JP3451349B2 - Method for detecting paint film damage on buried coated steel pipe - Google Patents

Method for detecting paint film damage on buried coated steel pipe

Info

Publication number
JP3451349B2
JP3451349B2 JP18457798A JP18457798A JP3451349B2 JP 3451349 B2 JP3451349 B2 JP 3451349B2 JP 18457798 A JP18457798 A JP 18457798A JP 18457798 A JP18457798 A JP 18457798A JP 3451349 B2 JP3451349 B2 JP 3451349B2
Authority
JP
Japan
Prior art keywords
steel pipe
potential difference
buried
damage
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18457798A
Other languages
Japanese (ja)
Other versions
JP2000019157A (en
Inventor
浩一 手塚
幸二 藤本
修二 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP18457798A priority Critical patent/JP3451349B2/en
Publication of JP2000019157A publication Critical patent/JP2000019157A/en
Application granted granted Critical
Publication of JP3451349B2 publication Critical patent/JP3451349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、地中に埋設された
塗覆装鋼管の塗膜損傷部位を非接触で検出する埋設塗覆
装鋼管の塗膜損傷検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating film damage detection method for a buried coating steel pipe, which detects contactlessly a coating film damage portion of a coating steel pipe buried in the ground.

【0002】[0002]

【従来の技術】地中に埋設された塗覆装鋼管の塗膜損傷
(欠陥)を地表面より非接触で検出する方法として、例
えば塗覆装鋼管と地中の接地極との間に交流電圧を印加
して、鋼管中に電流を流し、塗覆装損傷から地中に流れ
出た電流により地表面に生成される電位分布を計測する
ことにより損傷位置を計測する、電位法と呼ばれる方法
がある。実際の電位法による塗膜損傷検出においては、
埋設鋼管に設けられた電気防食用ターミナルとMg陽極
(接地極)とを利用し、埋設鋼管と地中の接地極との間
に低周波の正弦波信号を印加し、低周波の交流電流を流
す。そして、塗覆装鋼管に沿って地表面に一定間隔の2
個の電極を配置し、その2個の電極を埋設塗覆装鋼管に
沿って走査し、2個の電極により2点の電位差信号を順
次検出して、その信号の検波を行う事により電位差分布
の強度及び位相の測定を行う。そして、地表面の電位差
分布のパターンから損傷位置を特定する。
2. Description of the Related Art As a method for detecting a coating film damage (defect) of a coated steel pipe buried in the ground in a non-contact manner from the ground surface, for example, an alternating current is applied between the coated steel pipe and a grounding electrode in the ground. There is a method called the potential method that measures the damage position by applying a voltage, passing a current through the steel pipe, and measuring the potential distribution generated on the ground surface by the current flowing into the ground from the coating damage. is there. In coating film damage detection by the actual potential method,
By using the cathodic protection terminal and the Mg anode (ground electrode) provided in the buried steel pipe, a low-frequency sine wave signal is applied between the buried steel pipe and the ground electrode in the ground to generate a low-frequency AC current. Shed. Then, along the coated steel pipe, 2 at regular intervals on the ground surface.
Distribute the potential difference by arranging two electrodes, scanning the two electrodes along the buried coated steel pipe, detecting the potential difference signals at two points by the two electrodes, and detecting the signals. The intensity and phase of the. Then, the damaged position is specified from the pattern of the potential difference distribution on the ground surface.

【0003】[0003]

【発明が解決しようとする課題】従来の埋設塗覆装鋼管
の塗膜損傷検出方法においては、上述のように、2個の
電極を埋設塗覆装鋼管に沿って走査して、この2個の電
極により検出される地表面の電位差分布のパターンか
ら、損傷位置を特定している。しかし、地表面から走査
しているため、塗覆装鋼管の損傷が管体円周方向のどの
位置にあるかを判断することが出来ないという問題点が
ある。さらに、地表面で検出される電位差の強度により
損傷部位からの流出電流及び損傷面積の推定を行う事が
可能であるが、損傷の深度が確定できないため、正確な
損傷面積の推定が困難であるという問題点がある。ま
た、埋設塗覆装鋼管の損傷が、管体の下面位置にある場
合には損傷上部に存在する管体の影響で地表面で検出さ
れる電位差信号が小さくなるため、管体下面の微小な損
傷の検知が困難であるという問題点もある。
In the conventional coating film damage detecting method for a buried coating steel pipe, as described above, the two electrodes are scanned along the buried coating steel pipe and the two electrodes are scanned. The damage position is identified from the pattern of the potential difference distribution on the ground surface detected by the electrodes of. However, since scanning is performed from the ground surface, there is a problem that it is not possible to determine at which position in the circumferential direction of the pipe body the damage of the coated steel pipe is. Furthermore, it is possible to estimate the outflow current from the damaged area and the damaged area based on the strength of the potential difference detected on the ground surface, but it is difficult to accurately estimate the damaged area because the depth of damage cannot be determined. There is a problem. In addition, when the damage of the buried coated steel pipe is at the lower surface of the pipe body, the potential difference signal detected on the ground surface becomes small due to the influence of the pipe body existing above the damage body, so that the minute difference of the bottom surface of the pipe body There is also a problem that it is difficult to detect damage.

【0004】本発明は、上記の問題点を解決するために
なされたものであり、埋設塗覆装鋼管の管体下面の微小
な損傷の検出を可能とするとともに、円周方向の位置を
特定することを可能にした埋設塗覆装鋼管の塗膜損傷検
出方法を提供するものである。
The present invention has been made in order to solve the above-mentioned problems, and enables the detection of minute damages on the lower surface of the pipe body of the buried coating steel pipe and specifies the position in the circumferential direction. The present invention provides a method for detecting coating film damage of a buried coating steel pipe, which enables the above.

【0005】[0005]

【課題を解決するための手段】(1)本発明の1つの態
様による埋設塗覆装鋼管の塗膜損傷検知方法は、埋設塗
覆装鋼管と地中の接地極との間に低周波の交流電圧を印
加し、埋設塗覆装鋼管の近傍に設けられた縦孔内にその
深度方向に配置された2個の電極により2点間の電位差
を検出するとともに、その2個の電極の縦孔内の深度を
変更することによって、縦孔に沿った地中の電位差分布
を求め、その電位差分布に基づいて埋設塗覆装鋼管の損
傷位置を検出する。
(1) A coating film damage detection method for a buried coating steel pipe according to one aspect of the present invention is a method of detecting a low frequency between a buried coating steel pipe and a grounding electrode in the ground. An AC voltage is applied, and a potential difference between two points is detected by two electrodes arranged in the depth direction in a vertical hole provided near the buried coating steel pipe, and the vertical direction of the two electrodes is detected. By changing the depth in the hole, the potential difference distribution in the ground along the vertical hole is obtained, and the damaged position of the buried coated steel pipe is detected based on the potential difference distribution.

【0006】本発明の1つの態様による塗膜損傷検出方
法では、例えば埋設塗覆装鋼管の一点と地中の接地極と
の間に低周波の交流電圧を印加し、鋼管中に交流電流を
流入させる。鋼管の塗覆装に損傷があり鋼管自体と地中
とが接触していると、鋼管を流れる電流の一部が地中に
流出し、この損傷部から流出する電流により電位分布が
発生する。
In the coating film damage detection method according to one aspect of the present invention, for example, a low-frequency AC voltage is applied between one point of the buried coating steel pipe and the grounding electrode in the ground to generate an AC current in the steel pipe. Inflow. When the coating of the steel pipe is damaged and the steel pipe itself and the ground are in contact with each other, a part of the current flowing through the steel pipe flows into the ground, and the current flowing out from the damaged portion causes a potential distribution.

【0007】従来の損傷検出試験においては、一定間隔
の2個の電極を地表面に配置して2電極間の電位差を計
測し、損傷からの流出電流により生成される電位分布に
起因する電位差を検出する。図8に示されるように地表
面における電位分布は損傷の直上位置(損傷からの距離
が最小の位置)を中心に直上位置が最大となり、損傷部
位からの距離の増加につれ減少していく局所的な電位分
布となる。地表面に設置された2個の電極により検出さ
れる電位差は、各電極の位置が損傷を中心に等距離の位
置では電位差は0となり、他の位置では2個の各電極の
損傷位置からの距離の差により+または−の電位差が計
測されるので、これらの電位差の位置による変化(電位
差分布)から損傷部位を求める。
In the conventional damage detection test, two electrodes with a constant interval are arranged on the ground surface, the potential difference between the two electrodes is measured, and the potential difference due to the potential distribution generated by the outflow current from the damage is measured. To detect. As shown in Fig. 8, the potential distribution on the ground surface is maximized at the position directly above the damage (the position where the distance from the damage is the minimum), and decreases locally as the distance from the damage increases. Potential distribution. The potential difference detected by the two electrodes installed on the ground surface is 0 when the position of each electrode is equidistant around the damage, and at other positions, the potential difference from the damaged position of each of the two electrodes is Since a + or-potential difference is measured by the difference in distance, the damaged site is determined from the change in these potential differences depending on the position (potential difference distribution).

【0008】2個の電極により検出される電位差の大き
さは、埋設塗覆装鋼管の損傷から流出する電流と損傷か
ら電極までの距離により決定されるので、電極により検
出される電位差と損傷の地中深度が分かれば損傷のサイ
ズが推定できるが、地表面での計測では損傷が塗覆装鋼
管の管体円周上のどの位置にあるのか、特に上面にある
のか下面にあるのかは判定できないため、推定される損
傷サイズには塗覆装鋼管の直径に相当する深度誤差が含
まれる。
Since the magnitude of the potential difference detected by the two electrodes is determined by the current flowing out from the damage of the buried coated steel pipe and the distance from the damage to the electrode, the potential difference detected by the electrodes and the damage The size of the damage can be estimated if the depth in the ground is known, but the measurement on the ground surface determines where the damage is on the circumference of the pipe body of the coated steel pipe, especially on the upper surface or the lower surface. Therefore, the estimated damage size includes a depth error corresponding to the diameter of the coated steel pipe.

【0009】本発明においては、上述の電位法により特
定された塗覆装鋼管の損傷部位の地表面において、塗覆
装鋼管から任意の距離に縦孔を設け、縦孔内の深度方向
に一定距離間隔で配置された2個の電極を挿入して、縦
孔に沿った深度方向の電位差の検出を行う。図1に示さ
れるように縦孔に沿った深度方向の電位分布も地表面に
おける電位分布と同様に損傷からの距離が最小の位置(
深度) が最大となり、損傷からの距離の増加につれ減少
していく局所的な電位分布となるので、縦孔内での2個
の電極の位置を変化させた場合には、各電極と損傷から
の距離が等しくなる位置でその電位差が0となり、その
上下の位置においては反転した電位差が検出される。こ
の電位差分布のパターンから損傷の位置(深度)が特定
されるので、地表面での計測と組み合わせることにより
損傷の塗覆装鋼管の管体円周上の損傷位置を特定し、損
傷の大きさ(寸法)を正確に推定することが可能とな
る。
In the present invention, the above-mentioned potential method is used for special characteristics.
A vertical hole is formed at an arbitrary distance from the coated steel pipe on the ground surface of the specified coated steel pipe, and two electrodes are inserted at regular intervals in the depth direction in the vertical hole. Then, the potential difference in the depth direction along the vertical hole is detected. As shown in Fig. 1, the potential distribution in the depth direction along the vertical hole is the same as the potential distribution on the ground surface, where the distance from the damage is the minimum (
Depth) is the maximum, and there is a local potential distribution that decreases as the distance from the damage increases, so when the positions of the two electrodes in the vertical hole are changed, the The potential difference becomes 0 at the position where the distances are equal, and the inverted potential difference is detected at the upper and lower positions. Since the position of damage (depth) is specified from this potential difference distribution pattern, by combining it with the measurement on the ground surface, the damage position on the circumference of the pipe body of the coated steel pipe of damage is specified and the magnitude of damage is determined. (Dimension) can be accurately estimated.

【0010】また、地表面に設置した電極による計測で
は一般に地表面上に舗装等が施されているため、舗装面
と電極との設置状態により検出信号が減少する場合があ
る。また、埋設塗覆装鋼管と地表面との距離(鋼管の深
度)は一定であるため、計測可能な信号強度の限界によ
り検出可能な損傷の大きさも限定され、微小な損傷の検
出は困難である。さらに、損傷が埋設塗覆装鋼管の管体
下面にある場合には、損傷の上部に存在する管体の影響
により信号が抑制されるため検出可能な寸法サイズはさ
らに制限される。
In addition, in the measurement by the electrodes installed on the ground surface, since the ground surface is generally paved, the detection signal may decrease depending on the installation state of the paved surface and the electrodes. In addition, since the distance between the buried coated steel pipe and the ground surface (the depth of the steel pipe) is constant, the limit of the measurable signal strength limits the size of the damage that can be detected, making it difficult to detect minute damage. is there. Furthermore, if the damage is on the underside of the body of the buried coated steel pipe, the signal size is further suppressed due to the influence of the body of the pipe above the damage, which further limits the detectable size.

【0011】しかし、本発明によれば、縦孔内に挿入さ
れた電極により計測を行い、電極と地中とを直接接触さ
せるので安定して、効率よく電位差の検出を行うことが
できる。また、本発明では検出される電位差の強度は埋
設塗覆装鋼管から縦孔までの距離により決まるので、縦
孔を埋設塗覆装鋼管の近くに設置することにより、検出
可能な電位差強度を増加させ、より微小な損傷により生
成される電位分布に対応した電位差を検出することがで
きる。また、損傷が埋設塗覆装鋼管の下面にある場合に
おいても、管体の影響を受けずに電位差の検出を行うこ
とができるので、管体下面の損傷、特に微小な損傷を検
出することが可能となる。
However, according to the present invention, since the measurement is performed by the electrode inserted in the vertical hole and the electrode and the ground are directly contacted with each other, the potential difference can be stably and efficiently detected. Further, in the present invention, since the strength of the detected potential difference is determined by the distance from the buried coating steel pipe to the vertical hole, by installing the vertical hole near the buried coating steel pipe, the detectable potential difference strength is increased. Then, the potential difference corresponding to the potential distribution generated by the smaller damage can be detected. Further, even when the damage is on the lower surface of the buried coating steel pipe, the potential difference can be detected without being affected by the pipe body, and therefore damage on the lower face of the pipe body, particularly minute damage can be detected. It will be possible.

【0012】(2)本発明の他の態様による埋設塗覆装
鋼管の塗膜損傷検出方法は、上記(1)の検出方法にお
いて、縦孔は埋設塗覆装鋼管の管軸に対して対称な位置
に複数を設けられ、各縦孔について深度方向の電位差分
布を求めることにより埋設塗覆装鋼管の管体円周方向の
探傷位置を求める。
(2) A method for detecting coating film damage in a buried coated steel pipe according to another aspect of the present invention is the same as in the above (1), wherein the vertical hole is symmetrical with respect to the pipe axis of the buried coated steel pipe. A plurality of holes are provided at different positions, and the flaw detection position in the circumferential direction of the pipe body of the buried coated steel pipe is obtained by obtaining the potential difference distribution in the depth direction for each vertical hole.

【0013】本発明によれば、複数の縦孔内で計測され
る電位差分布は埋設塗覆装鋼管の損傷位置と、損傷から
縦孔内の電極までの距離により決まるが、縦孔は管軸に
対して対称で埋設塗覆装鋼管から等距離にあるので、埋
設塗覆装鋼管の損傷が管体の中央位置(最上部または最
下部)にある場合には対称位置にある縦孔において計測
される深度方向の電位差分布のパターンは同一となる
が、損傷が管体の左右いずれかの位置にある場合には各
縦孔で計測される電位差変化パターンは損傷が存在する
側の縦孔では大きく、損傷が存在しない側では小さくな
る。各縦孔で計測される電位差分布のパターンから損傷
の深度方向の位置と、損傷の管体の左右どちらに存在す
るかが分かるので損傷の管体上の正確な位置を特定する
ことができる。
According to the present invention, the potential difference distribution measured in the plurality of vertical holes is determined by the damage position of the buried coated steel pipe and the distance from the damage to the electrode in the vertical hole. Since it is symmetrical with respect to and is equidistant from the buried coating steel pipe, if the damage of the buried coating steel pipe is at the center position (top or bottom) of the pipe body, measure at the vertical hole at the symmetrical position. The pattern of the potential difference distribution in the depth direction is the same, but when the damage is on either the left or right side of the tubular body, the potential difference change pattern measured in each vertical hole is the same in the vertical hole on the damaged side. Large and small on the side where no damage is present. Since the position of the damage in the depth direction and the position on the left or right of the damaged tubular body can be known from the pattern of the potential difference distribution measured in each vertical hole, the accurate position on the damaged tubular body can be specified.

【0014】(3)本発明の他の態様による埋設塗覆装
鋼管の塗膜損傷検出方法は、埋設塗覆装鋼管と地中の接
地極との間に低周波の交流電圧を印加し、埋設塗覆装鋼
管の管軸に対して対称な位置に複数を設けられた複数の
縦孔の内、1つの縦孔内に第1の電極を挿入し、他の縦
孔に第2の電極を挿入し、第1及び第2の電極の地表面
からの深度を同一とした時の地中内部の電位差を検出
し、そして、第1及び第2の電極深度を変えたときに得
られる電位差分布に基づいて埋設塗覆装鋼管の損傷部位
を検出する。
(3) A coating film damage detection method for a buried coating steel pipe according to another aspect of the present invention, in which a low-frequency AC voltage is applied between the buried coating steel pipe and a grounding electrode in the ground, The first electrode is inserted into one vertical hole and the second electrode is inserted into the other vertical hole of the plurality of vertical holes provided at a position symmetrical with respect to the pipe axis of the buried coating steel pipe. , The potential difference inside the ground when the depths of the first and second electrodes from the ground surface are made the same, and the potential difference obtained when the depths of the first and second electrodes are changed Detect the damaged part of the buried coated steel pipe based on the distribution.

【0015】本発明の他の態様による塗膜損傷検知方法
では、埋設塗覆装鋼管の近傍に設けられた複数の縦孔の
内、1つの縦孔内に第1の電極を挿入し、他の縦孔に第
2の電極を挿入し、第1及び第2の電極の地表面から任
意の深度に設置して電極間の電位差を計測する。各電極
位置(深度)における電位は損傷の位置と損傷と電極と
の距離により決まるので、第1及び第2の電極深度を変
えたときに得られる電位差分布の変化パターンから埋設
塗覆装鋼管の管体上の損傷部位を求める事ができる。
In the coating film damage detection method according to another aspect of the present invention, the first electrode is inserted into one of the plurality of vertical holes provided in the vicinity of the buried coating steel pipe, and The second electrode is inserted into the vertical hole of, and installed at an arbitrary depth from the ground surface of the first and second electrodes, and the potential difference between the electrodes is measured. Since the potential at each electrode position (depth) is determined by the damage position and the distance between the damage and the electrode, the change pattern of the potential difference distribution obtained when the first and second electrode depths are changed is used to calculate the buried coated steel pipe. The damaged area on the tube can be determined.

【0016】(4)本発明の他の態様による埋設塗覆装
鋼管の塗膜損傷検出方法は、上記(1)〜(3)の検出
方法において、埋設塗覆装鋼管と地中の接地極との間に
印加される交流電圧として、ランダム信号又は擬似ラン
ダム信号に係る交流電圧を用い、そして、交流電圧から
抽出した参照信号と、電極間の電位差の検出信号との間
で相関処理を行い、そのピーク値を2点間の電位差の代
表値として電位差分布を求める。 (5)本発明の他の態様による埋設塗覆装鋼管の塗膜損
傷検出方法は、上記(1)〜(3)の検出方法におい
て、埋設塗覆装鋼管と地中の接地極との間に印加される
交流電圧として、擬似ランダム信号に係る交流電圧を用
い、そして、交流電圧と同一のパターンの参照信号と、
電極間の電位差の検出信号との間で相関処理を行い、そ
のピーク値を2点間の電位差の代表値として電位差分布
を求める。
(4) A method for detecting coating film damage of a buried coating steel pipe according to another aspect of the present invention is the same as the above-mentioned detection methods (1) to (3), wherein the buried coating steel pipe and the grounding electrode in the ground. As an alternating voltage applied between and, an alternating voltage related to a random signal or a pseudo-random signal is used, and a reference signal extracted from the alternating voltage and a correlation signal between the detection signal of the potential difference between the electrodes are processed. Then, the potential difference distribution is obtained by using the peak value as a representative value of the potential difference between the two points. (5) A coating film damage detection method for a buried coating steel pipe according to another aspect of the present invention is the method for detecting a coating film damage of a buried coating steel pipe between a buried coating steel pipe and a grounding electrode in the ground according to the above-mentioned detection methods. As the AC voltage applied to the, using the AC voltage according to the pseudo-random signal, and a reference signal of the same pattern as the AC voltage,
Correlation processing is performed with the detection signal of the potential difference between the electrodes, and the peak value is used as the representative value of the potential difference between the two points to obtain the potential difference distribution.

【0017】本発明の他の態様による上記(4)(5)
の埋設塗覆装鋼管の塗膜損傷検出方法においては、埋設
塗膜装管に印加する交流信号としてランダム信号又は擬
似ランダム信号を使用して相関処理を行うことにより、
ノイズ成分を除去してS/Nを改善しているので、埋設
塗膜装鋼管の損傷位置を高感度で精度良く、確実に検出
することができる。
According to another aspect of the present invention, the above (4) and (5)
In the coating film damage detection method of the embedded coating steel pipe, by performing a correlation process using a random signal or a pseudo-random signal as an AC signal applied to the embedded coating pipe,
Since the noise component is removed and the S / N is improved, it is possible to detect the damaged position of the buried coating steel pipe with high sensitivity, high accuracy and certainty.

【0018】[0018]

【発明の実施の形態】実施形態1.図1(A)(B)は
本発明の実施形態1に係る埋設塗覆装鋼管の塗膜損傷検
出方法が適用された装置の構成を示した図及びその断面
説明図である。図1(A)(B)において、1,2は電
極、3は埋設塗覆装鋼管、4は損傷、5は検出装置、6
はケーブル、7は給電装置、8はターミナル、9は接地
極、10は縦孔を示している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. 1 (A) and 1 (B) are a diagram showing a configuration of an apparatus to which a coating film damage detection method for a buried coating steel pipe according to a first embodiment of the present invention is applied and a sectional explanatory view thereof. In FIGS. 1 (A) and 1 (B), 1 and 2 are electrodes, 3 is a buried coated steel pipe, 4 is damage, 5 is a detection device, and 6
Is a cable, 7 is a power feeding device, 8 is a terminal, 9 is a ground electrode, and 10 is a vertical hole.

【0019】本実施形態においては、給電装置7より埋
設塗覆装鋼管3のターミナル8と接地極9の間に低周波
(440Hz)の交流電圧を印加し、埋設塗覆装鋼管3
に交流電流を流入させる。埋設塗覆装鋼管3に流入する
電流はターミナル8と接地極9との間に印加する電圧の
振幅と、ターミナル8と接地極9との間の抵抗(鋼管の
対地接地抵抗)により決まり、埋設塗覆装鋼管9の埋設
環境等により異なる。埋設塗覆装鋼管3を流れる電流の
一部は損傷4を介して地中に流出するので、鋼管を流れ
る電流値は給電点からの距離にしたがって減少していく
ことになるが、通常の損傷検出試験においては数kmの
範囲にわたって損傷検出が可能なレベルの電流値が維持
できるように、電流値が1〜2Aとなるようにターミナ
ル8から給電を行っている。
In this embodiment, a low-frequency (440 Hz) AC voltage is applied between the terminal 8 and the ground electrode 9 of the buried coated steel pipe 3 from the power feeding device 7 to make the buried coated steel pipe 3
AC current is flown into. The current flowing into the buried coating steel pipe 3 is determined by the amplitude of the voltage applied between the terminal 8 and the ground electrode 9 and the resistance between the terminal 8 and the ground electrode 9 (ground resistance of the steel pipe to the ground). It differs depending on the burying environment of the coated steel pipe 9. Since a part of the current flowing through the buried coating steel pipe 3 flows out into the ground through the damage 4, the value of the current flowing through the steel pipe decreases with the distance from the feeding point. In the detection test, power is supplied from the terminal 8 so that the current value is 1 to 2 A so that the current value at a level where damage can be detected can be maintained over a range of several km.

【0020】損傷部から流出する電流値は、損傷部位に
おける鋼管の対地電圧値と、損傷と地中との接触抵抗と
により定まり、また、一般に損傷面積に比例する。損傷
上部の地表面には損傷から流出する電流により電位分布
が生成される。この電位分布を検出することにより地表
面において塗覆装鋼管の損傷部位を特定する。電位分布
は損傷から流出する電流値、損傷の深度、地中の電気特
性により定まり、電流と同様に損傷面積に比例する。ま
た、塗覆装鋼管3に流通しているのは交流電流であるの
で生成される電位分布も電流周波数と同一の周波数で変
動する。
The current value flowing out from the damaged portion is determined by the ground voltage value of the steel pipe at the damaged portion and the contact resistance between the damage and the ground, and is generally proportional to the damaged area. A potential distribution is generated on the ground surface above the damage by the current flowing out from the damage. By detecting this potential distribution,
Identify the damaged part of the coated steel pipe on the surface. The potential distribution is determined by the current value flowing out from the damage, the depth of damage, and the electrical characteristics of the ground, and is proportional to the damage area like the current. In addition, since the alternating current is flowing in the coated steel pipe 3, the generated potential distribution also fluctuates at the same frequency as the current frequency.

【0021】本実施形態においては、例えば埋設塗覆鋼
管3の深度を2mとし、特定された塗覆装鋼管の損傷部
位の地表面において、埋設塗覆装鋼管3から1m距離の
位置に直径φ60mmの縦孔10を深度3.5mまで掘
削し、縦孔内に電極1,2を挿入する。電極1,2はそ
の間隔が1mになるように固定し、各電極はケーブル6
を介して検出装置5に接続され、電極1,2間の電位差
に応じた交流信号を検出装置5に入力する。ここで、非
導電性のロッドに金属電極1,2を固定し、縦孔内に挿
入し、電極1,2と地中との接触を維持するため縦孔内
には水を注入している。
In this embodiment, for example, the depth of the buried coated steel pipe 3 is set to 2 m, and the damaged portion of the specified coated steel pipe is covered.
A vertical hole 10 having a diameter of 60 mm is drilled to a depth of 3.5 m at a position 1 m away from the buried coating steel pipe 3 on the ground surface, and electrodes 1 and 2 are inserted into the vertical hole. The electrodes 1 and 2 are fixed so that the distance between them is 1 m, and each electrode is a cable 6
Is connected to the detection device 5 via an input terminal and an AC signal corresponding to the potential difference between the electrodes 1 and 2 is input to the detection device 5. Here, the metal electrodes 1 and 2 are fixed to the non-conductive rod, inserted into the vertical holes, and water is injected into the vertical holes to maintain the contact between the electrodes 1 and 2 and the ground. .

【0022】検出装置5では電極1,2により検出され
た交流信号の検波を行い、その強度及び位相を計測す
る。本実施形態では縦孔内での電極位置を深度方向に変
化させ、検出電位差信号の強度及び位相の変化を観察す
ると、電極の位置により検出電位差は変化し、各電極が
損傷から等距離にある場合には0になり、上下の位置に
おいて電位差信号が反転する結果が得られ、損傷が存在
することが確認され、検出電位差が0となる位置から損
傷の位置(深度)が特定された。
The detection device 5 detects the AC signal detected by the electrodes 1 and 2 and measures its intensity and phase. In this embodiment, when the electrode position in the vertical hole is changed in the depth direction and changes in the intensity and phase of the detected potential difference signal are observed, the detected potential difference changes depending on the position of the electrode, and each electrode is equidistant from the damage. In this case, the result was 0, and the result that the potential difference signal was inverted at the upper and lower positions was obtained, and it was confirmed that there was damage, and the position (depth) of damage was specified from the position where the detected potential difference was 0.

【0023】また、本実施形態では縦孔位置を鋼管から
1mとしたが、縦孔の距離を鋼管により近づけることに
より検出電位差信号強度を増加することが可能であり、
通常の地表面からの探査においては検出できなかった微
小な損傷や、管体下面に存在する損傷を検出することが
可能である。また、本実形態では電極の間隔を1mとし
たが、地中での電位分布パターンに合わせ電極間隔を変
えて計測することによりより効率よく電位差信号の計測
を行うことが可能である。
Further, in the present embodiment, the vertical hole position is set to 1 m from the steel pipe, but it is possible to increase the detected potential difference signal intensity by making the vertical hole closer to the steel pipe.
It is possible to detect minute damage that could not be detected by ordinary exploration from the ground surface or damage existing on the lower surface of the pipe. Further, in the present embodiment, the electrode interval is set to 1 m, but the potential difference signal can be more efficiently measured by changing the electrode interval in accordance with the potential distribution pattern in the ground.

【0024】実施形態2.図2は本発明の実施形態2に
係る埋設塗覆装鋼管の塗膜損傷検出方が適用された装置
の構成を示した図である。本実施形態では、埋設塗覆装
鋼管3の管軸を中心に対称な等距離の位置に縦孔10を
2つ設け、各縦孔内にそれぞれ2個の電極1,2を挿入
して深さ方向に移動させながら電位差の計測を行う。例
えば、各縦孔10の位置は埋設塗覆装鋼管3から1mの
位置とし、挿入する電極の間隔も1mとする。電極1,
2により縦孔内で計測される電位差信号の深度方向のパ
ターンは、埋設塗覆装鋼管3の損傷がある管体の側面の
電極の方の電位差信号の強度が大きくなり、これより損
傷が電位差信号の大きな縦孔側にあると判断され、さら
に、電位差分布のパターンから深度方向の位置が特定さ
れるので、損傷があった場合には、埋設塗覆装鋼管の円
周上の損傷位置を求める事ができる。
Embodiment 2. FIG. 2 is a diagram showing a configuration of an apparatus to which a coating film damage detection method for a buried coating steel pipe according to a second embodiment of the present invention is applied. In the present embodiment, two vertical holes 10 are provided at positions equidistant from each other about the pipe axis of the buried coating steel pipe 3, and two electrodes 1 and 2 are inserted into each vertical hole to form a deep hole. The potential difference is measured while moving in the vertical direction. For example, the position of each vertical hole 10 is 1 m from the buried coating steel pipe 3, and the interval between the electrodes to be inserted is also 1 m. Electrode 1,
In the depth direction pattern of the potential difference signal measured in the vertical hole by 2, the intensity of the potential difference signal at the electrode on the side surface of the pipe body having the damage of the buried coating steel pipe 3 becomes larger, and the damage causes the potential difference. It is determined that the signal is on the side of a vertical hole with a large signal, and the position in the depth direction is specified from the pattern of the potential difference distribution, so if there is damage, the position of damage on the circumference of the buried coated steel pipe is determined. You can ask.

【0025】実施形態3.図3は本発明の実施形態3に
係る埋設塗覆装鋼管の塗膜損傷検出方法が適用された装
置の構成を示した図である。本実施形態では、埋設塗覆
装鋼管3の管軸を中心に対称な等距離の位置に縦孔10
を2つ設け、各縦孔内に1個の電極1,2をそれぞれ挿
入して、電位差の計測を行った。各縦孔10の位置は埋
設塗覆装鋼管から1mの位置とする。各電極位置(深
度)における電位は損傷部位と電極との距離により決ま
るので、電極1,2の深度を同時に変えたときに得られ
る電位差分布のパターンから埋設塗覆装鋼管の円周上の
損傷位置を求める事ができる。
Embodiment 3. FIG. 3 is a diagram showing a configuration of an apparatus to which a coating film damage detection method for a buried coating steel pipe according to a third embodiment of the present invention is applied. In this embodiment, the vertical holes 10 are provided at equidistant positions symmetrical about the pipe axis of the buried coating steel pipe 3.
Two electrodes were provided, and one electrode 1 and 2 was inserted into each vertical hole, and the potential difference was measured. The position of each vertical hole 10 is 1 m from the buried coating steel pipe. Since the potential at each electrode position (depth) is determined by the distance between the damaged part and the electrode, the potential damage distribution pattern obtained when the depths of electrodes 1 and 2 are changed at the same time indicates the damage on the circumference of the buried coated steel pipe. The position can be calculated.

【0026】実施形態4.図4は本発明の実施形態4に
係る埋設塗覆装鋼管の塗膜損傷検出方法が適用された装
置の構成図である。本実施形態は、給電装置7からター
ミナル8と接地極9の間に印加される交流電圧としてM
系列信号を用いた例であり、電極1,2等の配置及び走
査については上述の実施形態1〜3のものが適用される
ものとし、ここではM系列信号の処理を中心に説明す
る。
Embodiment 4. FIG. 4 is a configuration diagram of an apparatus to which the coating film damage detection method for a buried coating steel pipe according to Embodiment 4 of the present invention is applied. In the present embodiment, the AC voltage applied from the power feeding device 7 between the terminal 8 and the ground electrode 9 is M
This is an example using a series signal, and the arrangement and scanning of the electrodes 1 and 2 and the like described in the first to third embodiments are applied, and here, the processing of the M series signal will be mainly described.

【0027】給電装置7はM系列信号発生器21及び電
力増幅器22から構成されている。また、検出装置5は
M系列参照信号発生器23及び相関処理部24から構成
されている。M系列信号は、図5に示されるようなフィ
ードバックループを持つシフトレジスタによって発生さ
せることが可能である。図5に示される7段のシフトレ
ジスタ25によって得られる符号長は、27 −1=12
7である。
The power supply device 7 is composed of an M-sequence signal generator 21 and a power amplifier 22. The detection device 5 is composed of an M-sequence reference signal generator 23 and a correlation processing unit 24. The M-sequence signal can be generated by a shift register having a feedback loop as shown in FIG. The code length obtained by the 7-stage shift register 25 shown in FIG. 5 is 2 7 −1 = 12.
7

【0028】図6(a)(b)はM系列信号の信号波形
とその自己相関信号波形の例を示す図である。図6にお
いて、横軸は時間、縦軸は信号の大きさ、τaはシフト
レジスタに与えられるクロックの周期である。
FIGS. 6A and 6B are diagrams showing examples of the signal waveform of the M-sequence signal and its autocorrelation signal waveform. In FIG. 6, the horizontal axis represents time, the vertical axis represents the signal magnitude, and τa is the cycle of the clock given to the shift register.

【0029】M系列信号は、周期性のある擬似ランダム
信号であり、ここでは符号長63の周期性を持つことか
ら、自己相関をとると図6(b)に示すようなピークを
周期的に持つ。このことから、他の信号との相互相関を
とれば、当該M系列信号とパターンの一致する信号のみ
が高いピーク値を有する相互相関値を持つことがわか
る。本実施形態においては、この性質を利用してノイズ
信号の低減を図るものである。
The M-sequence signal is a pseudo-random signal having a periodicity, and has a periodicity of a code length of 63 here. Therefore, when the autocorrelation is taken, peaks as shown in FIG. To have. From this, it can be seen that when the cross-correlation with other signals is taken, only the signal whose pattern matches the M-sequence signal has the cross-correlation value having a high peak value. In the present embodiment, this property is utilized to reduce the noise signal.

【0030】図4において、M系列信号発生器21から
のM系列信号は、電力増幅器22で増幅されて、埋設塗
膜装鋼管3と接地極9との間に電圧として印加される。
この状態で電極1,2の位置を上述の実施形態1〜3に
示されるように変更し、電極1,2はそれぞれが接触し
ている地面の電位を検出する。検出装置5はこれらの電
位差を取り込む。検出装置5のM系列参照信号発生器2
3は、M系列信号発生器21とは電気的に独立している
が、同じパルスパターンのM系列信号を発生するように
されている。
In FIG. 4, the M series signal from the M series signal generator 21 is amplified by the power amplifier 22 and applied as a voltage between the buried coating steel pipe 3 and the ground electrode 9.
In this state, the positions of the electrodes 1 and 2 are changed as shown in the first to third embodiments, and the electrodes 1 and 2 detect the potential of the ground with which they are in contact. The detection device 5 takes in these potential differences. M-series reference signal generator 2 of detection device 5
Although 3 is electrically independent of the M-sequence signal generator 21, it is configured to generate an M-sequence signal having the same pulse pattern.

【0031】検出装置5の相関処理部24は、このM系
列参照信号発生器23からの参照信号と、電極1,2間
の電位差信号(検出信号)との相互相関演算を行う。即
ち、検出信号をf(t)、参照信号をg(t)とする
と、相互相関演算結果は以下のように示される。
The correlation processing section 24 of the detection device 5 performs a cross-correlation operation between the reference signal from the M-series reference signal generator 23 and the potential difference signal (detection signal) between the electrodes 1 and 2. That is, when the detection signal is f (t) and the reference signal is g (t), the cross-correlation calculation result is shown as follows.

【0032】[0032]

【数1】 ここに、Tは繰り返し周期である。[Equation 1] Here, T is a repetition period.

【0033】検出信号f(t)にはM系信号成分が含ま
れ、参照信号g(t)はこれと同じパターンのM系列信
号であるので、相互相関演算結果は、参照信号と同じ周
期のピーク値を有する。図7に相互相関演算結果の一例
を示す。図7において、横軸は(1)式におけるτ、縦
軸は(1)式におけるΦfg(τ)を示す。このピーク値
を検出して検出信号の代表値とすることにより、ノイズ
信号を抑制した高精度の電位差検出ができる。そして、
この代表値を用いて処理を行うことにより、塗膜の損傷
部位を高精度で確実に検出できる。
Since the detection signal f (t) contains an M-system signal component and the reference signal g (t) is an M-sequence signal having the same pattern as this, the cross-correlation calculation result has the same cycle as the reference signal. It has a peak value. FIG. 7 shows an example of the cross-correlation calculation result. In FIG. 7, the horizontal axis represents τ in equation (1), and the vertical axis represents Φfg (τ) in equation (1). By detecting this peak value and using it as the representative value of the detection signal, it is possible to detect the potential difference with high accuracy while suppressing the noise signal. And
By performing processing using this representative value, the damaged portion of the coating film can be reliably detected with high accuracy.

【0034】この処理方法は、電位差検出においてノイ
ズ成分が抑制されているので、高精度で高感度な検出が
可能となっている。この処理方法を行うには、従来公知
である回路を使用すればよい。たとえば、電位差がゼロ
クロスする点を検出する回路による方法、電位差に閾値
を設け、電位差の絶対値がこの閾値を超えた後でゼロク
ロスする点を検出する回路による方法、正の電位差が最
大値を示す点と負の電位差が最大値を示す点との中点を
検出する回路による方法等がある。
Since this processing method suppresses the noise component in the potential difference detection, it is possible to perform detection with high accuracy and high sensitivity. A conventionally known circuit may be used to perform this processing method. For example, a circuit that detects the point where the potential difference crosses zero, a method that sets a threshold value for the potential difference, and a circuit that detects the point that crosses zero after the absolute value of the potential difference exceeds this threshold, and the positive potential difference indicates the maximum value. There is a method using a circuit that detects the midpoint between the point and the point where the negative potential difference shows the maximum value.

【0035】なお、上述の実施形態はM系列信号を用い
た例について説明したが、印加する交流電圧にランダム
信号を用いることもできる。その場合には、印加する交
流電圧からランダム信号を取り出してそれを参照信号と
して使用する。
In the above embodiment, an example using the M-sequence signal has been described, but a random signal can be used as the AC voltage to be applied. In that case, a random signal is extracted from the applied AC voltage and used as a reference signal.

【0036】[0036]

【発明の効果】以上のように本発明によれば、縦孔内に
挿入した電極により埋設塗覆装鋼管に存在する損傷によ
り生成される電位分布に対応した電位差分布を計測して
損傷の深度及び/又は埋設塗覆装鋼管の管体円周上の位
置を正確に計測し、損傷の寸法を正確に推定することが
可能となる。また、縦孔位置を鋼管に対して近づければ
検出電位差信号の強度を増加させ、微小な損傷や管体下
面に存在する通常の地表面からの計測では検出が困難な
損傷を検出することも可能となる。更に、埋設塗膜装管
に印加する交流電圧としてランダム信号又は擬似ランダ
ム信号に係る電圧を使用して相関処理を行うことによ
り、ノイズ成分を除去してS/Nを改善しているので、
埋設塗膜装鋼管の塗膜損傷部位を高感度で精度良く、確
実に検出することができる。
As described above, according to the present invention, the depth of damage is measured by measuring the potential difference distribution corresponding to the potential distribution generated by the damage existing in the buried coated steel pipe by the electrode inserted in the vertical hole. And / or it becomes possible to accurately measure the position of the buried coated steel pipe on the circumference of the pipe body and to accurately estimate the size of the damage. In addition, if the vertical hole position is made closer to the steel pipe, the strength of the detected potential difference signal is increased, and it is possible to detect minute damage or damage that is difficult to detect by ordinary measurement on the lower surface of the pipe body. It will be possible. Furthermore, by performing correlation processing using a voltage related to a random signal or a pseudo-random signal as an AC voltage applied to the embedded coating film pipe, noise components are removed and S / N is improved.
It is possible to detect a damaged portion of the coating film of the buried coating steel pipe with high sensitivity, accuracy and reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態1に係る埋設塗覆装鋼管の塗
膜損傷位置検出方法が適用された装置の構成図及びその
断面説明図である。
FIG. 1 is a configuration diagram of a device to which a coating film damage position detecting method for a buried coating steel pipe according to a first embodiment of the present invention is applied and a cross-sectional explanatory view thereof.

【図2】本発明の実施形態2に係る埋設塗覆装鋼管の塗
膜損傷位置検出方法が適用された装置の構成図である。
FIG. 2 is a configuration diagram of an apparatus to which a coating film damage position detecting method for a buried coating steel pipe according to a second embodiment of the present invention is applied.

【図3】本発明の実施形態3に係る埋設塗覆装鋼管の塗
膜損傷位置検出方法が適用された装置の構成図である。
FIG. 3 is a configuration diagram of an apparatus to which a coating film damage position detection method for a buried coating steel pipe according to a third embodiment of the present invention is applied.

【図4】本発明の実施形態4に係る埋設塗覆装鋼管の塗
膜損傷位置検出方法が適用された装置の構成図である。
FIG. 4 is a configuration diagram of an apparatus to which a coating film damage position detecting method for a buried coating steel pipe according to a fourth embodiment of the present invention is applied.

【図5】M系列信号発生用シフトレジスタの例を示す図
である。
FIG. 5 is a diagram showing an example of an M-sequence signal generation shift register.

【図6】M系列信号波形とその自己相関信号波形の例を
示す図である。
FIG. 6 is a diagram showing an example of an M-sequence signal waveform and its autocorrelation signal waveform.

【図7】図4の実施形態による参照信号と検出信号との
相関波形の例を示す図である。
7 is a diagram showing an example of a correlation waveform between a reference signal and a detection signal according to the embodiment of FIG.

【図8】従来方法の動作を説明するための説明図であ
る。
FIG. 8 is an explanatory diagram for explaining the operation of the conventional method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千葉 修二 神奈川県横浜市鶴見区小野町88番地 日 本鋼管工事株式会社内 (56)参考文献 特開 平10−239267(JP,A) 特開 昭63−100365(JP,A) 特開 昭63−20555(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/00 - 27/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Chiba 88 Ono-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Nihon Steel Pipe Works Co., Ltd. (56) References JP-A-10-239267 (JP, A) JP-A 63-100365 (JP, A) JP-A 63-20555 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 27/00-27/24

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 埋設塗覆装鋼管と地中の接地極との間に
低周波の交流電圧を印加し、埋設塗覆装鋼管の近傍に設
けられた縦孔内にその深度方向に配置された2個の電極
により2点間の電位差を検出するとともに、そして、そ
の2個の電極の縦孔内の深度を変更することによって、
縦孔に沿った地中の電位差分布を求め、その電位差分布
に基づいて埋設塗覆装鋼管の損傷位置を検出することを
特徴とする埋設塗覆装鋼管の塗膜損傷検出方法。
1. A low-frequency AC voltage is applied between the buried coating steel pipe and a grounding electrode in the ground, and is arranged in the depth direction in a vertical hole provided near the buried coating steel pipe. By detecting the potential difference between two points with two electrodes, and changing the depth in the vertical hole of the two electrodes,
A method for detecting coating film damage in an embedded steel pipe covered with coating, wherein the potential difference distribution in the ground along a vertical hole is obtained, and the position of damage to the embedded steel pipe coated is detected based on the potential difference distribution.
【請求項2】 前記縦孔は埋設塗覆装鋼管の管軸に対し
て対称な位置に複数を設けられ、各縦孔について深度方
向の電位差分布を求めることにより埋設塗覆装鋼管の管
体円周方向の損傷位置を求めることを特徴とする前記第
1項記載の埋設塗覆装鋼管の塗膜損傷検出方法。
2. A pipe body of a buried coated steel pipe, wherein a plurality of said vertical holes are provided at positions symmetrical with respect to the pipe axis of the buried coated steel pipe, and the potential difference distribution in the depth direction is obtained for each vertical hole. The method for detecting coating film damage of a buried coating steel pipe according to claim 1, wherein a damage position in the circumferential direction is obtained.
【請求項3】 埋設塗覆装鋼管と地中の接地極との間に
低周波の交流電圧を印加し、埋設塗覆装鋼管の管軸に対
して対称な位置に複数を設けられた複数の縦孔の内、1
つの縦孔内に第1の電極を挿入し、他の縦孔に第2の電
極を挿入し、第1及び第2の電極の地表面からの深度を
同一とした時の地中内部の電位差を検出し、そして、第
1及び第2の電極深度を変えたときに得られる電位差分
布に基づいて埋設塗覆装鋼管の損傷位置を検出すること
を特徴とする埋設塗覆装鋼管の塗膜損傷検出方法。
3. A plurality of a plurality of pipes are provided at positions symmetrical with respect to the pipe axis of the buried coating steel pipe by applying a low-frequency alternating voltage between the buried coating steel pipe and a grounding electrode in the ground. 1 of the vertical holes
The potential difference inside the ground when the first electrode is inserted into one vertical hole, the second electrode is inserted into the other vertical hole, and the depths from the ground surface of the first and second electrodes are the same. Of the embedded coating-coated steel pipe based on the potential difference distribution obtained when the first and second electrode depths are changed, and the coating film of the embedded coating-coated steel pipe is characterized by Damage detection method.
【請求項4】 埋設塗覆装鋼管と地中の接地極との間に
印加される交流電圧として、ランダム信号又は擬似ラン
ダム信号に係る交流電圧を用い、そして、前記交流電圧
から抽出した参照信号と、前記電極間の電位差の検出信
号との間で相関処理を行い、そのピーク値を前記2点間
の電位差の代表値として電位差分布を求めることを特徴
とする請求項1〜3の何れかに記載の埋設塗覆装鋼管の
塗膜損傷検出方法。
4. A reference signal extracted from the AC voltage, wherein an AC voltage according to a random signal or a pseudo-random signal is used as the AC voltage applied between the buried coating steel pipe and the ground electrode in the ground. And a detection signal of a potential difference between the electrodes, correlation processing is performed, and a potential difference distribution is obtained using the peak value as a representative value of the potential difference between the two points. A method for detecting coating film damage of a buried coating steel pipe according to.
【請求項5】 埋設塗覆装鋼管と地中の接地極との間に
印加される交流電圧として、擬似ランダム信号に係る交
流電圧を用い、そして、前記交流電圧と同一のパターン
の参照信号と、前記電極間の電位差の検出信号との間で
相関処理を行い、そのピーク値を前記2点間の電位差の
代表値として電位差分布を求めることを特徴とする請求
項1〜3の何れかに記載の埋設塗覆装鋼管の塗膜損傷検
出方法。
5. An alternating voltage according to a pseudo-random signal is used as an alternating voltage applied between a buried coated steel pipe and a grounding electrode in the ground, and a reference signal having the same pattern as the alternating voltage. 4. The potential difference distribution is obtained by performing correlation processing with a detection signal of the potential difference between the electrodes, and using the peak value as a representative value of the potential difference between the two points. A method for detecting coating film damage of a buried coating steel pipe as described.
JP18457798A 1998-06-30 1998-06-30 Method for detecting paint film damage on buried coated steel pipe Expired - Lifetime JP3451349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18457798A JP3451349B2 (en) 1998-06-30 1998-06-30 Method for detecting paint film damage on buried coated steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18457798A JP3451349B2 (en) 1998-06-30 1998-06-30 Method for detecting paint film damage on buried coated steel pipe

Publications (2)

Publication Number Publication Date
JP2000019157A JP2000019157A (en) 2000-01-21
JP3451349B2 true JP3451349B2 (en) 2003-09-29

Family

ID=16155650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18457798A Expired - Lifetime JP3451349B2 (en) 1998-06-30 1998-06-30 Method for detecting paint film damage on buried coated steel pipe

Country Status (1)

Country Link
JP (1) JP3451349B2 (en)

Also Published As

Publication number Publication date
JP2000019157A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
US6501266B1 (en) Procedure and device for detecting nonuniformities in the wall thickness of inaccessible metal pipes
JPH0781811B2 (en) Method for detecting wall thickness change of hollow body conducting electricity
US7095222B2 (en) Leak detection method and system in nonmetallic underground pipes
JP3451349B2 (en) Method for detecting paint film damage on buried coated steel pipe
JP4044303B2 (en) Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals
JP5146360B2 (en) Method and apparatus for detecting rust in steel structures
JP3451348B2 (en) Method for detecting paint film damage on buried coated steel pipe
JP2002022695A (en) Method for detecting coating film damage position of embedded coated piping
JPH0495867A (en) Method and apparatus for measuring coat defect area of underground buried pipe
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JP3180707B2 (en) Method and apparatus for detecting paint film damage position of buried steel pipe
EP0843823A1 (en) Detection and location of current leakage paths and detection of oscillations
JP3670241B2 (en) Damage monitoring device and damage monitoring method for underground pipe
JP2009244123A (en) Method and apparatus for monitoring damage on coating of underground pipe
EP0091270A2 (en) Resistivity logging system
JP2013096958A (en) Method and apparatus for estimating potential of coating defect part of underground pipe, and method and apparatus for electric protection management
JP4106202B2 (en) Corrosion protection damage detection method for buried metal pipes using integration means
JP2001004575A (en) Detecting method for damage of paint film on buried painted and covered steel tube
JP4029118B2 (en) Method for detecting metal touch part of buried metal pipe
JP2001255304A (en) Method for detecting damage position of coating film of embedded coated piping
JP3932282B2 (en) Corrosion protection coating damage detection device for buried piping
JPH07128272A (en) Method for monitoring degree of damage of covered steel pipe, and device therefor
JP3377169B2 (en) Method and apparatus for detecting paint film damage position of buried steel pipe
SU998584A1 (en) Method for determining degree of protection of pipelines
JP3365311B2 (en) Method and apparatus for detecting paint film damage on buried coated steel pipe

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 11

EXPY Cancellation because of completion of term