JP3169754B2 - Method and apparatus for monitoring damage degree of coated steel pipe - Google Patents

Method and apparatus for monitoring damage degree of coated steel pipe

Info

Publication number
JP3169754B2
JP3169754B2 JP27428693A JP27428693A JP3169754B2 JP 3169754 B2 JP3169754 B2 JP 3169754B2 JP 27428693 A JP27428693 A JP 27428693A JP 27428693 A JP27428693 A JP 27428693A JP 3169754 B2 JP3169754 B2 JP 3169754B2
Authority
JP
Japan
Prior art keywords
current
steel pipe
coated steel
damage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27428693A
Other languages
Japanese (ja)
Other versions
JPH07128272A (en
Inventor
睦 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP27428693A priority Critical patent/JP3169754B2/en
Publication of JPH07128272A publication Critical patent/JPH07128272A/en
Application granted granted Critical
Publication of JP3169754B2 publication Critical patent/JP3169754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、土壌中に埋設された被
覆鋼管の被覆損傷度を定量的に評価する方法および装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for quantitatively evaluating the degree of coating damage of a coated steel pipe buried in soil.

【0002】[0002]

【従来の技術】土壌中に埋設された被覆鋼管の鋼面は、
被覆により土壌とは絶縁されており、腐食の進行が防が
れている。しかし、当該被覆鋼管の鋼面は、他の埋設
物、工作物、土壌中の石等の接触、あるいは自然劣化等
により被覆に傷が生じれば、土壌と接触することにな
り、腐食を蒙る可能性がある。したがって、当該被覆鋼
管の被覆損傷箇所ならびにその程度を常時監視すること
は保安上重要なことである。
2. Description of the Related Art The steel surface of a coated steel pipe buried in soil is
The coating is insulated from the soil and prevents the progress of corrosion. However, the steel surface of the coated steel pipe will come into contact with the soil if the coating is damaged due to contact with other buried objects, workpieces, stones in the soil, or natural deterioration, etc., and will be corroded. there is a possibility. Therefore, it is important for security to constantly monitor the location and degree of the coating damage of the coated steel pipe.

【0003】土壌中に埋設された被覆鋼管の被覆損傷箇
所ならびにその程度を評価する技術としては、a.塗膜
抵抗測定法、b.塗膜損傷部探査法、c.管内電流測定
法、d.直接法パイプロケータによる方法があげられ
る。
Techniques for evaluating the location and extent of coating damage on a coated steel pipe buried in soil include the following: Coating resistance measurement, b. Paint damage detection method, c. Tube current measurement method, d. There is a method using a direct method pipe locator.

【0004】図8はaの方法を示すものである。この方
法では、接地抵抗Rを当該被覆鋼管に対して通電極より
通電電流として交流信号、あるいはパルス状の直流信号
を通電して、通電電流iおよび交流電位E(直流信号の
場合は電位変化量)から(1)式のように求めるもので
ある。
FIG. 8 shows the method (a). In this method, an alternating current signal or a pulsed direct current signal is applied to the coated steel pipe as a conducting current from the through electrode to the coated steel pipe, and the conducting current i and the alternating potential E (in the case of a direct current signal, the potential change amount). ) To (1).

【0005】[0005]

【数1】 (Equation 1)

【0006】測定対象となる土壌中に埋設された被覆鋼
管の延長が短い場合は、接地抵抗を塗膜抵抗に換算する
ことができ、被覆の劣化等の評価に有効である。しか
し、測定対象となる被覆鋼管で電気的に導通している延
長が長い場合、上記の方法では印加した電流が遠く離れ
た地点の部分には達しないために、測定される接地抵抗
は当該被覆鋼管の全延長の値でもなく、当該被覆鋼管の
特定できない部分のみかけの接地抵抗であるため、塗膜
抵抗に換算することができず、被覆の劣化等の正確な評
価ができない。
When the length of the coated steel pipe buried in the soil to be measured is short, the grounding resistance can be converted into the coating resistance, which is effective for evaluating the deterioration of the coating. However, in the case where the length of electrical conduction in the coated steel pipe to be measured is long, since the applied current does not reach a distant portion in the above method, the measured ground resistance is Since it is not the value of the total length of the steel pipe but the apparent ground resistance of an unspecified portion of the coated steel pipe, it cannot be converted to the coating film resistance, and accurate evaluation of deterioration of the coating cannot be performed.

【0007】bの方法には、針電極法、ピアソン法、塗
膜欠陥検知装置等がある。これらの方法は、地表面上の
電位差から塗膜欠陥の位置および大きさを検知するもの
である。しかし、これらは道路上で探査する性質のもの
であることから、常時監視の用に供することはできな
い。
The method (b) includes a needle electrode method, a Pearson method, and a coating film defect detecting device. These methods detect the position and size of a coating defect from the potential difference on the ground surface. However, since they are of the nature of exploring on roads, they cannot be used for constant monitoring.

【0008】cの方法は、当該被覆鋼管の管内電流の分
布から損傷箇所を検知するものである。しかし、当該被
覆鋼管に排流器、流電陽極等の防食設備が併設されてい
る場合、これらの抵抗の変化を排除しながら評価する必
要がある。また、電流値だけから損傷の程度を評価する
のは精度が低い。
The method (c) detects a damaged portion from the distribution of current in the coated steel pipe. However, when the coated steel pipe is provided with anti-corrosion equipment such as a drainage device and a galvanic anode, it is necessary to evaluate the resistance while eliminating the change in resistance. Evaluating the degree of damage only from the current value has low accuracy.

【0009】dの方法は、埋設管の位置を探査するパイ
プロケータを用いて、当該被覆鋼管と他の埋設物との接
触位置を検知するものである。しかし、この方法は、塗
膜欠陥の検知については困難であることに加えて、道路
上で探査する性質のものであることから常時監視の用に
供する事はできない。
The method d detects a contact position between the coated steel pipe and another buried object using a pipe locator for searching a position of the buried pipe. However, this method cannot be used for constant monitoring because it is difficult to detect a coating film defect and also has a nature of exploring on a road.

【0010】[0010]

【発明が解決しようとする課題】従来の方法では、当該
被覆鋼管の被覆損傷箇所を検知するには、当該被覆鋼管
直上の地表面上から探査するか、または、管内電流から
評価するしかなかった。しかし、管内電流から評価する
手法は、熟練の技術を必要とするもので,かつ精度も低
いものであった。また、当該被覆鋼管埋設箇所での現地
調査が必要であり、常時監視はもとより、複数箇所の同
時測定も困難であった。
In the conventional method, the only way to detect the coating damage portion of the coated steel pipe is to search from the ground surface immediately above the coated steel pipe or to evaluate from the current in the pipe. . However, the method of evaluating from the in-tube current requires a skilled technique and has low accuracy. In addition, it was necessary to conduct an on-site survey at the place where the coated steel pipe was buried, and it was difficult to monitor not only constantly but also simultaneously at multiple places.

【0011】本発明の目的は、熟練の技術を必要とせ
ず、高精度により複数箇所での常時監視が可能な被覆鋼
管の損傷度監視方法及びその装置を得ることである。
An object of the present invention is to provide a method and an apparatus for monitoring the degree of damage of a coated steel pipe which can be constantly monitored at a plurality of locations with high accuracy without requiring a skilled technique.

【0012】[0012]

【課題を解決するための手段】本発明に係る被覆鋼管の
損傷度監視方法及びその装置の構成は次のとおりであ
る。
Means for monitoring the damage degree of a coated steel pipe according to the present invention and the structure of the apparatus are as follows.

【0013】1.監視対象被覆鋼管の一点を基準点とな
し、この基準点から被覆鋼管に一定の信号電流を通電
し、当該被覆鋼管の適当な間隔をおいた2箇所で測定さ
れる電流値及び電位値から2箇所間での損傷抵抗を求め
てこの損傷抵抗値がある定めた値よりも大きい場合には
損傷なしと判定し、小さい場合には損傷ありと判定する
被覆鋼管の損傷度を監視する方法。2.信号電流として交流電流を用いる上記1に記載の被
覆鋼管の損傷度を監視する方法。
1. One point of the coated steel pipe to be monitored is defined as a reference point. From this reference point, a constant signal current is applied to the coated steel pipe, and the current value and the potential value measured at two places at appropriate intervals of the coated steel pipe are used as two points. A method of monitoring the damage degree of a coated steel pipe in which damage resistance between portions is determined, and when the damage resistance value is larger than a predetermined value, it is determined that there is no damage. 2. 2. The device according to the above 1, wherein an alternating current is used as a signal
A method for monitoring the degree of damage to steel-clad pipes.

【0014】3.監視対象被覆鋼管に対して信号電流を
通電するための通電用電源装置、前記被覆鋼管の複数箇
所に設置され、各箇所での電流値及び電位値を測定する
ための電流・電位値測定装置、前記電流・電位値測定装
置で測定された電流値と電位値を伝送するための送信装
置、前記送信装置から伝送された電流値と電位値の信号
を受信するための受信装置、前記受信装置で受信した電
流値と電位値から前記電流・電位値測定装置が設置され
た箇所の間の区間の損傷抵抗を演算し、この損傷抵抗の
値がある定めた値よりも大きい場合には損傷なしと判定
し、小さい場合には損傷ありと判定するコンピュータ、
から構成される被覆鋼管の損傷度監視装置。 4. 信号電流として交流電流を用いる上記3に記載の被
覆鋼管の損傷度監視装置。
[0014] 3. Signal current to the monitored coated steel pipe
An energizing power supply for energizing, and a plurality of
Installed in a place and measures the current value and potential value at each place
Current / potential value measuring apparatus for measuring current / potential value
Transmitter for transmitting the current and potential values measured by the
Signal of current value and potential value transmitted from the transmitting device
Receiving device for receiving the power,
The current / potential value measuring device is installed from the current value and the potential value.
Calculate the damage resistance in the section between
If the value is larger than a certain value, it is determined that there is no damage
If it is small, it is determined that the computer is damaged,
Damage monitoring system for coated steel pipes. 4. 4. The damage monitoring device for a coated steel pipe according to the above item 3, wherein an alternating current is used as the signal current .

【0015】[0015]

【作用】基準点を定め、ここから一定の信号電流を被覆
鋼管に通電すると、2点に設置した電流・電位測定装置
では電流値及び電位値を測定することができる。この電
流値と電位値は送信装置からコンピュータ側の受信装置
にケーブル又は無線で伝送され、コンピュータはこの2
点から伝送された電流値と電位値を基に2点間の損傷抵
抗を求め、この損傷抵抗がある値よりも大きい場合には
損傷なしと判定し、小さい場合には損傷ありと判定す
る。
When a reference point is determined and a constant signal current is applied to the coated steel pipe from the reference point, the current and potential values can be measured by the current / potential measuring devices installed at the two points. The current value and the potential value are transmitted from the transmitting device to the receiving device on the computer side by cable or wirelessly.
Damage resistance between two points is determined based on the current value and the potential value transmitted from the point. If the damage resistance is larger than a certain value, it is determined that there is no damage, and if the damage resistance is smaller, it is determined that there is damage.

【0016】このようにして、被覆鋼管の管路に沿って
多数の区間を設け、夫々の区間ごとに損傷抵抗を求める
ことにより、特定の区間内での損傷をいち早く発見し
て、適切な処置をとることが可能となる。
In this way, a number of sections are provided along the pipeline of the coated steel pipe, and damage resistance is determined for each section. Can be taken.

【0017】[0017]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は、土壌中に埋設された被覆鋼管を示したもの
である。ここで、地点0を基準に被覆鋼管1の適当な間
隔をおいた各地点を地点0に近い方から地点1、地点
2、……、地点x、地点x+1とする。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a coated steel pipe buried in soil. Here, points at appropriate intervals of the coated steel pipe 1 based on the point 0 are referred to as a point 1, a point 2,..., A point x, and a point x + 1 from a point closer to the point 0.

【0018】図2は、図中の地点0およびその他の地点
(例として地点x及び地点x+1)に設置する設備類を
示したものである。地点0には通電極2を設置して、被
覆鋼管1に取り付けた通電用リード線3および通電用電
極2のリード線4を地表面上に立ち上げておく。各地点
には、電位測定用電極5を設置して、被覆鋼管1に取り
付けた電位測定用リード線6および電位測定用電極5の
リード線7を地表面上に立ち上げておく。また、被覆鋼
管1の各地点には、ある間隔(となりあわせの地点には
届かない距離)をおいた被覆鋼管1のそれぞれ2箇所に
取り付けた管内電流測定用リード線8、9を立ち上げて
おく。
FIG. 2 shows equipment to be installed at point 0 and other points (for example, point x and point x + 1) in the figure. At the point 0, the through electrode 2 is installed, and the lead wire 3 for current supply and the lead wire 4 of the electrode 2 for current supply attached to the coated steel pipe 1 are raised on the ground surface. At each point, a potential measuring electrode 5 is installed, and a potential measuring lead wire 6 attached to the coated steel pipe 1 and a lead wire 7 of the potential measuring electrode 5 are raised on the ground surface. In addition, at each point of the coated steel pipe 1, lead wires 8 and 9 for in-pipe current measurement attached to two places of the coated steel pipe 1 at a certain interval (a distance that does not reach the adjacent point) are set up. deep.

【0019】通電用リード線3及び通電用電極2のリー
ド線4は、通電用電源10に、電位測定用リード線6お
よび電位測定用電極5のリード線7は、電位測定装置1
1に、管内電流測定用リード線8、9は、管内電流測定
装置12にそれぞれ接続する。電位測定装置11および
管内電流測定装置12は、送信装置13に接続され、電
位データおよび管内電流データは送信装置13、受信装
置14を介してコンピュータ15に伝送される。なお、
ここでは管内電流測定は、電圧降下法を用いているが、
他にも絶縁継手の両側を接続したリード線を流れる電流
を測定する方法、クリップオン電流計による方法でも可
能である。
The power supply lead wire 3 and the lead wire 4 of the power supply electrode 2 are connected to a power supply 10 for power supply, and the lead wire 6 for potential measurement and the lead wire 7 of the electrode 5 for potential control are connected to the potential measurement device 1.
1, the in-tube current measuring leads 8 and 9 are connected to the in-tube current measuring device 12, respectively. The potential measuring device 11 and the in-tube current measuring device 12 are connected to the transmitting device 13, and the potential data and the in-tube current data are transmitted to the computer 15 via the transmitting device 13 and the receiving device 14. In addition,
Here, the in-tube current measurement uses the voltage drop method,
In addition, a method of measuring a current flowing through a lead wire connecting both sides of the insulating joint and a method using a clip-on ammeter are also possible.

【0020】被覆損傷の監視は、以下の手順で行われ
る。以下、地点xと地点x+1の間で損傷が起きたケー
スについて、通電電流として交流信号を用いた例を用い
て説明する。
The monitoring of coating damage is performed in the following procedure. Hereinafter, a case where damage has occurred between the point x and the point x + 1 will be described using an example in which an AC signal is used as a conduction current.

【0021】地点xと地点x+1の間の接地抵抗の測定
は、当該範囲の両端である地点xおよび地点x+1で
の、当該被覆鋼管1の交流電位E(x)、E(x+1)
および当該被覆被覆鋼管1を流れる管内交流電流i
(x),i(x+1)を測定しながら、地点0で当該被
覆鋼管1に対して通電用電源10を用いて通電極2より
交流信号等を印加することによりおこなわれる。地点x
と地点x+1の間の当該被覆鋼管1の接地抵抗R(x〜
x+1)は(2)式のように求められる。
The measurement of the ground resistance between the point x and the point x + 1 is performed by measuring the AC potentials E (x) and E (x + 1) of the coated steel pipe 1 at the points x and x + 1 at both ends of the range.
And the alternating current i in the pipe flowing through the coated steel pipe 1
The measurement is performed by applying an AC signal or the like from the through electrode 2 to the coated steel pipe 1 at the point 0 using the power supply 10 for electricity while measuring (x) and i (x + 1). Point x
And the ground resistance R (x to x) of the coated steel pipe 1 between the point x + 1 and
x + 1) is obtained as in equation (2).

【0022】[0022]

【数2】 (Equation 2)

【0023】ここで、地点xと地点+1間において、接
地抵抗Rd(x〜x+1)の他埋設物あるいは工作機の
接触、またはこれに相当する塗覆装欠陥の生成が発生し
たとき、Rd(x〜x+1)とR(x〜x+1)と地点
xと地点+1間の定常状態における接地抵抗RO(x〜
x+1)には、(3)式の関係がある。以下、Rd(x
〜x+1)を地点xと地点x+1間での損傷抵抗とす
る。
Here, between the point x and the point +1, when a contact between the ground resistance Rd (x to x + 1) and a buried object or a machine tool, or the generation of a coating defect corresponding thereto occurs, Rd ( x to x + 1), R (x to x + 1), and the ground resistance RO (x to x) in the steady state between the points x and +1.
x + 1) has the relationship of equation (3). Hereinafter, Rd (x
To x + 1) is the damage resistance between the point x and the point x + 1.

【0024】[0024]

【数3】 (Equation 3)

【0025】(3)式をRd(x〜x+1)について解
くと、(4)式のようになる。
When equation (3) is solved for Rd (x to x + 1), equation (4) is obtained.

【0026】[0026]

【数4】 (Equation 4)

【0027】したがって、各地点の交流電位および管内
交流電流の連続測定を行い、送・受信装置13・14に
よりホストコンピュータ15に伝送して、データの同期
をとりながら上記の式により各地点間のRdを求めて、
これを常時監視することにより、リアルタイムで他埋設
物あるいは工作物の接触、またはこれに相当する塗覆装
欠陥の生成の検知、ならびにその程度を把握することが
できる。
Therefore, the continuous measurement of the AC potential and the AC current in each tube at each point is performed, and the measured data is transmitted to the host computer 15 by the transmission / reception devices 13 and 14, and the data is synchronized with each other by the above equation while synchronizing the data. Finding Rd,
By constantly monitoring this, it is possible to detect, in real time, the contact of another buried object or a workpiece or the generation of a coating and covering defect corresponding thereto, and the degree of the detection.

【0028】実験例 以下、土壌中に埋設した試験用配管を用いて行った試験
に関して説明する。図3は、試験装置類の概要を示すも
のである。試験用配管は、長さ8m、呼び径50Aのポ
リエチレン被覆鋼管(JIS G 3469)である。
Experimental Example Hereinafter, a test performed using a test pipe buried in soil will be described. FIG. 3 shows an outline of the test equipment. The test pipe is a polyethylene-coated steel pipe (JIS G 3469) having a length of 8 m and a nominal diameter of 50A.

【0029】地点0(試験用配管の片端)に取り付けた
リード線とその近傍に設置した通電極(Mg陽極を使
用)に周波数220Hzの交流信号を、配管と同近傍に
設置した電位測定用電極(Zn電極)の振幅が5Vrm
sとなるように、通電極を用いて通電した。
An AC signal having a frequency of 220 Hz is applied to a lead wire attached at a point 0 (one end of a test pipe) and a through electrode (using a Mg anode) installed near the lead wire, and a potential measurement electrode installed near the pipe. (Zn electrode) amplitude is 5Vrm
The current was passed using the through-electrode so that s was reached.

【0030】地点0より2mの位置である地点1での交
流電位は、地点1で試験用配管に取り付けたリード線と
その近傍に設置した電位測定用電極(Zn電極)間の交
流電圧を電位測定装置を用いて測定した。また、地点1
での管内交流電流は、地点1より地点0側に1m離れた
地点、および、地点1より地点2側に1m離れた地点で
それぞれ試験用配管に取り付けたリード線間の交流電圧
を管内電流測定装置を用いて測定し、管内交流電流iに
換算して求めた。
The AC potential at the point 1, which is 2 m from the point 0, is obtained by calculating the AC voltage between the lead wire attached to the test pipe at the point 1 and the potential measurement electrode (Zn electrode) installed near the lead. It measured using the measuring device. In addition, point 1
The AC current in the pipe was measured by measuring the AC voltage between the lead wires attached to the test pipe at a point 1 m away from point 1 to point 0 and at a point 1 m away from point 1 to point 2. It was measured using a device and converted to the tube alternating current i.

【0031】地点0より6mの位置である地点2での交
流電位は、地点2で試験用配管に取り付けたリード線と
その近傍に設置した電位測定用電極(Zn電極)間の交
流電圧を電位測定装置を用いて測定した。また、地点2
での管内交流電流は、地点2より地点1側に1m離れた
地点、および、地点1より地点1の反対側に1m離れた
地点でそれぞれ試験用配管に取り付けたリード線間の交
流電圧を管内電流測定装置を用いて測定し、管内交流電
流に換算して求めた。
The AC potential at the point 2 which is 6 m from the point 0 is obtained by calculating the AC voltage between the lead wire attached to the test pipe at the point 2 and the potential measuring electrode (Zn electrode) installed near the lead. It measured using the measuring device. In addition, point 2
The AC voltage in the pipe at the point 1 m away from point 2 to point 1 and the point 1 m away from point 1 on the opposite side of point 1 is the AC voltage between the lead wires attached to the test pipes. It was measured using a current measuring device, and was obtained by converting it into a tube alternating current.

【0032】模擬損傷として、地点0より4mの位置で
試験用配管に取り付けたリード線と、その近傍に設置し
た、220Hzにおける接地抵抗が242Ωである模擬
損傷用電極を、電気的に導通状態にさせた。
As the simulated damage, the lead wire attached to the test pipe at a position 4 m from the point 0 and the simulated damage electrode having a ground resistance at 220 Hz of 242 Ω installed in the vicinity of the lead wire were brought into an electrically conductive state. I let it.

【0033】各測定装置は、コンピュータに接続され、
伝送されたデータは、コンピュータにて処理された。
Each measuring device is connected to a computer,
The transmitted data was processed by a computer.

【0034】測定および計算結果を図4〜7に示す。図
4は管内交流電流i、図5は交流電位Eを示したもので
ある。図6は地点1〜地点2間の接地抵抗R、図7は同
範囲での損傷抵抗Rd、それぞれの計算値を示したもの
である。図6および図7中の点線は、模擬損傷用電極の
接地抵抗の実測値から求めた値を示したものである。な
お、測定時間は50秒として、内約20〜30秒の10
秒間に模擬損傷を与えた。
The measurement and calculation results are shown in FIGS. FIG. 4 shows the AC current i in the tube, and FIG. 5 shows the AC potential E. FIG. 6 shows the ground resistance R between the points 1 and 2, and FIG. 7 shows the damage resistance Rd in the same range, and the respective calculated values. The dotted lines in FIGS. 6 and 7 show values obtained from the measured values of the ground resistance of the simulated damage electrode. The measurement time was 50 seconds, of which 10 to 20 to 30 seconds.
Simulated damage in seconds.

【0035】模擬損傷を与えると以下の変化が見られ
る。
When the simulated damage is caused, the following changes are observed.

【0036】・地点1での管内交流電流iは増加する
が、地点2での管内交流電流iは変化しない。
In-pipe AC current i at point 1 increases, but in-pipe AC current i at point 2 does not change.

【0037】・地点1および地点2での交流電位Eは、
いずれも減少する。
The AC potential E at point 1 and point 2 is
Both decrease.

【0038】この結果から、地点1〜地点2間の接地抵
抗Rを求めると、損傷がないとき10000Ω以上であ
るのに対して、損傷を与えると約300Ωとなり、実測
値とほぼ等しい値であることがわかる。また、損傷抵抗
Rdを求めると、損傷がないとき10000Ω以上であ
るのに対して、損傷を与えると約300Ωとなり、実測
値とほぼ等しい値であることがわかる。以上より、本発
明により、損傷の検知およびその程度が精度良く求めら
れることがあきらかである。
From these results, the ground resistance R between the point 1 and the point 2 is found to be 10000Ω or more when there is no damage, whereas it becomes about 300Ω when damaged, which is almost equal to the measured value. You can see that. Further, when the damage resistance Rd is obtained, the value is 10,000Ω or more when there is no damage, and it is about 300Ω when the damage is given, which is almost equal to the actually measured value. From the above, it is apparent that the present invention can accurately detect damage and its degree.

【0039】[0039]

【発明の効果】本発明は以上のように、被覆鋼管の管路
に沿って一定の区間ごとに電流・電位測定装置を設置
し、基準点から通電された電流の電流値と電位値から区
間ごとでの損傷抵抗を求め、これにより損傷度と損傷区
間(位置)を特定するようにしたので、次の効果を奏す
る。
As described above, according to the present invention, the current / potential measuring device is installed at every fixed section along the pipe of the coated steel pipe, and the current / potential value of the current supplied from the reference point is set based on the current / potential value. Since the damage resistance is determined for each case and the damage degree and the damage section (position) are specified by this, the following effects are obtained.

【0040】a.損傷度の判定を正確にできる。A. The degree of damage can be accurately determined.

【0041】b.長距離の場合でも適用できるため、ガ
ス、石油等の幹線における被覆損傷度の常時監視に極め
て有効である。
B. Since it can be applied to long distances, it is extremely effective for constantly monitoring the degree of coating damage on trunk lines such as gas and oil.

【0042】c.コンピュータを利用して直ちに損傷度
の判定ができるため、判定作業に経験とか熟練を必要と
しない。
C. Since the degree of damage can be immediately determined using a computer, no experience or skill is required for the determination operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る監視方法の概念説明図。FIG. 1 is a conceptual explanatory diagram of a monitoring method according to the present invention.

【図2】本発明に係る監視装置と監視方法の説明図。FIG. 2 is an explanatory diagram of a monitoring device and a monitoring method according to the present invention.

【図3】実験例の説明図。FIG. 3 is an explanatory diagram of an experimental example.

【図4】管内交流電流の説明図FIG. 4 is an explanatory diagram of an alternating current in a tube.

【図5】交流電位の説明図FIG. 5 is an explanatory diagram of an AC potential.

【図6】接地抵抗の説明図FIG. 6 is an explanatory diagram of a ground resistance.

【図7】損傷抵抗の説明図FIG. 7 is an explanatory diagram of damage resistance.

【図8】従来の塗膜抵抗測定法の説明図。FIG. 8 is an explanatory view of a conventional method for measuring coating film resistance.

【符号の説明】[Explanation of symbols]

1 被覆鋼管 2 通電極 3 通電用リード線 4 リード線 5 電位測定用電極 6 電位測定用リード線 7 リード線 8・9 管内電流測定用リード線 10 通電用電源 11 電位測定装置 12 管内電流測定装置 13 送信装置 14 受信装置 15 コンピュータ REFERENCE SIGNS LIST 1 coated steel pipe 2 through electrode 3 conducting lead 4 lead 5 potential measuring electrode 6 potential measuring lead 7 lead 8.9 lead current measuring lead 10 power supply 11 potential measuring device 12 tube current measuring device 13 transmitting device 14 receiving device 15 computer

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 監視対象被覆鋼管の一点を基準点とな
し、この基準点から被覆鋼管に一定の信号電流を通電
し、当該被覆鋼管の適当な間隔をおいた2箇所で測定さ
れる電流値及び電位値から2箇所間での損傷抵抗を求め
てこの損傷抵抗値がある定めた値よりも大きい場合には
損傷なしと判定し、小さい場合には損傷ありと判定する
被覆鋼管の損傷度を監視する方法。
A reference point is defined as one point of a coated steel pipe to be monitored, a constant signal current is applied to the coated steel pipe from this reference point, and a current value measured at two places at appropriate intervals of the coated steel pipe. The damage resistance between two locations is determined from the potential value and the damage resistance value is determined to be no damage if the damage resistance value is larger than a predetermined value, and the damage degree of the coated steel pipe is determined to be damaged if the damage resistance value is smaller than a predetermined value. How to monitor.
【請求項2】 信号電流として交流電流を用いる請求項
1に記載の被覆鋼管の損傷度を監視する方法。
2. An alternating current is used as a signal current.
2. The method for monitoring the degree of damage of a coated steel pipe according to item 1.
【請求項3】 監視対象被覆鋼管に対して信号電流を通
電するための通電用電源装置、 前記被覆鋼管の複数箇所に設置され、各箇所での電流値
及び電位値を測定するための電流・電位値測定装置、 前記電流・電位値測定装置で測定された電流値と電位値
を伝送するための送信装置、 前記送信装置から伝送された電流値と電位値の信号を受
信するための受信装置、 前記受信装置で受信した電流値と電位値から前記電流・
電位値測定装置が設置された箇所の間の区間の損傷抵抗
を演算し、この損傷抵抗の値がある定めた値よりも大き
い場合には損傷なしと判定し、小さい場合には損傷あり
と判定するコンピュータ、 から構成される被覆鋼管の損傷度監視装置。
3. A signal current is passed to a coated steel pipe to be monitored.
Power supply device for supplying electricity , installed at a plurality of locations of the coated steel pipe, the current value at each location
And current and potential measuring apparatus for measuring a potential value, the current value measured by the current-potential measuring apparatus and the potential value
For transmitting current and potential signals transmitted from the transmitting device.
A receiving device for transmitting the current and the potential from the current value and the potential value received by the receiving device.
Damage resistance in the section between the locations where the potentiometers are installed
Is calculated, and the value of the damage resistance is larger than a predetermined value.
If not, it is judged that there is no damage.
And a computer for determining the degree of damage of the coated steel pipe.
【請求項4】 信号電流として交流電流を用いる請求項
3に記載の被覆鋼管の損傷度監視装置。
4. An alternating current is used as a signal current.
4. The damage monitoring device for a coated steel pipe according to 3 .
JP27428693A 1993-11-02 1993-11-02 Method and apparatus for monitoring damage degree of coated steel pipe Expired - Fee Related JP3169754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27428693A JP3169754B2 (en) 1993-11-02 1993-11-02 Method and apparatus for monitoring damage degree of coated steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27428693A JP3169754B2 (en) 1993-11-02 1993-11-02 Method and apparatus for monitoring damage degree of coated steel pipe

Publications (2)

Publication Number Publication Date
JPH07128272A JPH07128272A (en) 1995-05-19
JP3169754B2 true JP3169754B2 (en) 2001-05-28

Family

ID=17539538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27428693A Expired - Fee Related JP3169754B2 (en) 1993-11-02 1993-11-02 Method and apparatus for monitoring damage degree of coated steel pipe

Country Status (1)

Country Link
JP (1) JP3169754B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606207B2 (en) * 2005-03-09 2011-01-05 東邦瓦斯株式会社 Damage evaluation data processing method and damage monitoring device for coated steel pipe
JP2007278946A (en) * 2006-04-10 2007-10-25 Nippon Steel Engineering Co Ltd Method and device for detecting damaged coating location of embedded metal pipe
CN108562619B (en) * 2018-03-28 2021-01-29 中国石油天然气股份有限公司 Detection device and detection method for coating quality in underground casing

Also Published As

Publication number Publication date
JPH07128272A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
US5828219A (en) Method of detecting faults in the insulation layer of an insulated concealed conductor
US8310251B2 (en) System for assessing pipeline condition
US8228078B2 (en) Method and device for monitoring and detecting the coating defects of underground or underwater pipelines
CN101358827B (en) TEM detecting method for pipe wall thickness and intelligent detector for GBH pipe corrosion
US10883918B2 (en) Multielectrode probes for monitoring fluctuating stray current effects and AC interference on corrosion of buried pipelines and metal structures
EP3511705B1 (en) Detection apparatus and method
SA01210731A (en) Procedure and device for detecting nonuniformities in the wall thickness of inaccessible metal pipes
JP3169754B2 (en) Method and apparatus for monitoring damage degree of coated steel pipe
US4982163A (en) Method and a device for the determination of the condition of the insulation of an object coated with an electric insulation
JP3007390B2 (en) Measuring method and measuring device for coating coverage area of underground pipe
JP4044303B2 (en) Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals
US6262578B1 (en) Detection and location of current leakage paths and detection of oscillations
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JPH08145934A (en) Monitoring method and device for damage degree of clad steel pipe
JP3670241B2 (en) Damage monitoring device and damage monitoring method for underground pipe
JP2958071B2 (en) Evaluation method of cathodic protection effect of underground pipes
JP4050433B2 (en) Damage determination apparatus and damage determination method for coated buried metal conductor
JPH09281069A (en) Method for monitoring damage degree of coated steel pipe and method for reducing erroneous judgment
JPH09189674A (en) Method and device for determining position and degree of damage in clad steel pipe
GB2509734A (en) Conductivity tool for non-metallic pipeline inspection
RU2781137C1 (en) Method for determining the integrity of pipeline protective casings at intersections with roads and railways
JPH0712950A (en) Method and device for detecting position of buried pipe and corrosion preventing current
Preduș et al. Diagnostic of Defects at Electric Lines in Cable
JP3451348B2 (en) Method for detecting paint film damage on buried coated steel pipe
JPH09189505A (en) Method and device for determining damaged location and damage degree of coated steel pipe

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees