JP2010271200A - Method for measuring resistance of coating film by fall-of-potential method - Google Patents

Method for measuring resistance of coating film by fall-of-potential method Download PDF

Info

Publication number
JP2010271200A
JP2010271200A JP2009123650A JP2009123650A JP2010271200A JP 2010271200 A JP2010271200 A JP 2010271200A JP 2009123650 A JP2009123650 A JP 2009123650A JP 2009123650 A JP2009123650 A JP 2009123650A JP 2010271200 A JP2010271200 A JP 2010271200A
Authority
JP
Japan
Prior art keywords
coating film
potential
signal
resistance
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009123650A
Other languages
Japanese (ja)
Inventor
Kenichi Haraga
健一 原賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009123650A priority Critical patent/JP2010271200A/en
Publication of JP2010271200A publication Critical patent/JP2010271200A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which enables the accurate determination of the resistance of a coating film by excluding the effect of a stray current. <P>SOLUTION: In the method for measuring the resistance of the coating film, which is covered with a cover material, by a fall-of-potential method, an interruptor turned ON/OFF by an M system code pattern is installed on a current-carrying cable and the obtained potential difference is subjected to cross-correlation processing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電位降下法による塗膜抵抗の測定方法に関するものである。   The present invention relates to a method for measuring coating film resistance by a potential drop method.

塗膜抵抗は、塗膜劣化度の評価に用いられており、電位降下法、接地抵抗計による方法などで測定されている(非特許文献1)。   The coating film resistance is used for evaluation of the degree of coating film deterioration, and is measured by a potential drop method, a method using a ground resistance meter, or the like (Non-Patent Document 1).

電位降下法は、測定対象内の流電陽極等の電気防食措置を外し、仮通電を行い管対地電位の変化量により測定するものである。仮通電は、測定対象区間の中間位置における流電陽極のオン/オフを一定間隔で繰り返し行う方法であり、流電陽極の電圧では管対地電位の変化量が測定できない場合は、電池などを用いて、電位変化を与えて行う。図6に示したように、管対地電位の測定は、仮通電位置及び測定対象区間の両端のターミナルで測定し、3点の電位変化量の平均値を用いて、塗膜抵抗値を次式(1)により求めることができる。   In the potential drop method, the anticorrosion measures such as the galvanic anode in the measurement object are removed, temporary energization is performed, and the amount of change in the tube-to-ground potential is measured. Temporary energization is a method of repeatedly turning on / off the galvanic anode at an intermediate position in the measurement target section at regular intervals. If the change in the tube-to-ground potential cannot be measured with the voltage of the galvanic anode, a battery or the like is used. Then, change the potential. As shown in FIG. 6, the tube-to-ground potential is measured at the temporary energization position and the terminals at both ends of the measurement target section, and the average value of the three potential change amounts is used to calculate the coating film resistance value as follows: It can be obtained by (1).

Figure 2010271200
R・・・・・・塗膜抵抗(Ω・m
ΔP/S・・・管対地電位の変化量の平均値(V)
I・・・・・・流電陽極発生電流又は通電電流(A)
L・・・・・・測定対象管延長(m)
D・・・・・・管の実外径(m)
Figure 2010271200
R ··· coating resistance (Ω · m 2 )
ΔP / S: Average value of change in tube-to-ground potential (V)
I ···· Electric current generation current or conduction current (A)
L · ·· Measurement tube extension (m)
D ··· Actual outer diameter of pipe (m)

社団法人日本ガス協会、「高圧導管指針」JGA指−204−06、P256Japan Gas Association, “High-Pressure Conduit Guidelines” JGA Finger-204-06, P256

従来の電位降下法による塗膜抵抗の測定において、迷走電流が多い埋設環境下では管対地電位の変化量が計測し難く、正確な塗膜抵抗の測定が困難であった。
本発明の目的は、迷走電流の影響を排除して、正確に塗膜抵抗を測定できる方法を提供することにある。
In the measurement of coating film resistance by the conventional potential drop method, it is difficult to measure the amount of change in the tube-to-ground potential in an embedded environment with a large amount of stray current, and it is difficult to accurately measure the coating film resistance.
An object of the present invention is to provide a method capable of accurately measuring the coating film resistance while eliminating the influence of stray current.

本発明者は、上記課題を解決するべく鋭意検討の結果、計測に擬似ランダム信号を用い、検出信号を相互相関処理することによってS/N比を改善し、これによって目的を達成することができた。   As a result of intensive studies to solve the above-mentioned problems, the inventor can improve the S / N ratio by using a pseudo-random signal for measurement and cross-correlating the detection signal, thereby achieving the object. It was.

すなわち、本発明は、被覆材に被覆された塗膜抵抗を電位降下法で測定する方法において、通電ケーブルにM系列符号パターンによりオン/オフするインタラプタを設置し、得られた電位差を相互相関処理することを特徴とする塗膜抵抗の測定方法に関するものである。   That is, according to the present invention, in a method of measuring the resistance of a coating film coated on a coating material by a potential drop method, an interrupter that is turned on / off by an M-sequence code pattern is installed in an energized cable, and the obtained potential difference is subjected to a cross correlation process. It is related with the measuring method of the coating-film resistance characterized by doing.

印加電圧の波形と検出信号の波形の相互相関処理を行った場合、その相互相関処理の演算中、例えば検出信号をシフトして掛算を行う過程において、印加電圧とシフトされた検出信号が同じパターンとなって同期のとれた位置に相互相関のピークが出現する。印加電圧とパターンの異なるノイズは、相互相関処理を行うことによって相殺されるため、ピーク値にほとんど影響を与えない。印加電圧に擬似ランダム信号を用いた場合、印加電圧に因らないノイズが印加電圧のパターンと同じパターンにはならないため、印加電圧に起因する検出信号のみが電位差の代表値として検出されることになり、S/N比が大きく改善される。この代表値を用いて電位分布を求め、その電位分布の変化量から前述の従来法と同様の方法により塗膜抵抗値を高精度で得ることができる。 When cross-correlation processing is performed between the waveform of the applied voltage and the waveform of the detection signal, during the cross-correlation processing, for example, in the process of performing the multiplication by shifting the detection signal, the applied voltage and the shifted detection signal have the same pattern. Thus, a cross-correlation peak appears at the synchronized position. Noise having a different pattern from the applied voltage is canceled by performing the cross-correlation process, and therefore has little effect on the peak value. When a pseudo-random signal is used for the applied voltage, noise that does not depend on the applied voltage does not become the same pattern as the applied voltage, so that only the detection signal that results from the applied voltage is detected as a representative value of the potential difference. Thus, the S / N ratio is greatly improved. Using this representative value, the potential distribution is obtained, and the coating film resistance value can be obtained with high accuracy from the amount of change in the potential distribution by the same method as the conventional method described above.

本発明により、迷走電流の影響を排し、塗膜抵抗を正確に計測することができる。   According to the present invention, the influence of stray current can be eliminated and the coating film resistance can be accurately measured.

本発明の一実施例である塗膜抵抗測定方法を説明する図である。It is a figure explaining the coating-film resistance measuring method which is one Example of this invention. M系列信号発生用シフトレジスタの例を示す図である。It is a figure which shows the example of the shift register for M series signal generation. M系列信号波形とその自己相関信号波形の例を示す図である。It is a figure which shows the example of an M series signal waveform and its autocorrelation signal waveform. 本発明により得られた管対地電位及び通電電流の時系列チャート及びM系列相関関数を示す図である。It is a figure which shows the time series chart and M series correlation function of the tube ground potential and energization current which were obtained by this invention. 従来法における管対地電位及び通電電流の時系列チャートを示す図である。It is a figure which shows the time series chart of the tube ground potential in a conventional method, and an energization current. 従来の電位降下法による塗膜抵抗測定方法を説明する図である。It is a figure explaining the coating-film resistance measuring method by the conventional potential drop method.

本発明の方法で測定される被覆材は、金属をプラスチックなどで被覆したものである。金属は、鉄、炭素鋼、低合金鋼、ステンレス鋼などの鋼、銅、銅合金、アルミニウム、アルミニウム合金等、金属であれば特に制限されない。形状も用途に応じた如何なる形状でもよいが、典型的な形状は管と板である。塗膜は、抵抗を測定できるものであれば、特に制限されないが、典型的なものは、ポリエチレン、ポリウレタン等である。   The coating material measured by the method of the present invention is obtained by coating a metal with a plastic or the like. The metal is not particularly limited as long as it is a metal such as steel such as iron, carbon steel, low alloy steel, and stainless steel, copper, copper alloy, aluminum, aluminum alloy, and the like. The shape may be any shape depending on the application, but typical shapes are tubes and plates. Although a coating film will not be restrict | limited especially if resistance can be measured, A typical thing is polyethylene, a polyurethane, etc.

被覆材は、土壌中に埋設されているものの外、淡水や海水など水中に設置されているものも含まれる。   The covering material includes not only those buried in the soil but also those installed in water such as fresh water and seawater.

測定にあたっては、まず、被覆材の測定対象区間の両端とその中間で電位計の陽極をターミナルに接続し、陰極には飽和硫酸銅基準電極を接続する。この時、被覆材の測定対象区間の両端を左側からそれぞれ地点1及び地点3とし、中間を地点2とする。そして、図1に示すように、中間に接続されている電位計の陽極に流電陽極を接続するが、その際、本発明では、その間にM系列インタラプタを設置してM系列符号パターンにより通電をオン/オフし、得られた電位差を相関演算器により相互相関処理を行うのである。   In the measurement, first, the anode of the electrometer is connected to the terminal at both ends of the measurement target section of the covering material, and a saturated copper sulfate reference electrode is connected to the cathode. At this time, both ends of the measurement target section of the covering material are point 1 and point 3 from the left side, respectively, and the middle is point 2. Then, as shown in FIG. 1, the galvanic anode is connected to the anode of the electrometer connected in the middle. At this time, in the present invention, an M series interrupter is installed between them and energized by the M series code pattern. Is turned on / off, and the obtained potential difference is subjected to cross-correlation processing by a correlation calculator.

M系列符号パターンとは、高感度な信号検出が可能なM系列信号によって発生する特有のパターンと周期を有する擬似ランダム信号による符号パターンである。擬似ランダム信号とは、長期間においては繰り返し周期がありランダム性は失われているが、周期内においてはランダム性が保たれているような信号をいう。   The M-sequence code pattern is a code pattern based on a pseudo-random signal having a specific pattern and period generated by an M-sequence signal capable of highly sensitive signal detection. A pseudo-random signal is a signal that has a repetitive period in a long period and loses randomness, but maintains randomness in the period.

M系列信号は、図2に示すようなフィードバック回路を有するシフトレジスタによって容易に発生させることができる。図2に示す6段のシフトレジスタによって得られる符号長は、2−1=63である。 The M-sequence signal can be easily generated by a shift register having a feedback circuit as shown in FIG. The code length obtained by the six-stage shift register shown in FIG. 2 is 2 6 −1 = 63.

図3に、M系列信号の信号波形(a)とその自己相関信号波形(b)の例を示す。図3において、横軸は時間、縦軸は信号の大きさ、τaはM系列信号を生成するシフトレジスタに与えられるクロックの周期である。   FIG. 3 shows an example of a signal waveform (a) of an M-sequence signal and its autocorrelation signal waveform (b). In FIG. 3, the horizontal axis represents time, the vertical axis represents the signal magnitude, and τa represents the period of the clock applied to the shift register that generates the M-sequence signal.

M系列信号は、周期性のある擬似ランダム信号であり、シフトレジスタのビット数に対応する周期(ここでは符号長63の周期性)を持つことから、自己相関をとると、図3(b)に示すようなピーク値を周期的に持つ。このことから、他の信号との相互相関処理を行った場合、M系列信号とパターンの一致する信号のみが高いピーク値を有する相互相関値を持つことがわかる。この性質を利用すれば、ノイズ信号の低減を図ることが可能となる。   Since the M-sequence signal is a pseudo-random signal with periodicity and has a period corresponding to the number of bits of the shift register (here, periodicity with a code length of 63), when autocorrelation is taken, FIG. Periodically have peak values as shown in FIG. From this, it is understood that when cross-correlation processing with other signals is performed, only signals having a pattern that matches the M-sequence signal have a cross-correlation value having a high peak value. By utilizing this property, it is possible to reduce the noise signal.

印加電圧の波形と検出信号の波形との相互相関処理を行った場合、その相互相関処理の演算中、例えば検出信号をシフトして掛算を行う過程において、印加電圧とシフトされた検出信号が同じパターンとなって同期のとれた位置に相互相関のピークが出現する。印加電圧とパターンの異なるノイズは、相互相関処理を行うことによって打ち消されてしまい、ピーク値にほとんど影響を与えない。印加電圧にM系列信号を用いた場合、印加電圧に基づかないノイズが印加電圧のパターンと同じパターンになることはない。したがって、印加電圧に起因する検出信号のみが電位差の代表値として検出されることになり、この代表値を用いて電位分布を求め、その電位分布の変化量(ΔP/S)を求める。さらに、通電電流(I)、測定対象管延長(L)及び管の実外径(D)は既知であるから、前述の式(1)を用いれば塗膜抵抗値(R)を求めることができる。   When the cross-correlation process between the waveform of the applied voltage and the waveform of the detection signal is performed, during the calculation of the cross-correlation process, for example, in the process of performing the multiplication by shifting the detection signal, the applied voltage is the same as the shifted detection signal. A cross-correlation peak appears at a synchronized position in a pattern. Noise having a different pattern from the applied voltage is canceled out by performing the cross-correlation process, and hardly affects the peak value. When an M-sequence signal is used as the applied voltage, noise that is not based on the applied voltage does not become the same pattern as the applied voltage pattern. Therefore, only the detection signal resulting from the applied voltage is detected as a representative value of the potential difference, and the potential distribution is obtained using this representative value, and the change amount (ΔP / S) of the potential distribution is obtained. Furthermore, since the energizing current (I), the measurement target tube extension (L), and the actual outer diameter (D) of the tube are known, the coating film resistance value (R) can be obtained using the above-described equation (1). it can.

本発明では、擬似ランダム信号を用いているため、複数地点での計測や通電地点より離れた地点での計測も容易である。塗膜抵抗の測定は、通常、埋設施工時に実施されることが多く、抵抗値が低ければ塗覆装の施工状態が不良と判断し、塗覆装欠陥が存在する恐れがある。   In the present invention, since pseudo-random signals are used, measurement at a plurality of points and measurement at a point distant from the energization point are easy. The measurement of the coating film resistance is usually carried out at the time of embedding construction. If the resistance value is low, the construction state of the coating is judged to be poor, and there is a possibility that a coating defect exists.

図1に示した配置により管対地電位及び通電電流を測定した。図4(a)〜(d)に、M系列符号パターンにより通電オン/オフした場合に得られた時系列チャートを示す。地点2における通電電流チャートを図4(a)に、各地点における管対地電位チャートを図4(b)〜(d)に示す。図4(a)〜(d)の測定値を相互相関処理すると、図4(e)〜(h)となった。地点2における通電電流のM系列相関関数を図4(e)に、各地点における管対地電位のM系列相関関数を図4(f)〜(h)に示す。 The tube-to-ground potential and the energization current were measured by the arrangement shown in FIG. 4A to 4D show time-series charts obtained when energization is turned on / off by the M-sequence code pattern. An energization current chart at the point 2 is shown in FIG. 4A, and tube-to-ground potential charts at the respective points are shown in FIGS. 4B to 4D. When the measured values of FIGS. 4A to 4D are subjected to cross-correlation processing, the results are as shown in FIGS. 4E to 4H. FIG. 4E shows the M series correlation function of the energization current at the point 2, and FIGS. 4F to 4H show the M series correlation functions of the tube-to-ground potential at each point.

図4(e)〜(h)における各ピーク値は、図4(a)〜(d)より読み取ることのできる変化量と同一値であった。
一方、図5(a)〜(d)に、従来の通電オン/オフを一定間隔で繰り返し行った場合に得られた時系列チャートを示す。なお、通電オン時間は7秒、通電オフ時間は3秒とした。地点2における通電電流チャートを。図5(a)に、各地点における管対地電位チャートを図5(b)〜(d)に示す。図5(a)〜(d)の測定チャートでは通電地点から遠く離れた地点1(図5(b))および地点3(図5(d))における管対地電位の変化量を読み取ることは困難である。
Each peak value in FIGS. 4E to 4H was the same value as the amount of change that can be read from FIGS. 4A to 4D.
On the other hand, FIGS. 5A to 5D show time series charts obtained when conventional energization on / off is repeatedly performed at regular intervals. The energization on time was 7 seconds, and the energization off time was 3 seconds. An energization current chart at point 2. FIG. 5A shows a tube-to-ground potential chart at each point in FIGS. In the measurement charts of FIGS. 5 (a) to 5 (d), it is difficult to read the amount of change in the pipe-to-ground potential at points 1 (FIG. 5 (b)) and 3 (FIG. 5 (d)) far from the energization point. It is.

このようにM系列符号パターンで信号変化を与え、相互相関処理を行うことにより、ノイズ信号の成分を除去してS/N比を改善することができ、その結果、通電電流及び管対地電位の変化量、すなわち塗膜抵抗値を高精度で測定することが可能である。   Thus, by applying a signal change with the M-sequence code pattern and performing cross-correlation processing, the noise signal component can be removed and the S / N ratio can be improved. As a result, the conduction current and the tube-to-ground potential can be reduced. It is possible to measure the change amount, that is, the coating film resistance value with high accuracy.

本発明により、土中の防食被覆鋼管等の塗膜の劣化度を正確に診断することができ、それにより補修等の対策を講じることができる。   According to the present invention, it is possible to accurately diagnose the degree of deterioration of a coating film such as an anticorrosion-coated steel pipe in the soil, and thus measures such as repair can be taken.

Claims (1)

被覆材に被覆された塗膜抵抗を電位降下法で測定する方法において、通電ケーブルにM系列符号パターンによりオン/オフするインタラプタを設置し、得られた電位差を相互相関処理することを特徴とする塗膜抵抗の測定方法。   In a method of measuring the resistance of a coating film covered with a coating material by a potential drop method, an interrupter that is turned on / off by an M-sequence code pattern is installed in an energized cable, and the obtained potential difference is subjected to a cross-correlation process. Measuring method of coating film resistance.
JP2009123650A 2009-05-22 2009-05-22 Method for measuring resistance of coating film by fall-of-potential method Pending JP2010271200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123650A JP2010271200A (en) 2009-05-22 2009-05-22 Method for measuring resistance of coating film by fall-of-potential method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123650A JP2010271200A (en) 2009-05-22 2009-05-22 Method for measuring resistance of coating film by fall-of-potential method

Publications (1)

Publication Number Publication Date
JP2010271200A true JP2010271200A (en) 2010-12-02

Family

ID=43419338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123650A Pending JP2010271200A (en) 2009-05-22 2009-05-22 Method for measuring resistance of coating film by fall-of-potential method

Country Status (1)

Country Link
JP (1) JP2010271200A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344547A (en) * 2013-06-19 2013-10-09 国家电网公司 Experiment device for simulation of stray current corrosion in soil
CN105043971A (en) * 2015-07-02 2015-11-11 中国民航大学 Experiment device for research on corrosion behavior of metal substrate beneath peeling coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344547A (en) * 2013-06-19 2013-10-09 国家电网公司 Experiment device for simulation of stray current corrosion in soil
CN105043971A (en) * 2015-07-02 2015-11-11 中国民航大学 Experiment device for research on corrosion behavior of metal substrate beneath peeling coating

Similar Documents

Publication Publication Date Title
JP2006177699A (en) Method and apparatus of measuring electrical resistance
JP2008292360A (en) Device and method for measuring and evaluating cathode prevention status of buried pipeline
WO2001070003A3 (en) Method and apparatus for investigating corrosion
JP2010271200A (en) Method for measuring resistance of coating film by fall-of-potential method
JPWO2018092264A1 (en) Corrosion evaluation method
RU143178U1 (en) DEVICE FOR DETERMINING THE THICKNESS OF MAGNETIC DEPOSITS ON THE SURFACE OF PIPES BY THE VORTEX RAY METHOD
JP6857710B2 (en) Soil corrosion evaluation device
Tan et al. Field and laboratory assessment of electrochemical probes for visualizing localized corrosion under buried pipeline conditions
JP5146360B2 (en) Method and apparatus for detecting rust in steel structures
JP5565288B2 (en) Current density estimation method, apparatus, and anticorrosion management method, apparatus for coating damage part of underground pipe
JP2010127851A (en) Apparatus and method for measuring earth resistivity for use in power distribution using three electrodes
JP2010271201A (en) Method for measuring guide current
Wang et al. An array of multielectrodes for locating, visualizing, and quantifying stray current corrosion
JP4044303B2 (en) Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals
CN109669205A (en) A kind of Peak Search Method of seawater radionuclide K40 element
CN105675414B (en) Stress-electric coupling surveys crack growth rate detection method
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JP3365312B2 (en) Method for detecting paint film damage position on buried steel pipe
KR100508877B1 (en) method for detecting the coating defect and corrosion points of the pipelines in soil using the electrochemical impedance spectroscopy
JP3451348B2 (en) Method for detecting paint film damage on buried coated steel pipe
JP2009243939A (en) Method and apparatus for measuring change in electrical resistance, and apparatus and method for measuring corrosion rate
JP2017020954A (en) Insulation resistance monitoring device in direct current non-grounded electric circuit and monitoring method
JP4606207B2 (en) Damage evaluation data processing method and damage monitoring device for coated steel pipe
JP4522289B2 (en) Corrosion estimation method
JP2005037401A (en) Paint film defective position detector for buried paint-applied steel pipe