JPH07128272A - Method for monitoring degree of damage of covered steel pipe, and device therefor - Google Patents

Method for monitoring degree of damage of covered steel pipe, and device therefor

Info

Publication number
JPH07128272A
JPH07128272A JP27428693A JP27428693A JPH07128272A JP H07128272 A JPH07128272 A JP H07128272A JP 27428693 A JP27428693 A JP 27428693A JP 27428693 A JP27428693 A JP 27428693A JP H07128272 A JPH07128272 A JP H07128272A
Authority
JP
Japan
Prior art keywords
damage
current
steel pipe
value
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27428693A
Other languages
Japanese (ja)
Other versions
JP3169754B2 (en
Inventor
Mutsumi Shibata
睦 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP27428693A priority Critical patent/JP3169754B2/en
Publication of JPH07128272A publication Critical patent/JPH07128272A/en
Application granted granted Critical
Publication of JP3169754B2 publication Critical patent/JP3169754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for regularly monitoring the degree of damage of a covered steel pipe with ease and high precision and a device therefor. CONSTITUTION:Current and potential value measuring devices 11, 12 for measuring current value and potential value are set at a certain interval along the line of a covered steel pipe 1, the current value and potential value of a signal current carried from a standard point to the pipe 1 are measured between two points, respectively, and the damage resistance between the two points is determined from these values, and the degree of damage of the coat and the damage position are judged from the magnitude of the damage resistance by a computer 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、土壌中に埋設された被
覆鋼管の被覆損傷度を定量的に評価する方法および装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for quantitatively evaluating the degree of coating damage of a coated steel pipe buried in soil.

【0002】[0002]

【従来の技術】土壌中に埋設された被覆鋼管の鋼面は、
被覆により土壌とは絶縁されており、腐食の進行が防が
れている。しかし、当該被覆鋼管の鋼面は、他の埋設
物、工作物、土壌中の石等の接触、あるいは自然劣化等
により被覆に傷が生じれば、土壌と接触することにな
り、腐食を蒙る可能性がある。したがって、当該被覆鋼
管の被覆損傷箇所ならびにその程度を常時監視すること
は保安上重要なことである。
2. Description of the Related Art The steel surface of a coated steel pipe buried in soil is
The coating is insulated from the soil and prevents the progress of corrosion. However, the steel surface of the coated steel pipe will come into contact with the soil if it is damaged by contact with other buried objects, workpieces, stones in the soil, etc., or if the coating is damaged due to natural deterioration, etc. there is a possibility. Therefore, it is important for security to constantly monitor the coating damage location of the coated steel pipe and its extent.

【0003】土壌中に埋設された被覆鋼管の被覆損傷箇
所ならびにその程度を評価する技術としては、a.塗膜
抵抗測定法、b.塗膜損傷部探査法、c.管内電流測定
法、d.直接法パイプロケータによる方法があげられ
る。
As a technique for evaluating a coating damage portion of a coated steel pipe buried in soil and its degree, a. Coating resistance measurement method, b. Coating film damage area search method, c. In-tube current measurement method, d. The direct method pipe locator can be used.

【0004】図8はaの方法を示すものである。この方
法では、接地抵抗Rを当該被覆鋼管に対して通電極より
通電電流として交流信号、あるいはパルス状の直流信号
を通電して、通電電流iおよび交流電位E(直流信号の
場合は電位変化量)から(1)式のように求めるもので
ある。
FIG. 8 shows the method a. In this method, an alternating current signal or a pulsed direct current signal is passed through the grounding resistance R from the through electrode to the coated steel pipe as an energizing current, and an energizing current i and an alternating potential E (in the case of a direct current signal, a potential change amount). ) Is obtained from the equation (1).

【0005】[0005]

【数1】 [Equation 1]

【0006】測定対象となる土壌中に埋設された被覆鋼
管の延長が短い場合は、接地抵抗を塗膜抵抗に換算する
ことができ、被覆の劣化等の評価に有効である。しか
し、測定対象となる被覆鋼管で電気的に導通している延
長が長い場合、上記の方法では印加した電流が遠く離れ
た地点の部分には達しないために、測定される接地抵抗
は当該被覆鋼管の全延長の値でもなく、当該被覆鋼管の
特定できない部分のみかけの接地抵抗であるため、塗膜
抵抗に換算することができず、被覆の劣化等の正確な評
価ができない。
When the length of the coated steel pipe buried in the soil to be measured is short, the ground resistance can be converted into a coating resistance, which is effective for evaluating the deterioration of the coating. However, if the coated steel pipe to be measured has a long electrical continuity, the applied current does not reach the far-off point in the above method. Since it is not the value of the total extension of the steel pipe but the apparent ground resistance of the unidentified portion of the coated steel pipe, it cannot be converted into the coating film resistance, and the deterioration of the coating or the like cannot be accurately evaluated.

【0007】bの方法には、針電極法、ピアソン法、塗
膜欠陥検知装置等がある。これらの方法は、地表面上の
電位差から塗膜欠陥の位置および大きさを検知するもの
である。しかし、これらは道路上で探査する性質のもの
であることから、常時監視の用に供することはできな
い。
The method of b includes a needle electrode method, a Pearson method, a coating film defect detection device and the like. These methods detect the position and size of a coating film defect from the potential difference on the ground surface. However, they cannot be used for constant monitoring because of the nature of exploration on the road.

【0008】cの方法は、当該被覆鋼管の管内電流の分
布から損傷箇所を検知するものである。しかし、当該被
覆鋼管に排流器、流電陽極等の防食設備が併設されてい
る場合、これらの抵抗の変化を排除しながら評価する必
要がある。また、電流値だけから損傷の程度を評価する
のは精度が低い。
The method c) is to detect a damaged portion from the distribution of the in-pipe current of the coated steel pipe. However, when the coated steel pipe is provided with a corrosion preventive facility such as a drainage device and a galvanic anode, it is necessary to evaluate while eliminating changes in these resistances. Further, it is not accurate to evaluate the degree of damage only from the current value.

【0009】dの方法は、埋設管の位置を探査するパイ
プロケータを用いて、当該被覆鋼管と他の埋設物との接
触位置を検知するものである。しかし、この方法は、塗
膜欠陥の検知については困難であることに加えて、道路
上で探査する性質のものであることから常時監視の用に
供する事はできない。
The method of d is to detect the contact position between the covered steel pipe and another buried object by using a pipe locator that searches the position of the buried pipe. However, this method is difficult to detect coating film defects and cannot be used for constant monitoring because it has the property of exploring on the road.

【0010】[0010]

【発明が解決しようとする課題】従来の方法では、当該
被覆鋼管の被覆損傷箇所を検知するには、当該被覆鋼管
直上の地表面上から探査するか、または、管内電流から
評価するしかなかった。しかし、管内電流から評価する
手法は、熟練の技術を必要とするもので,かつ精度も低
いものであった。また、当該被覆鋼管埋設箇所での現地
調査が必要であり、常時監視はもとより、複数箇所の同
時測定も困難であった。
In the conventional method, in order to detect the coating damaged portion of the coated steel pipe, there is no choice but to search from the ground surface directly above the coated steel pipe or to evaluate from the in-pipe current. . However, the method of evaluating from the in-tube current requires a skilled technique and has low accuracy. In addition, a field survey was required at the location where the coated steel pipe was buried, and simultaneous monitoring at multiple locations was difficult as well as constant monitoring.

【0011】本発明の目的は、熟練の技術を必要とせ
ず、高精度により複数箇所での常時監視が可能な被覆鋼
管の損傷度監視方法及びその装置を得ることである。
It is an object of the present invention to provide a method and apparatus for monitoring the degree of damage to a coated steel pipe which does not require any skill and is capable of constantly monitoring at a plurality of locations with high accuracy.

【0012】[0012]

【課題を解決するための手段】本発明に係る被覆鋼管の
損傷度監視方法及びその装置の構成は次のとおりであ
る。
The method of monitoring the degree of damage to a coated steel pipe and the structure of the apparatus according to the present invention are as follows.

【0013】1.監視対象被覆鋼管の一点を基準点とな
し、この基準点から被覆鋼管に一定の信号電流を通電
し、当該被覆鋼管の適当な間隔をおいた2箇所で測定さ
れる電流値及び電位値から2箇所間での損傷抵抗を求め
てこの損傷抵抗値がある定めた値よりも大きい場合には
損傷なしと判定し、小さい場合には損傷ありと判定する
被覆鋼管の損傷度を監視する方法。
1. One point of the covered steel pipe to be monitored is used as a reference point, a constant signal current is applied to the coated steel pipe from this reference point, and the current value and the potential value measured at two points of the covered steel pipe at appropriate intervals are 2 A method of monitoring the degree of damage of a coated steel pipe by determining the damage resistance between points and judging that there is no damage when this damage resistance value is larger than a specified value and judging that there is damage when it is smaller.

【0014】2.監視対象被覆鋼管に対して信号電流を
通電するための通電用電源装置、前記被覆鋼管の2点間
に流れる電流値及び電位値を測定するための電流・電位
値測定装置、前記電流・電位値測定装置で測定された電
流値と電位値を伝送するための送信装置、前記送信装置
から伝送された電流値と電位値の信号を受信するための
受信装置、前記受信装置で受信した電流値と電位値から
区間内での損傷抵抗を演算し、この損傷抵抗の値がある
定めた値よりも大きい場合には損傷なしと判定し、小さ
い場合には損傷ありと判定するコンピュータ、から構成
される被覆鋼管の損傷度監視装置。
2. An energization power supply device for supplying a signal current to the covered steel pipe to be monitored, a current / potential value measuring device for measuring a current value and a potential value flowing between two points of the coated steel pipe, the current / potential value A transmitting device for transmitting a current value and a potential value measured by a measuring device, a receiving device for receiving a signal of the current value and the potential value transmitted from the transmitting device, and a current value received by the receiving device A computer which calculates the damage resistance in the section from the potential value, judges that there is no damage when the value of this damage resistance is larger than a predetermined value, and judges that there is damage when it is smaller. Damager monitoring device for coated steel pipes.

【0015】[0015]

【作用】基準点を定め、ここから一定の信号電流を被覆
鋼管に通電すると、2点に設置した電流・電位測定装置
では電流値及び電位値を測定することができる。この電
流値と電位値は送信装置からコンピュータ側の受信装置
にケーブル又は無線で伝送され、コンピュータはこの2
点から伝送された電流値と電位値を基に2点間の損傷抵
抗を求め、この損傷抵抗がある値よりも大きい場合には
損傷なしと判定し、小さい場合には損傷ありと判定す
る。
When a fixed signal current is applied to the coated steel pipe from this point, a current / potential value can be measured by a current / potential measuring device installed at two points. The electric current value and the electric potential value are transmitted from the transmitting device to the receiving device on the computer side by cable or wireless, and the computer
The damage resistance between the two points is calculated based on the current value and the electric potential value transmitted from the point. If the damage resistance is larger than a certain value, it is determined that there is no damage, and if it is smaller than that, it is determined that there is damage.

【0016】このようにして、被覆鋼管の管路に沿って
多数の区間を設け、夫々の区間ごとに損傷抵抗を求める
ことにより、特定の区間内での損傷をいち早く発見し
て、適切な処置をとることが可能となる。
In this way, a large number of sections are provided along the pipeline of the coated steel pipe, and the damage resistance is calculated for each section, so that damage within a specific section can be found promptly and appropriate measures can be taken. It becomes possible to take

【0017】[0017]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は、土壌中に埋設された被覆鋼管を示したもの
である。ここで、地点0を基準に被覆鋼管1の適当な間
隔をおいた各地点を地点0に近い方から地点1、地点
2、……、地点x、地点x+1とする。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a coated steel pipe buried in soil. Here, each point at which the coated steel pipe 1 is appropriately spaced based on the point 0 is defined as a point 1, a point 2, ..., A point x, and a point x + 1 from the side closer to the point 0.

【0018】図2は、図中の地点0およびその他の地点
(例として地点x及び地点x+1)に設置する設備類を
示したものである。地点0には通電極2を設置して、被
覆鋼管1に取り付けた通電用リード線3および通電用電
極2のリード線4を地表面上に立ち上げておく。各地点
には、電位測定用電極5を設置して、被覆鋼管1に取り
付けた電位測定用リード線6および電位測定用電極5の
リード線7を地表面上に立ち上げておく。また、被覆鋼
管1の各地点には、ある間隔(となりあわせの地点には
届かない距離)をおいた被覆鋼管1のそれぞれ2箇所に
取り付けた管内電流測定用リード線8、9を立ち上げて
おく。
FIG. 2 shows facilities installed at a point 0 and other points (for example, a point x and a point x + 1) in the figure. The through electrode 2 is installed at the point 0, and the current-carrying lead wire 3 attached to the coated steel pipe 1 and the current-carrying electrode 2 lead wire 4 are set up on the ground surface. The potential measuring electrode 5 is installed at each point, and the potential measuring lead wire 6 attached to the coated steel pipe 1 and the lead wire 7 of the potential measuring electrode 5 are set up on the ground surface. In addition, at each point of the coated steel pipe 1, the in-tube current measurement lead wires 8 and 9 attached to two points of the coated steel pipe 1 at certain intervals (distances that do not reach the neighboring points) are set up. deep.

【0019】通電用リード線3及び通電用電極2のリー
ド線4は、通電用電源10に、電位測定用リード線6お
よび電位測定用電極5のリード線7は、電位測定装置1
1に、管内電流測定用リード線8、9は、管内電流測定
装置12にそれぞれ接続する。電位測定装置11および
管内電流測定装置12は、送信装置13に接続され、電
位データおよび管内電流データは送信装置13、受信装
置14を介してコンピュータ15に伝送される。なお、
ここでは管内電流測定は、電圧降下法を用いているが、
他にも絶縁継手の両側を接続したリード線を流れる電流
を測定する方法、クリップオン電流計による方法でも可
能である。
The energization lead wire 3 and the lead wire 4 of the energization electrode 2 are used for the energization power source 10, and the potential measurement lead wire 6 and the lead wire 7 of the potential measurement electrode 5 are used for the potential measurement device 1.
First, the in-tube current measuring leads 8 and 9 are connected to the in-tube current measuring device 12, respectively. The potential measuring device 11 and the in-pipe current measuring device 12 are connected to the transmitting device 13, and the potential data and the in-pipe current data are transmitted to the computer 15 via the transmitting device 13 and the receiving device 14. In addition,
Here, in-tube current measurement uses the voltage drop method,
Alternatively, a method of measuring a current flowing through a lead wire connecting both sides of the insulating joint or a method using a clip-on ammeter can be used.

【0020】被覆損傷の監視は、以下の手順で行われ
る。以下、地点xと地点x+1の間で損傷が起きたケー
スについて、通電電流として交流信号を用いた例を用い
て説明する。
Monitoring of the coating damage is performed by the following procedure. Hereinafter, a case in which damage occurs between the point x and the point x + 1 will be described using an example in which an AC signal is used as the energizing current.

【0021】地点xと地点x+1の間の接地抵抗の測定
は、当該範囲の両端である地点xおよび地点x+1で
の、当該被覆鋼管1の交流電位E(x)、E(x+1)
および当該被覆被覆鋼管1を流れる管内交流電流i
(x),i(x+1)を測定しながら、地点0で当該被
覆鋼管1に対して通電用電源10を用いて通電極2より
交流信号等を印加することによりおこなわれる。地点x
と地点x+1の間の当該被覆鋼管1の接地抵抗R(x〜
x+1)は(2)式のように求められる。
The ground resistance between the point x and the point x + 1 is measured by measuring the AC potentials E (x) and E (x + 1) of the coated steel pipe 1 at the point x and the point x + 1 which are both ends of the range.
And the in-tube alternating current i flowing through the coated steel tube 1
While measuring (x) and i (x + 1), an AC signal or the like is applied to the coated steel pipe 1 at the point 0 from the through electrode 2 using the energizing power supply 10. Point x
And the point x + 1 between the ground resistance R (x ~
x + 1) is calculated as shown in Expression (2).

【0022】[0022]

【数2】 [Equation 2]

【0023】ここで、地点xと地点+1間において、接
地抵抗Rd(x〜x+1)の他埋設物あるいは工作機の
接触、またはこれに相当する塗覆装欠陥の生成が発生し
たとき、Rd(x〜x+1)とR(x〜x+1)と地点
xと地点+1間の定常状態における接地抵抗RO(x〜
x+1)には、(3)式の関係がある。以下、Rd(x
〜x+1)を地点xと地点x+1間での損傷抵抗とす
る。
Here, between the point x and the point + 1, when contact of another grounding resistance Rd (x to x + 1) with another buried object or a machine tool or a corresponding coating defect is generated, Rd ( x to x + 1) and R (x to x + 1) and the ground resistance RO (x to x in the steady state between the point x and the point +1)
x + 1) has the relationship of Expression (3). Below, Rd (x
~ X + 1) is the damage resistance between point x and point x + 1.

【0024】[0024]

【数3】 [Equation 3]

【0025】(3)式をRd(x〜x+1)について解
くと、(4)式のようになる。
When the equation (3) is solved for Rd (x to x + 1), the equation (4) is obtained.

【0026】[0026]

【数4】 [Equation 4]

【0027】したがって、各地点の交流電位および管内
交流電流の連続測定を行い、送・受信装置13・14に
よりホストコンピュータ15に伝送して、データの同期
をとりながら上記の式により各地点間のRdを求めて、
これを常時監視することにより、リアルタイムで他埋設
物あるいは工作物の接触、またはこれに相当する塗覆装
欠陥の生成の検知、ならびにその程度を把握することが
できる。
Accordingly, the AC potential and the AC current in the tube at each point are continuously measured and transmitted to the host computer 15 by the transmitter / receivers 13 and 14, and the data are synchronized between the points by the above equation while synchronizing the data. Seeking Rd,
By constantly monitoring this, it is possible to detect, in real time, the contact with another embedded object or the work piece, or the generation of a coating covering defect corresponding to this, and the degree thereof.

【0028】実験例 以下、土壌中に埋設した試験用配管を用いて行った試験
に関して説明する。図3は、試験装置類の概要を示すも
のである。試験用配管は、長さ8m、呼び径50Aのポ
リエチレン被覆鋼管(JIS G 3469)である。
Experimental Example A test conducted using a test pipe buried in soil will be described below. FIG. 3 shows an outline of the test equipment. The test pipe is a polyethylene-coated steel pipe (JIS G 3469) having a length of 8 m and a nominal diameter of 50 A.

【0029】地点0(試験用配管の片端)に取り付けた
リード線とその近傍に設置した通電極(Mg陽極を使
用)に周波数220Hzの交流信号を、配管と同近傍に
設置した電位測定用電極(Zn電極)の振幅が5Vrm
sとなるように、通電極を用いて通電した。
An AC signal having a frequency of 220 Hz is applied to a lead wire attached to a point 0 (one end of the test pipe) and a through electrode (using a Mg anode) installed in the vicinity of the lead wire, and a potential measuring electrode installed in the same vicinity as the pipe. Amplitude of (Zn electrode) is 5 Vrm
Electricity was applied using a through electrode so that s was obtained.

【0030】地点0より2mの位置である地点1での交
流電位は、地点1で試験用配管に取り付けたリード線と
その近傍に設置した電位測定用電極(Zn電極)間の交
流電圧を電位測定装置を用いて測定した。また、地点1
での管内交流電流は、地点1より地点0側に1m離れた
地点、および、地点1より地点2側に1m離れた地点で
それぞれ試験用配管に取り付けたリード線間の交流電圧
を管内電流測定装置を用いて測定し、管内交流電流iに
換算して求めた。
The AC potential at the point 1 which is 2 m from the point 0 is the AC voltage between the lead wire attached to the test pipe at the point 1 and the potential measuring electrode (Zn electrode) installed in the vicinity thereof. It measured using the measuring device. Also, point 1
The in-tube AC current was measured by measuring the AC voltage between the lead wires attached to the test pipe at a point 1 m away from the point 1 on the point 0 side and a point 1 m away from the point 1 on the point 2 side. It was measured using a device and converted into an in-tube alternating current i to obtain it.

【0031】地点0より6mの位置である地点2での交
流電位は、地点2で試験用配管に取り付けたリード線と
その近傍に設置した電位測定用電極(Zn電極)間の交
流電圧を電位測定装置を用いて測定した。また、地点2
での管内交流電流は、地点2より地点1側に1m離れた
地点、および、地点1より地点1の反対側に1m離れた
地点でそれぞれ試験用配管に取り付けたリード線間の交
流電圧を管内電流測定装置を用いて測定し、管内交流電
流に換算して求めた。
The AC potential at the point 2 which is 6 m from the point 0 is the AC voltage between the lead wire attached to the test pipe at the point 2 and the potential measuring electrode (Zn electrode) installed in the vicinity thereof. It measured using the measuring device. Also, point 2
The in-tube AC current in the tube is the AC voltage between the lead wires attached to the test pipe at the point 1 m away from the point 2 on the side of the point 1 and the point 1 m away from the point 1 on the side opposite to the point 1. The current was measured using a current measuring device and converted into an in-tube alternating current.

【0032】模擬損傷として、地点0より4mの位置で
試験用配管に取り付けたリード線と、その近傍に設置し
た、220Hzにおける接地抵抗が242Ωである模擬
損傷用電極を、電気的に導通状態にさせた。
As the simulated damage, the lead wire attached to the test pipe at a position 4 m from the point 0 and the simulated damage electrode having a ground resistance of 242 Ω at 220 Hz installed in the vicinity of the lead wire are electrically connected to each other. Let

【0033】各測定装置は、コンピュータに接続され、
伝送されたデータは、コンピュータにて処理された。
Each measuring device is connected to a computer,
The transmitted data was processed by a computer.

【0034】測定および計算結果を図4〜7に示す。図
4は管内交流電流i、図5は交流電位Eを示したもので
ある。図6は地点1〜地点2間の接地抵抗R、図7は同
範囲での損傷抵抗Rd、それぞれの計算値を示したもの
である。図6および図7中の点線は、模擬損傷用電極の
接地抵抗の実測値から求めた値を示したものである。な
お、測定時間は50秒として、内約20〜30秒の10
秒間に模擬損傷を与えた。
The measurement and calculation results are shown in FIGS. FIG. 4 shows the AC current i in the tube, and FIG. 5 shows the AC potential E. FIG. 6 shows the ground resistance R between the points 1 and 2, and FIG. 7 shows the damage resistance Rd in the same range, and the calculated values thereof. Dotted lines in FIGS. 6 and 7 show values obtained from the actual measurement values of the ground resistance of the simulated damage electrode. In addition, the measurement time is 50 seconds, of which 10 to 10 seconds of about 20 to 30 seconds.
Simulated damage was given in a second.

【0035】模擬損傷を与えると以下の変化が見られ
る。
The following changes are observed when simulated damage is given.

【0036】・地点1での管内交流電流iは増加する
が、地点2での管内交流電流iは変化しない。
The in-tube AC current i at the point 1 increases, but the in-tube AC current i at the point 2 does not change.

【0037】・地点1および地点2での交流電位Eは、
いずれも減少する。
The AC potential E at point 1 and point 2 is
Both decrease.

【0038】この結果から、地点1〜地点2間の接地抵
抗Rを求めると、損傷がないとき10000Ω以上であ
るのに対して、損傷を与えると約300Ωとなり、実測
値とほぼ等しい値であることがわかる。また、損傷抵抗
Rdを求めると、損傷がないとき10000Ω以上であ
るのに対して、損傷を与えると約300Ωとなり、実測
値とほぼ等しい値であることがわかる。以上より、本発
明により、損傷の検知およびその程度が精度良く求めら
れることがあきらかである。
From this result, the ground resistance R between the point 1 and the point 2 is calculated to be 10,000 Ω or more when there is no damage, whereas it is approximately 300 Ω when damaged, which is almost the same as the measured value. I understand. Further, when the damage resistance Rd is calculated, it is 10000Ω or more when there is no damage, while it is about 300Ω when damage is given, which is almost equal to the measured value. From the above, it is clear that the present invention can accurately detect and detect damage.

【0039】[0039]

【発明の効果】本発明は以上のように、被覆鋼管の管路
に沿って一定の区間ごとに電流・電位測定装置を設置
し、基準点から通電された電流の電流値と電位値から区
間ごとでの損傷抵抗を求め、これにより損傷度と損傷区
間(位置)を特定するようにしたので、次の効果を奏す
る。
As described above, according to the present invention, a current / potential measuring device is installed along a pipeline of a coated steel pipe at regular intervals, and a section is obtained from the current value and the potential value of the current supplied from the reference point. Since the damage resistance is obtained for each of them and the damage degree and the damage section (position) are specified by the damage resistance, the following effects can be obtained.

【0040】a.損傷度の判定を正確にできる。A. Accurate determination of damage degree.

【0041】b.長距離の場合でも適用できるため、ガ
ス、石油等の幹線における被覆損傷度の常時監視に極め
て有効である。
B. Since it can be applied even for long distances, it is extremely effective for constant monitoring of the degree of coating damage on main lines such as gas and oil.

【0042】c.コンピュータを利用して直ちに損傷度
の判定ができるため、判定作業に経験とか熟練を必要と
しない。
C. Since the degree of damage can be immediately determined using a computer, no experience or skill is required for the determination work.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る監視方法の概念説明図。FIG. 1 is a conceptual explanatory diagram of a monitoring method according to the present invention.

【図2】本発明に係る監視装置と監視方法の説明図。FIG. 2 is an explanatory diagram of a monitoring device and a monitoring method according to the present invention.

【図3】実験例の説明図。FIG. 3 is an explanatory diagram of an experimental example.

【図4】管内交流電流の説明図FIG. 4 is an explanatory diagram of an alternating current in a tube.

【図5】交流電位の説明図FIG. 5 is an explanatory diagram of an AC potential

【図6】接地抵抗の説明図FIG. 6 is an illustration of ground resistance

【図7】損傷抵抗の説明図FIG. 7 is an explanatory diagram of damage resistance.

【図8】従来の塗膜抵抗測定法の説明図。FIG. 8 is an explanatory diagram of a conventional coating film resistance measuring method.

【符号の説明】[Explanation of symbols]

1 被覆鋼管 2 通電極 3 通電用リード線 4 リード線 5 電位測定用電極 6 電位測定用リード線 7 リード線 8・9 管内電流測定用リード線 10 通電用電源 11 電位測定装置 12 管内電流測定装置 13 送信装置 14 受信装置 15 コンピュータ 1 coated steel pipe 2 through electrode 3 lead wire for energization 4 lead wire 5 electrode for electric potential measurement 6 lead wire for electric potential measurement 7 lead wire 8.9 lead wire for measuring electric current in pipe 10 power supply for electric current 11 electric potential measuring device 12 electric current measuring device in pipe 13 transmitter 14 receiver 15 computer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 監視対象被覆鋼管の一点を基準点とな
し、この基準点から被覆鋼管に一定の信号電流を通電
し、当該被覆鋼管の適当な間隔をおいた2箇所で測定さ
れる電流値及び電位値から2箇所間での損傷抵抗を求め
てこの損傷抵抗値がある定めた値よりも大きい場合には
損傷なしと判定し、小さい場合には損傷ありと判定する
被覆鋼管の損傷度を監視する方法。
1. A current value measured at two points of the coated steel pipe at appropriate intervals by setting one point of the coated steel pipe to be monitored as a reference point, applying a constant signal current to the coated steel pipe from this reference point. Also, the damage resistance between two locations is calculated from the potential value, and if this damage resistance value is larger than a specified value, it is judged as no damage, and if it is smaller, it is judged as damaged. How to monitor.
【請求項2】 監視対象被覆鋼管に対して信号電流を通
電するための通電用電源装置、 前記被覆鋼管の2点間に流れる電流値及び電位値を測定
するための電流・電位値測定装置、 前記電流・電位値測定装置で測定された電流値と電位値
を伝送するための送信装置、 前記送信装置から伝送された電流値と電位値の信号を受
信するための受信装置、 前記受信装置で受信した電流値と電位値から区間内での
損傷抵抗を演算し、この損傷抵抗の値がある定めた値よ
りも大きい場合には損傷なしと判定し、小さい場合には
損傷ありと判定するコンピュータ、 から構成される被覆鋼管の損傷度監視装置。
2. An energization power supply device for supplying a signal current to a coated steel pipe to be monitored, a current / potential value measuring device for measuring a current value and a potential value flowing between two points of the coated steel pipe, A transmitting device for transmitting a current value and a potential value measured by the current / potential value measuring device, a receiving device for receiving a signal of the current value and the potential value transmitted from the transmitting device, the receiving device A computer that calculates the damage resistance within the section from the received current value and potential value, and judges that there is no damage when this damage resistance value is larger than a specified value, and judges that there is damage when it is smaller. A coated steel pipe damage degree monitoring device consisting of.
【請求項3】 信号電流として交流電流を用いる請求項
1又は2記載の被覆鋼管の損傷度監視方法及びその装
置。
3. The damage level monitoring method and apparatus for a coated steel pipe according to claim 1, wherein an alternating current is used as the signal current.
JP27428693A 1993-11-02 1993-11-02 Method and apparatus for monitoring damage degree of coated steel pipe Expired - Fee Related JP3169754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27428693A JP3169754B2 (en) 1993-11-02 1993-11-02 Method and apparatus for monitoring damage degree of coated steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27428693A JP3169754B2 (en) 1993-11-02 1993-11-02 Method and apparatus for monitoring damage degree of coated steel pipe

Publications (2)

Publication Number Publication Date
JPH07128272A true JPH07128272A (en) 1995-05-19
JP3169754B2 JP3169754B2 (en) 2001-05-28

Family

ID=17539538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27428693A Expired - Fee Related JP3169754B2 (en) 1993-11-02 1993-11-02 Method and apparatus for monitoring damage degree of coated steel pipe

Country Status (1)

Country Link
JP (1) JP3169754B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250613A (en) * 2005-03-09 2006-09-21 Toho Gas Co Ltd Method of processing damage evaluation data of coated steel pipe and device for monitoring damage thereof
JP2007278946A (en) * 2006-04-10 2007-10-25 Nippon Steel Engineering Co Ltd Method and device for detecting damaged coating location of embedded metal pipe
CN108562619A (en) * 2018-03-28 2018-09-21 中国石油天然气股份有限公司 A kind of down-hole casing inner coating quality detection device and detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250613A (en) * 2005-03-09 2006-09-21 Toho Gas Co Ltd Method of processing damage evaluation data of coated steel pipe and device for monitoring damage thereof
JP2007278946A (en) * 2006-04-10 2007-10-25 Nippon Steel Engineering Co Ltd Method and device for detecting damaged coating location of embedded metal pipe
CN108562619A (en) * 2018-03-28 2018-09-21 中国石油天然气股份有限公司 A kind of down-hole casing inner coating quality detection device and detection method
CN108562619B (en) * 2018-03-28 2021-01-29 中国石油天然气股份有限公司 Detection device and detection method for coating quality in underground casing

Also Published As

Publication number Publication date
JP3169754B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
US5828219A (en) Method of detecting faults in the insulation layer of an insulated concealed conductor
US8310251B2 (en) System for assessing pipeline condition
US8228078B2 (en) Method and device for monitoring and detecting the coating defects of underground or underwater pipelines
US20200378885A1 (en) Multielectrode Probes For Monitoring Fluctuating Stray Current Effects And Ac Interference On Corrosion Of Burried Pipelines And Metal Structures
US5498967A (en) System and methods of use for conducting a neutral corrosion survey
EA002668B1 (en) Method and device for detecting irregularities in the thickness of the walls inaccessible metal pipes
WO1994006027A9 (en) System and method of use for conducting a neutral corrosion survey
US4982163A (en) Method and a device for the determination of the condition of the insulation of an object coated with an electric insulation
JP3169754B2 (en) Method and apparatus for monitoring damage degree of coated steel pipe
JP3007390B2 (en) Measuring method and measuring device for coating coverage area of underground pipe
US6262578B1 (en) Detection and location of current leakage paths and detection of oscillations
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JPH08145934A (en) Monitoring method and device for damage degree of clad steel pipe
JP3670241B2 (en) Damage monitoring device and damage monitoring method for underground pipe
RU2641794C1 (en) Method for determination of technical state of underground pipeline insulating coating
JPH09281069A (en) Method for monitoring damage degree of coated steel pipe and method for reducing erroneous judgment
JP3451348B2 (en) Method for detecting paint film damage on buried coated steel pipe
JPH09189674A (en) Method and device for determining position and degree of damage in clad steel pipe
RU2702408C1 (en) Method and device for scanning flaw detection of internal protective-insulating coatings of pipelines
JPH0495868A (en) Evaluation method of electric protection effect of underground buried pipe
RU2582301C2 (en) Method to detect extended anode earthing device damage point
JPH09189505A (en) Method and device for determining damaged location and damage degree of coated steel pipe
Walton ACVG or DCVG-Does It Matter? Absolutely It Does.
SU998584A1 (en) Method for determining degree of protection of pipelines
JP2009139095A (en) Apparatus and method for monitoring coating damage on underground pipe

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees