JP3169754B2 (en) Method and apparatus for monitoring damage degree of coated steel pipe
JP2000249685A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
JP3365311B2 (en) Method and apparatus for detecting paint film damage on buried coated steel pipe
JP3932282B2 (en) Corrosion protection coating damage detection device for buried piping
JP2010271200A (en) Method for measuring resistance of coating film by fall-of-potential method
JP2000249686A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
JPH09281069A (en) Method for monitoring damage degree of coated steel pipe and method for reducing erroneous judgment
RU2582301C2 (en) Method to detect extended anode earthing device damage point
RU2290656C1 (en) Control mode of locking availability of a pipeline, equipped with cathode protection, with a chuck of underground communications

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 11

EXPY Cancellation because of completion of term