JP3007390B2 - Measuring method and measuring device for coating coverage area of underground pipe - Google Patents

Measuring method and measuring device for coating coverage area of underground pipe

Info

Publication number
JP3007390B2
JP3007390B2 JP2214094A JP21409490A JP3007390B2 JP 3007390 B2 JP3007390 B2 JP 3007390B2 JP 2214094 A JP2214094 A JP 2214094A JP 21409490 A JP21409490 A JP 21409490A JP 3007390 B2 JP3007390 B2 JP 3007390B2
Authority
JP
Japan
Prior art keywords
coating
defect
area
ground
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2214094A
Other languages
Japanese (ja)
Other versions
JPH0495867A (en
Inventor
睦 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2214094A priority Critical patent/JP3007390B2/en
Publication of JPH0495867A publication Critical patent/JPH0495867A/en
Application granted granted Critical
Publication of JP3007390B2 publication Critical patent/JP3007390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は地中に埋設された金属管の塗覆装欠陥の面積
を測定する方法および装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for measuring the area of a coating defect of a metal pipe buried underground.

(従来の技術) ガスや石油などを輸送する主要パイプラインの多くは
地中に埋設されているために土壌腐食や電食(電鉄軌条
から地中に漏れ出す直流電流に起因する腐食)を受け易
い。そこでこのような土壌腐食や電食を防止するため
に、従来プラスチック製あるいは歴青質製の絶縁塗覆装
で管周りを覆うとともに、万一塗覆装に傷が付けられた
り、塗覆装の劣化が進んだ際の電食を防ぐために塗覆装
欠陥部に常に直流電流が流入している状態に保持する電
気防食が施されている。
(Prior art) Many of the main pipelines that transport gas and oil are buried underground, so they suffer from soil corrosion and electrolytic corrosion (corrosion caused by DC current leaking from the railway tracks into the ground). easy. Therefore, in order to prevent such soil corrosion and electrolytic corrosion, conventional pipes or bituminous insulation coatings are used to cover the pipes, and at the same time, the coatings may be damaged or damaged. In order to prevent electrolytic corrosion when the deterioration of the coating has progressed, electrolytic protection is performed to keep a state in which a direct current is constantly flowing into the defective coating portion.

このように電気防食を施した埋設管の腐食部(塗覆装
欠陥と呼ばれる)に対する防食効果が充分か否かを評価
するためには、埋設管の塗覆装欠陥を地上から操作する
必要があるが、従来塗覆装欠陥の探査方法として針電極
法およびピアソン法が知られている。
In order to evaluate whether the anticorrosion effect on the corroded portion of the buried pipe subjected to cathodic protection (called a coating defect) is sufficient, it is necessary to operate the coating defect of the buried pipe from the ground. However, conventionally, a needle electrode method and a Pearson method are known as a method of searching for a coating / covering defect.

針電極法とは、埋設管に接地極から直流電流(迷走電
流との選別を容易にするため断続を繰り返す)を流し込
み、地表面の電位勾配(一定間隔を保った2地点間の電
圧)を測定しながら管路上を移動し、電位勾配が最大に
なる箇所が塗覆装欠陥であると判断する探査方法であ
る。
With the needle electrode method, a DC current (repeated intermittently to make it easy to separate from stray currents) is applied to the buried pipe from the grounding electrode, and the potential gradient (voltage between two points at a constant interval) on the ground surface is applied. This is an exploration method that moves on a pipeline while measuring, and determines that a location where the potential gradient is maximum is a coating-covering defect.

一方ピアソン法も測定原理は針電極法と共通するが、
直流電流に代えて迷走電流と区別しやすい交流電流を埋
設管に接地極から流し込み、地表面の電位勾配をして交
流電圧応答を促えるものである((社)腐食防食協会発
行の技術雑誌「防食技術」Vol.22、No.9、第383頁参
照)。
On the other hand, the Pearson method has the same measurement principle as the needle electrode method,
Instead of a direct current, an alternating current that is easy to distinguish from a stray current flows into the buried pipe from the ground electrode, and a potential gradient on the ground surface is encouraged to promote an AC voltage response. "Corrosion prevention technology" Vol.22, No.9, p.383).

いずれの方法でも、塗覆装欠陥を見つけ出すだけであ
れば充分である。
In any case, it is sufficient to find out the coating defect.

(発明が解決すべき課題) ところで塗覆装欠陥の防食効果は欠陥部の単位面積を
流れる防食電流が一定値以上であれば良好であると評価
されるが、上述した針電極法やピアソン法では塗覆装の
面積を電位勾配のピークの高さから定性的、相対的に推
測しているために大きな誤差を生ずることが多い。すな
わち、針電極法やピアソン法において得られる電位勾配
のピークの高さは管の地表からの埋設深さや大口径の管
では管の地表側か反対側かによって著しく異なるため
に、それによって塗覆装欠陥の測定面積が影響を受け、
正確な塗覆装欠陥の面積が求めにくく、従って防食効果
の評価が正しくできないという問題がある。
(Problems to be Solved by the Invention) By the way, the anticorrosion effect of the coating and covering defect is evaluated as good if the anticorrosion current flowing through the unit area of the defective portion is equal to or more than a certain value. In this case, a large error often occurs because the area of the coating is qualitatively and relatively estimated from the height of the potential gradient peak. In other words, the height of the peak of the potential gradient obtained by the needle electrode method or the Pearson method differs significantly depending on the burial depth of the tube from the ground surface and, for large-diameter tubes, depending on whether the tube is on the surface side or the opposite side of the tube. The measurement area of the mounting defect is affected,
There is a problem that it is difficult to obtain an accurate area of the coating and covering defect, and thus the evaluation of the anticorrosion effect cannot be correctly performed.

本発明は上記の点にかんがみてなされたもので、防食
目的で塗覆装が施された地中埋設金属管の塗覆装欠陥の
面積を正確に測定することを目的とする。
The present invention has been made in view of the above points, and has as its object to accurately measure the area of a coating defect of a metal pipe buried underground coated with a coating for corrosion protection.

(課題を解決すべき手段) 上記目的を達成するために、本発明においては、塗覆
装を施して地中に埋設した金属管に交流電流を流し、塗
覆装欠陥周辺に生ずる交流電位分布を該周辺の地中に差
し込んだ少なくとも3本の照合電極により検出し、その
交流電位分布を解析することにより塗覆装の欠陥面積を
演算するようにした。また、本発明においては、この方
法を実施するために、塗覆装を施して地中に埋設した金
属管に交流電流を流すための交流電源と、前記金属管の
塗覆装欠陥の周辺の地中に離間して差し込まれる少なく
とも3本の照合電極と、該照合電極に切換え可能に接続
される交流電圧計と、該交流電圧計から出力される前記
塗覆装欠陥周辺の交流電位分布を解析して塗覆装欠陥の
面積を演算する演算手段とにより塗覆装欠陥の面積を測
定する装置を構成した。
(Means for Solving the Problems) In order to achieve the above object, according to the present invention, an alternating current is applied to a metal pipe which is coated and buried in the ground, and an AC potential distribution generated around a coating defect is provided. Is detected by at least three reference electrodes inserted into the surrounding ground, and the AC potential distribution is analyzed to calculate the defect area of the coating. Further, in the present invention, in order to carry out this method, an AC power supply for applying an alternating current to a metal tube which has been coated and buried underground, and an AC power supply around a coating defect of the metal tube. At least three reference electrodes inserted into the ground at a distance, an AC voltmeter switchably connected to the reference electrode, and an AC potential distribution around the coating defect output from the AC voltmeter. An apparatus for measuring the area of the coating-covering defect by analyzing and calculating means for calculating the area of the coating-covering defect was constructed.

(作用) 埋設管の塗覆装欠陥の周辺に生ずる電位分布が照合電
極により検出され、その電位分布を解析することにより
塗覆装欠陥の面積を演算するようにした。
(Operation) The potential distribution generated around the coating defect of the buried pipe is detected by the reference electrode, and the area of the coating defect is calculated by analyzing the potential distribution.

(実施例) 以下本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be described with reference to the drawings.

第1図は本発明による塗覆装の欠陥面積の測定装置の
概略線図である。
FIG. 1 is a schematic diagram of an apparatus for measuring a defect area of a coating device according to the present invention.

図において、1は塗覆装1aが施された金属製の地中埋
設管、2は埋設管1の塗覆装欠陥、3は埋設管1の塗覆
装欠陥2に地中から交流電流を流し込むための接地極
(電気防食用の流電陽極で代用することもできる)、4
は埋設管1と接地極3との間に一定レベルの交流電流を
流すための交流電源、5a,5b,5cは埋設管1の塗覆装欠陥
2付近の地中に地上から差し込まれた3本の照合電極で
あり、電極間の距離はたとえば50cmである。6は各照合
電極5a,5b,5cと埋設管1との間の交流電圧応答を測定す
るための交流電圧計(特定の周波数に対して選択性の高
いロックイン・アンプが最適である)、7は照合電極5
a,5b,5cをの接続を切り換えるためのスキャナである。
In the figure, reference numeral 1 denotes a metal underground pipe provided with a coating 1a, 2 denotes a coating / covering defect of the buried pipe 1, and 3 denotes an AC current to the coating / covering defect 2 of the buried pipe 1 from underground. Ground electrode for pouring (a galvanic anode for cathodic protection can be substituted), 4
Is an AC power supply for supplying a constant level of AC current between the buried pipe 1 and the ground electrode 3, and 5 a, 5 b, and 5 c are inserted from the ground into the ground near the coating defect 2 of the buried pipe 1. This is a reference electrode for a book, and the distance between the electrodes is, for example, 50 cm. 6 is an AC voltmeter for measuring an AC voltage response between each of the reference electrodes 5a, 5b, 5c and the buried tube 1 (a lock-in amplifier having high selectivity for a specific frequency is optimal); 7 is the reference electrode 5
This is a scanner for switching the connection between a, 5b, and 5c.

なお、照合電極5a,5b,5cは最低でも3本は必要であ
り、塗覆装欠陥2から各照合電極5a,5b,5cまでの距離が
それぞれ異なるように接地する。この際照合電極は、地
表面による交流電場の乱れ、舗装のコンクリートやアス
ファルト等の抵抗の不均一さに起因する誤差を排除する
ために地中に差込み、土壌と充分接触するようにする。
8は交流電圧計6からの出力を用いて後述するような演
算処理を行なうマイコン構成の演算回路、9は演算回路
8により演算された結果に基づいて最終結果である塗覆
装欠陥の面積と深さ位置に表示する表示器である。
Note that at least three reference electrodes 5a, 5b, and 5c are required, and grounding is performed so that the distance from the paint-covering defect 2 to each of the reference electrodes 5a, 5b, and 5c is different. At this time, the reference electrode is inserted into the ground to eliminate errors caused by disturbance of the AC electric field due to the ground surface and uneven resistance of concrete or asphalt on the pavement, so that the reference electrode is sufficiently brought into contact with the soil.
Reference numeral 8 denotes an arithmetic circuit having a microcomputer configuration for performing an arithmetic process described later using an output from the AC voltmeter 6. 9 denotes an area of the paint-covering defect which is a final result based on the result calculated by the arithmetic circuit 8. This is a display for displaying at a depth position.

次に、上記測定装置を用いて本発明の測定方法を説明
する。
Next, the measuring method of the present invention using the above-described measuring device will be described.

まず、測定に先立って埋設管1の塗覆装欠陥2を見つ
ける必要がある。それには前述した針電極法やピアソン
法のほかにもいくつか知られているが、特に長い埋設管
の場合は移動式の塗覆装欠陥探査機を用いるのが便利で
ある。
First, it is necessary to find the coating covering defect 2 of the buried pipe 1 before the measurement. There are several known methods besides the needle electrode method and the Pearson method described above. Particularly, in the case of a long buried pipe, it is convenient to use a movable coating and covering defect detector.

この探査機の探査原理は埋設管に電流を流し、損傷し
た欠陥から漏出する電流によって地表に生じた電位変化
を特殊な受信機によって検出するもので、第2図にその
一例を示す。
The search principle of this probe is to apply a current to a buried pipe and detect a potential change generated on the ground surface by a current leaking from a damaged defect by using a special receiver. An example is shown in FIG.

第2図に示すように、地表に電源10と発信器11とを用
意し、地中に埋設した管1にこの発言器11から特定周波
数の信号を流しておき、この状態で、受信器12と記録計
13とを装備し、導電性のタイヤ14を用いた探査車15を地
上で管1に沿って走らせると、第3図に示すような探査
データが記録計13から得られ、管1の塗覆装欠陥Aおよ
びBの位置が即座に把握できる。
As shown in FIG. 2, a power supply 10 and a transmitter 11 are prepared on the surface of the ground, and a signal of a specific frequency is supplied from the speaker 11 to the pipe 1 buried under the ground. And recorder
When a probe 15 using conductive tires 14 is run along the pipe 1 on the ground, the probe data as shown in FIG. The positions of the covering defects A and B can be immediately grasped.

こうして塗覆装欠陥の位置がわかったら地上に目印を
しておき、そこに約50cm間隔で深さ50cmの細孔をあけ、
そこに3本の照合電極5a,5b,5cを差し込むとともに、ス
キャナ7および交流電圧計6をセットする(第1図参
照)。
When the position of the coating covering defect is known in this way, mark it on the ground, and make a 50 cm deep pore there at intervals of about 50 cm,
The three reference electrodes 5a, 5b, 5c are inserted therein, and the scanner 7 and the AC voltmeter 6 are set (see FIG. 1).

さて、ここで交流電源4により埋設管1と接地極3と
の間にたとえば周波数255Hz程度の交流電流を流す。各
照合電極5a,5b,5cと埋設管1との間に現われる交流電圧
応答をスキャナ7で照合電極を切換えながら交流電圧計
6を用いて測定する。なおこの際、1本の基準とする照
合電極(たとえば5a)と埋設管1との間の交流電圧応答
だけを測定し、残りはその基準照合電極5aと照合電極5
b,5cとの間の交流電圧応答を測定し、その測定値を補正
して交流電位分布を算出する方が測定・解析精度は高い
ものとなる。
Now, an alternating current of, for example, a frequency of about 255 Hz flows between the buried tube 1 and the ground electrode 3 by the alternating current power supply 4. The AC voltage response appearing between each of the reference electrodes 5a, 5b, 5c and the buried tube 1 is measured using the AC voltmeter 6 while switching the reference electrodes by the scanner 7. At this time, only the AC voltage response between one reference electrode (for example, 5a) serving as a reference and the buried pipe 1 is measured, and the rest are the reference reference electrode 5a and the reference electrode 5a.
The measurement and analysis accuracy is higher when the AC voltage response between b and 5c is measured and the measured value is corrected to calculate the AC potential distribution.

このようにして得られた交流電位分布を以下に示す方
法で解析する。
The AC potential distribution thus obtained is analyzed by the following method.

いま土質が均一(土壌比抵抗ρが一定)で周辺に障害
物がなにもない土壌中に埋設された半径rの導電球に、
無限遠に埋設された無限大の接地極から交流電流IAC
流したとき、この導電球の中心からLだけ離れた地点で
測定される交流電位EACは次の式(1)で表わされる。
A conductive sphere of radius r buried in the soil where the soil is uniform (soil resistivity ρ is constant) and there are no obstacles around,
When an alternating current I AC is applied from an infinite ground electrode buried at infinity, an AC potential E AC measured at a point L away from the center of the conductive sphere is represented by the following equation (1). .

ここで、この式を実際に存在する塗覆装欠陥に適用す
るために、塗覆装欠陥を同面積を有する半導電球面で近
似すると、塗覆装欠陥面積がSのとき、Sとrの関係は
次のように表わされる(星野九平著技術雑誌「防食技
術」Vol.16、No.22参照)。
Here, in order to apply this formula to a coating defect that actually exists, when the coating defect is approximated by a semiconductive spherical surface having the same area, when the coating defect area is S, S and r The relationship is expressed as follows (see Kohei Hoshino's technical journal, “Anti-corrosion Technology”, Vol. 16, No. 22).

したがって、土質が均一で障害物の影響がなく、接地
極が塗覆装欠陥から充分離れているとき、照合電極5aに
おける交流電位EAC(5a)は次式(3)で表わされる。
Therefore, when the soil is uniform and there is no influence of obstacles, and the ground electrode is sufficiently away from the coating defect, the AC potential E AC (5a) at the reference electrode 5a is expressed by the following equation (3).

また、第4図に示すように地中埋設管1の塗覆装欠陥
2と本発明で地中に差し込んだ照合電極5aとの間の水平
方向距離をX(5a)とし、照合電極5aの接地深さをDREF
(5a)、塗覆装欠陥2の地表からの深さをDとすると、
塗覆装欠陥2と照合電極5aの先端との距離L(5a)は、
次のような式(4)で表わされる。
As shown in FIG. 4, the horizontal distance between the coating defect 2 of the underground pipe 1 and the reference electrode 5a inserted into the ground in the present invention is defined as X (5a), and D REF
(5a), assuming that the depth of the coating-covering defect 2 from the ground surface is D,
The distance L (5a) between the coating covering defect 2 and the tip of the reference electrode 5a is:
It is represented by the following equation (4).

したがって、式(1)は次のように変形できる。 Therefore, equation (1) can be modified as follows.

この式は、それぞれ照合電極について成立するもので
あるから、照合電極(5b)についても同様の式が成り立
つ。その結果、これらの2式から塗覆装欠陥の面積Sに
ついて解くと以下の式が導かれる。
Since this equation holds for each of the reference electrodes, the same equation holds for the reference electrode (5b). As a result, the following equation is derived by solving the area S of the coating covering defect from these two equations.

同様に、照合電極5b、照合電極5cについても塗覆装欠
陥面積Sについて、以下の式が導かれる。
Similarly, for the reference electrode 5b and the reference electrode 5c, the following formula is derived for the coating covering defect area S.

この2つの塗覆装欠陥面積Sを表わす式(6)および
(7)は、いずれも塗覆装欠陥の面積Sおよび塗覆装欠
陥の深さ位置Dの二つの未知数からなる式であるから、
この連立方程式を解くことにより、塗覆装欠陥の深さ位
置Dおよび塗覆装欠陥の面積Sが求められる。
Equations (6) and (7) representing the two coating-covering defect areas S are equations composed of two unknowns, the area S of the coating-covering defect and the depth position D of the coating-covering defect. ,
By solving the simultaneous equations, the depth position D of the coating defect and the area S of the coating defect are obtained.

なお、この連立方程式の解法として、横軸に塗覆装欠
陥の深さ位置D、縦軸(対数スケール)に塗覆装欠陥の
面積Sをとって第5図に示すようにプロットして曲線を
描き、これらの2曲線の交点Aの座標を解とする方法を
用いる。
As a solution of the simultaneous equations, a plot is made as shown in FIG. 5 by plotting the depth position D of the coating defect on the horizontal axis and the area S of the coating defect on the vertical axis (log scale). And a method of solving the coordinates of the intersection A of these two curves is used.

本実施例においては、演算回路8内に式(6)および
(7)が予じめ書込まれており、照合電極5a,5b,5cにつ
いて交流電圧計6から得られる交流電位EAC(5a),EAC
(5b),EAC(5c)を代入することにより塗覆装欠陥の面
積Sおよび深さ位置Dの解が求められる。このようなマ
イコンを用いた連立方程式の解法についてはすでに知ら
れているのでこれ以上説明をしない。
In this embodiment, the equations (6) and (7) are written in advance in the arithmetic circuit 8, and the AC potential E AC (5a) obtained from the AC voltmeter 6 for the reference electrodes 5a, 5b, 5c. ), E AC
By substituting (5b) and E AC (5c), the solution of the area S and the depth position D of the coating covering defect can be obtained. The solution of the simultaneous equations using such a microcomputer is already known and will not be described further.

なお、解析精度を向上させるには、照合電極の接地本
数を増やし交流電位分布を詳細に測定し、複数の曲線の
交点の分布から塗覆装欠陥の深さ位置および面積の測定
を行う方法が有効である。
In order to improve the analysis accuracy, a method of increasing the number of grounding reference electrodes, measuring the AC potential distribution in detail, and measuring the depth position and area of the coating covering defect from the distribution of the intersections of the plurality of curves. It is valid.

第6図は塗覆装欠陥の面積が予めわかっている塗覆装
を施した金属管を地中に埋設し、地中に深さ70cmに差し
込んだ照合電極を用いて本発明の方法により塗覆装欠陥
の面積を推定した結果を示す。図の横軸が実際の欠陥面
積、縦軸が推測した欠陥面積である。この図から、本発
明による面積測定方法が高い精度の欠陥面積の推定を可
能とすることがわかる。図中、○印は欠陥の位置が埋設
管の地表に近い側、◇または△印は欠陥の位置が管の側
面、□印は欠陥の位置が管の地表から遠い側にある場合
をそれぞれ示す。
FIG. 6 shows a coating-coated metal pipe having a known coating-covering defect area buried in the ground, and coated with a reference electrode inserted at a depth of 70 cm into the ground by the method of the present invention. The result of estimating the area of the covering defect is shown. The horizontal axis in the figure is the actual defect area, and the vertical axis is the estimated defect area. From this figure, it can be seen that the area measuring method according to the present invention enables highly accurate estimation of the defect area. In the figure, the mark ○ indicates the case where the defect is located near the surface of the buried pipe, the mark △ or △ indicates the case where the defect is located on the side of the tube, and the mark □ indicates the case where the defect is located far from the surface of the tube. .

(発明の効果) 以上説明したように、本発明においては、塗覆装を施
した地中に埋設した金属管に交流電流を流し、塗覆装欠
陥周辺に生ずる交流電位分布を該周辺の地中に差し込ん
だ少なくとも3本の照合電極により検出し、その交流電
位分布を解析することにより塗覆装欠陥の面積を演算す
るようにしたので、欠陥の深さ位置を反映した欠陥の面
積が求められ、正確な面積測定値が得られる。従って本
発明により求められる欠陥面積を用いることにより地中
埋設管の防食効果を正しく評価することができる。
(Effects of the Invention) As described above, in the present invention, an alternating current is applied to a metal pipe buried in the ground covered with coating, and the AC potential distribution generated around the coating-covered defect is converted to the ground potential in the surrounding area. The area of the coating-covering defect is calculated by detecting with at least three reference electrodes inserted therein and analyzing the AC potential distribution thereof, so that the area of the defect reflecting the depth position of the defect is obtained. And accurate area measurements are obtained. Therefore, by using the defect area required by the present invention, the anticorrosion effect of the underground pipe can be correctly evaluated.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による地中埋設管の塗覆装欠陥の面積測
定装置の概略線図、第2図は従来知られている移動式の
地中埋設管の塗覆装欠陥探査システムの概略線図、第3
図は第2図に示した塗覆装欠陥探査機から得られる探査
データの一例、第4図は本発明における塗覆装欠陥面積
の測定原理を説明するための図、第5図は本発明による
測定方法における交流電位分布の解析を説明するグラ
フ、第6図は本発明による測定方法の効果を実証するた
めのグラフである。 1……地中埋設管、1a……塗覆装、2……塗覆装欠陥、
3…接地極、4……交流電源、5a,5b,5c……照合電極、
6……交流電圧計、7……スキャナ、8……演算回路、
9……表示器
FIG. 1 is a schematic diagram of an apparatus for measuring the area of a coating defect of an underground pipe according to the present invention, and FIG. 2 is a schematic diagram of a conventionally known system for detecting a coating defect of a movable underground pipe. Diagram, third
FIG. 4 shows an example of search data obtained from the paint-covered defect detector shown in FIG. 2, FIG. 4 is a view for explaining the principle of measuring the paint-covered defect area in the present invention, and FIG. FIG. 6 is a graph for explaining the analysis of the AC potential distribution in the measuring method according to the present invention, and FIG. 6 is a graph for demonstrating the effect of the measuring method according to the present invention. 1 ... Underground pipe, 1a ... Coating, 2 ... Coating defect
3: Ground electrode, 4: AC power supply, 5a, 5b, 5c: Reference electrode,
6 ... AC voltmeter, 7 ... Scanner, 8 ... Calculation circuit,
9 …… Display

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】塗覆装を施して地中に埋設した金属管に交
流電流を流し、該金属管の塗覆装欠陥の周辺に生ずる交
流電位分布を該塗覆装欠陥周辺の地中に差し込んだ少な
くとも3本の照合電極により検出し、その交流電位分布
を解析することによって塗覆装欠陥の面積を演算するよ
うにしたことを特徴とする地中埋設管の塗覆装欠陥面積
の測定方法。
An AC current is applied to a metal tube buried in the ground by applying a coating, and an AC potential distribution generated around the coating defect of the metal tube is converted into a ground around the coating defect. A method for measuring the area of a coating defect of a buried underground pipe, wherein the area of the coating defect is calculated by detecting at least three inserted reference electrodes and analyzing an AC potential distribution thereof. Method.
【請求項2】塗覆装を施して地中に埋設した金属管に交
流電流を流すための交流電源と、前記金属管の塗覆装欠
陥の周辺の地中に離間して差し込まれる少なくとも3本
の照合電極と、該照合電極の切換え可能に接続される交
流電圧計と、該交流電圧計から出力される前記塗覆装欠
陥周辺の交流電位分布を解析して塗覆装欠陥の面積を演
算する演算手段とを有することを特徴とする地中埋設管
の塗覆装欠陥面積の測定装置。
2. An AC power supply for applying an AC current to a metal tube provided with a coating and buried in the ground, and at least three AC power sources inserted into the ground around the coating defect of the metal tube. The reference electrode of the present invention, an AC voltmeter switchably connected to the reference electrode, and an AC potential distribution around the coating defect output from the AC voltmeter is analyzed to determine the area of the coating defect. And a calculating means for calculating the coating area of the underground pipe.
JP2214094A 1990-08-13 1990-08-13 Measuring method and measuring device for coating coverage area of underground pipe Expired - Lifetime JP3007390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2214094A JP3007390B2 (en) 1990-08-13 1990-08-13 Measuring method and measuring device for coating coverage area of underground pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2214094A JP3007390B2 (en) 1990-08-13 1990-08-13 Measuring method and measuring device for coating coverage area of underground pipe

Publications (2)

Publication Number Publication Date
JPH0495867A JPH0495867A (en) 1992-03-27
JP3007390B2 true JP3007390B2 (en) 2000-02-07

Family

ID=16650130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214094A Expired - Lifetime JP3007390B2 (en) 1990-08-13 1990-08-13 Measuring method and measuring device for coating coverage area of underground pipe

Country Status (1)

Country Link
JP (1) JP3007390B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271541A (en) * 2006-03-31 2007-10-18 Tokiko Techno Kk Corrosion diagnosis device of underground embedded structure, and corrosion diagnostic method
JP4857136B2 (en) * 2007-02-13 2012-01-18 東京瓦斯株式会社 Abnormally low ground contact point detection method and detection system for buried metal pipeline
JP4932759B2 (en) * 2008-02-20 2012-05-16 東京瓦斯株式会社 Corrosion risk measurement and evaluation method for buried metal pipelines
JP2010266342A (en) * 2009-05-15 2010-11-25 Jfe Engineering Corp Metal corrosion diagnostic method
JP5565288B2 (en) * 2010-02-22 2014-08-06 Jfeエンジニアリング株式会社 Current density estimation method, apparatus, and anticorrosion management method, apparatus for coating damage part of underground pipe
WO2012025990A1 (en) 2010-08-24 2012-03-01 株式会社トランストロン Device for retaining brake liquid pressure
JP5734789B2 (en) * 2011-08-23 2015-06-17 Jx日鉱日石エネルギー株式会社 Damage estimation method for structures made of conductive materials
CN105842144B (en) * 2016-03-28 2018-12-25 国网四川省电力公司电力科学研究院 Simulator and its analogy method of the earthing pole stray electrical current to corrosion of buried metal
CN108562619B (en) * 2018-03-28 2021-01-29 中国石油天然气股份有限公司 Detection device and detection method for coating quality in underground casing

Also Published As

Publication number Publication date
JPH0495867A (en) 1992-03-27

Similar Documents

Publication Publication Date Title
US5828219A (en) Method of detecting faults in the insulation layer of an insulated concealed conductor
US8310251B2 (en) System for assessing pipeline condition
US5126654A (en) Non-invasive, high resolution detection of electrical currents and electrochemical impedances at spaced localities along a pipeline
US8228078B2 (en) Method and device for monitoring and detecting the coating defects of underground or underwater pipelines
US20200378885A1 (en) Multielectrode Probes For Monitoring Fluctuating Stray Current Effects And Ac Interference On Corrosion Of Burried Pipelines And Metal Structures
JP3007390B2 (en) Measuring method and measuring device for coating coverage area of underground pipe
JPS62159039A (en) Method and device for analyzing corrosion of soil and environment thereof to metal buried structure and method of specifying position of corrosive anode region
JPH0387669A (en) Method and apparatus for monitoring safety of metal structural body
US5498967A (en) System and methods of use for conducting a neutral corrosion survey
JP4658691B2 (en) Corrosion protection coating damage detection device for buried metal pipes
JP2958071B2 (en) Evaluation method of cathodic protection effect of underground pipes
JP5565288B2 (en) Current density estimation method, apparatus, and anticorrosion management method, apparatus for coating damage part of underground pipe
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
CN115266553A (en) Non-cathode protection buried pipeline direct current signal combination synchronous detection method
JP2002022695A (en) Method for detecting coating film damage position of embedded coated piping
KR20160011357A (en) System and Apparatus for Detection Piping Location in Waterfront Structures
JP2013096958A (en) Method and apparatus for estimating potential of coating defect part of underground pipe, and method and apparatus for electric protection management
JPS6183951A (en) Damaged position locating method of corrosion preventive cover of buried metallic pipe
JP4106202B2 (en) Corrosion protection damage detection method for buried metal pipes using integration means
JP3169754B2 (en) Method and apparatus for monitoring damage degree of coated steel pipe
RU2076989C1 (en) Method of determination of coordinates of damage in underground pipe line
SU785768A1 (en) Apparatus for contact-free measuring of currents in underground main pipelines
JP3451348B2 (en) Method for detecting paint film damage on buried coated steel pipe
Walton ACVG or DCVG-Does It Matter? Absolutely It Does.
JP2000249685A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20031217

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A02