JP6857710B2 - Soil corrosion evaluation device - Google Patents

Soil corrosion evaluation device Download PDF

Info

Publication number
JP6857710B2
JP6857710B2 JP2019232700A JP2019232700A JP6857710B2 JP 6857710 B2 JP6857710 B2 JP 6857710B2 JP 2019232700 A JP2019232700 A JP 2019232700A JP 2019232700 A JP2019232700 A JP 2019232700A JP 6857710 B2 JP6857710 B2 JP 6857710B2
Authority
JP
Japan
Prior art keywords
soil
metals
metal
evaluation device
corrosiveness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019232700A
Other languages
Japanese (ja)
Other versions
JP2020046440A (en
Inventor
真悟 峯田
真悟 峯田
東 康弘
康弘 東
水沼 守
守 水沼
翔太 大木
翔太 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2019232700A priority Critical patent/JP6857710B2/en
Publication of JP2020046440A publication Critical patent/JP2020046440A/en
Application granted granted Critical
Publication of JP6857710B2 publication Critical patent/JP6857710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、土壌の腐食性を評価する土壌腐食性評価装置に関する。 The present invention relates to a soil corrosiveness evaluation device for evaluating soil corrosiveness.

鋼管柱、支持アンカや配管などのインフラ設備に代表されるように、様々な金属構造物が、全体またはその一部を地中に埋設された状態で利用されている。金属構造物は土壌に接するために腐食し、経過年数とともに減肉、劣化していくのが普通である。 Various metal structures are used in a state where they are buried in the ground in whole or in part, as represented by infrastructure equipment such as steel pipe columns, support anchors and pipes. Metal structures are corroded because they come into contact with soil, and usually become thinner and deteriorate over time.

土壌に埋設した金属構造物の腐食の程度は、土壌の種類や性質、金属構造物の構造や埋設状態、および気象条件の差異で著しく異なる。金属構造物の腐食に影響を及ぼす因子として、土壌の種類、気温や土の温度、pH、比抵抗、含水量、可溶性塩類濃度、酸素濃度、ガス類、バクテリア活動などが挙げられる。土壌腐食はこれら諸因子が関係した複雑なメカニズムで進行する。 The degree of corrosion of metal structures buried in soil varies significantly depending on the type and properties of soil, the structure and burial conditions of metal structures, and differences in meteorological conditions. Factors that affect the corrosion of metal structures include soil type, air temperature and soil temperature, pH, specific resistance, water content, soluble salt concentration, oxygen concentration, gases, and bacterial activity. Soil corrosion proceeds by a complex mechanism involving these factors.

そのため,金属構造物が本来確保するべき機能を発揮できなくなるより前に、補修や交換など、なんらかの対策を講じる必要がある。しかし地中構造物は、地中にあるが故に、人または機械による直接的な点検が困難な場合が多い。そこで、土壌に埋設した金属構造物に対する土壌の腐食性を表す土壌腐食性を、ある基準に基づいて評価し、その土壌腐食性の評価結果によって設備の保守運用計画を立案する方法がある。 Therefore, it is necessary to take some measures such as repair and replacement before the metal structure can no longer perform its intended function. However, because underground structures are underground, it is often difficult to directly inspect them by humans or machines. Therefore, there is a method of evaluating the soil corrosiveness, which indicates the corrosiveness of the soil to the metal structure buried in the soil, based on a certain standard, and formulating a maintenance operation plan of the equipment based on the evaluation result of the soil corrosiveness.

一般的に、例えば腐食土、泥炭土、粘土、さらに河川や海岸付近の土壌などが、地中の金属、特に鋼や鋳鉄材の腐食が大きいと言われている。しかし、非常に広範囲に大規模に設備が敷設される現在では、敷設環境も多様であり、こうした定性的かつ経験的な指標では対応できない。 Generally, it is said that, for example, corroded soil, peat soil, clay, and soil near rivers and coasts are highly corroded by metals in the ground, especially steel and cast iron materials. However, now that equipment is laid on a very wide area on a large scale, the laying environment is also diverse, and such qualitative and empirical indicators cannot be used.

そこで、電気化学的手法を用いて土壌腐食性を評価する考えが、例えば非特許文献1に開示されている。 Therefore, the idea of evaluating soil corrosiveness by using an electrochemical method is disclosed in, for example, Non-Patent Document 1.

宮田義一ほか1名、「電気化学的手法を中心とした土壌腐食計測(その2)」、材料と環境、46, 610〜619, 1997.Yoshikazu Miyata and one other person, "Soil Corrosion Measurement Focusing on Electrochemical Methods (Part 2)", Materials and Environment, 46, 610-619, 1997.

従来の電気化学的手法は、例えば交流インピーダンス法で土壌の分極抵抗を求め、土壌腐食性を評価する方法である。その方法は、複雑であることから、もっぱら実験室等で行われる。したがって、実際に金属構造物が埋設される現場で用いるのが困難で有るという課題がある。 The conventional electrochemical method is, for example, a method of determining the polarization resistance of soil by an AC impedance method and evaluating soil corrosiveness. Since the method is complicated, it is performed exclusively in a laboratory or the like. Therefore, there is a problem that it is difficult to use it at the site where the metal structure is actually buried.

本発明は、この課題に鑑みてなされたものであり、従来よりも簡単な構成で、且つ便利に使える土壌腐食性評価装置とその方法を提供することを目的とする。 The present invention has been made in view of this problem, and an object of the present invention is to provide a soil corrosion evaluation device and a method thereof, which have a simpler configuration than the conventional one and can be conveniently used.

本実施形態の一態様に係る土壌腐食性評価装置は、土壌に埋設された2つの金属の電位差から、前記土壌が前記金属を腐食する程度を評価するための土壌腐食性評価装置であって、前記土壌に埋設する2つの金属と、前記2つの金属間に接続される回路と、を備え、前記回路は、陽極を構成する一方の前記金属に負電源端子を接続させる直流電源と、前記直流電源の正電源端子にアノード電極を接続させ、カソード電極を他方の前記金属に接続させる発光ダイオードとを備え、前記金属の腐食が進んだ場合の前記電位差をV1、前記直流電源の電圧をV2、及び前記発光ダイオードの順方向電圧をV3とした場合に、前記V2をV2=V3-V1となるように設定することを要旨とする。 The soil corrosiveness evaluation device according to one aspect of the present embodiment is a soil corrosiveness evaluation device for evaluating the degree to which the soil corrodes the metal from the potential difference between two metals buried in the soil. The two metals embedded in the soil and a circuit connected between the two metals are provided, and the circuit includes a DC power source for connecting a negative power supply terminal to one of the metals constituting the anode, and the DC. the positive power supply terminal is connected to the anode electrode of the power source, a cathode electrode and a light emitting diode to be connected to the other of the metal, the potential difference in the case where the corrosion has proceeded before Kikin genus V1, the voltage of the DC power supply V2, and the forward voltage of the light emitting diode when the V3, a gist that you set the V2 such that V2 = V3-V1.

本発明によれば、従来よりも簡単な構成で、且つ便利に使える土壌腐食性評価装置を提供することができる。 According to the present invention, it is possible to provide a soil corrosion evaluation device having a simpler structure than the conventional one and which can be conveniently used.

本発明の第1実施形態に係る土壌腐食性評価装置の機能構成例を示す図である。It is a figure which shows the functional composition example of the soil corrosiveness evaluation apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る土壌腐食性評価装置の機能構成例を示す図である。It is a figure which shows the functional composition example of the soil corrosiveness evaluation apparatus which concerns on 2nd Embodiment of this invention. 図2に示す土壌腐食性評価装置の測定部の具体例を示す図である。It is a figure which shows the specific example of the measuring part of the soil corrosiveness evaluation apparatus shown in FIG. 評価時間と自然電位との関係を模式的に示す図である。It is a figure which shows typically the relationship between evaluation time and natural potential. 本発明の第3実施形態に係る土壌腐食性評価装置の機能構成例を示す図である。It is a figure which shows the functional composition example of the soil corrosiveness evaluation apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る土壌腐食性評価装置の機能構成例を示す図である。It is a figure which shows the functional composition example of the soil corrosiveness evaluation apparatus which concerns on 4th Embodiment of this invention. 本発明の第1実施形態に係る土壌腐食性評価装置を複数用いて評価する場合の一例を示す図である。It is a figure which shows an example of the case of evaluation using a plurality of soil corrosiveness evaluation apparatus which concerns on 1st Embodiment of this invention. 評価時間と自然電位との関係を模式的に示す図である。It is a figure which shows typically the relationship between evaluation time and natural potential. 本発明の第1実施形態に係る土壌腐食性評価装置を複数用いて評価する場合の他の例を示す図である。It is a figure which shows another example in the case of evaluation using a plurality of soil corrosiveness evaluation apparatus which concerns on 1st Embodiment of this invention. 本発明の第3実施形態に係る土壌腐食性評価装置の変形例の機能構成例を示す図である。It is a figure which shows the functional composition example of the modification of the soil corrosion property evaluation apparatus which concerns on 3rd Embodiment of this invention.

以下、本発明の実施形態について図面を用いて説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same objects in a plurality of drawings, and the description is not repeated.

〔第1実施形態〕
図1に、第1実施形態に係る土壌腐食性評価装置1の機能構成例を示す。土壌腐食性評価装置1は、2つの金属11,12、回路20、及び測定部21を備える。
[First Embodiment]
FIG. 1 shows an example of the functional configuration of the soil corrosiveness evaluation device 1 according to the first embodiment. The soil corrosion evaluation device 1 includes two metals 11 and 12, a circuit 20, and a measuring unit 21.

金属11と金属12は、互いに材質が異なり、土壌100に埋設される。金属12,13は、土壌100中に埋設した状態で回路20を介して電気的に接続した際に起電力が生じる必要がある。そのために、金属12,13は、土壌中の自然電位(腐食電位)が異なる金属同士を組み合わせた異種金属対10を構成する。 The metal 11 and the metal 12 are made of different materials and are buried in the soil 100. The metals 12 and 13 need to generate an electromotive force when they are electrically connected via the circuit 20 in a state of being buried in the soil 100. Therefore, the metals 12 and 13 form a dissimilar metal pair 10 in which metals having different natural potentials (corrosion potentials) in the soil are combined.

金属の組み合わせは、例えば、鉄と亜鉛、銀と鉄、銅と鉄、及び鉄とマグネシウム等の組み合わせが考えられる。なお、金属は単一組成を有するものである必要もなく、例えば溶融亜鉛メッキを施した金属を用いてもよい。つまり、異種金属対10の組み合わせとして、例えば鋼材と溶融亜鉛メッキ鋼材でもよい。また、金属の大きさ、厚みを含む形状も特に制限はない。 As the combination of metals, for example, a combination of iron and zinc, silver and iron, copper and iron, iron and magnesium, and the like can be considered. The metal does not have to have a single composition, and for example, a metal subjected to hot dip galvanizing may be used. That is, as a combination of dissimilar metals to 10, for example, a steel material and a hot-dip galvanized steel material may be used. Further, the shape including the size and thickness of the metal is not particularly limited.

回路20は、異種金属対10を成す金属11,12の間に接続される。測定部21は、回路20を流れる電流を測定する。 The circuit 20 is connected between the metals 11 and 12 forming the dissimilar metal pair 10. The measuring unit 21 measures the current flowing through the circuit 20.

測定部21は、例えば電流計である。なお、後述するように測定部21は、金属11,12の間の電位差を測定する電圧計で有ってもよい。また、電荷量測定器で有ってもよい。 The measuring unit 21 is, for example, an ammeter. As will be described later, the measuring unit 21 may be a voltmeter that measures the potential difference between the metals 11 and 12. Further, it may be a charge amount measuring device.

本実施形態では、異種金属対10を土壌中に埋設し、金属11,12同士を電気的に接続すると発生する、いわゆるガルバニック腐食を利用して土壌100の土壌の腐食性(土壌腐食性)を評価する。 In the present embodiment, the corrosiveness (soil corrosiveness) of the soil of the soil 100 is determined by utilizing so-called galvanic corrosion, which is generated when dissimilar metal pairs 10 are buried in the soil and the metals 11 and 12 are electrically connected to each other. evaluate.

図1に示すように、土壌100に異種金属対10を埋設し、金属11,12を電気的に接続するとガルバニック腐食電流が流れる。例えば、鉄と亜鉛の組み合わせで一般的な関東ローム土等に埋め込むと、土壌100の水分量によっても異なるが、金属11,12の間に凡そ0.3〜0.4V程度の自然電位を生じる。このガルバニック腐食は、土壌100中に独立して存在する金属の腐食とはそのメカニズムを異にしているが、土壌100中での腐食速度と高い相関を示すことが知られている。 As shown in FIG. 1, when dissimilar metal pairs 10 are buried in soil 100 and the metals 11 and 12 are electrically connected, a galvanic corrosion current flows. For example, when a combination of iron and zinc is embedded in general Kanto loam soil or the like, a natural potential of about 0.3 to 0.4 V is generated between the metals 11 and 12, although it depends on the water content of the soil 100. This galvanic corrosion has a different mechanism from the corrosion of metals independently existing in soil 100, but is known to show a high correlation with the corrosion rate in soil 100.

2つの金属11,12の間を、回路20で接続することでガルバニック腐食が生じ、金属11,12の腐食が進行する。一定期間が経過すると異種金属対10を構成する一方の金属である例えば亜鉛が消失し、他方の金属である例えば鉄の表面に腐食生成部が形成される。 By connecting the two metals 11 and 12 with a circuit 20, galvanic corrosion occurs, and the corrosion of the metals 11 and 12 progresses. After a certain period of time, one metal, for example zinc, which constitutes the dissimilar metal pair 10, disappears, and a corrosion generating portion is formed on the surface of the other metal, for example, iron.

腐食が進行し金属11,12の状態が変化すると、金属11と12との間に生じる電位差の大きさが変化する。この変化を測定部21で可視化することで、土壌100の金属11,12に対する土壌腐食性を評価することができる。 As the corrosion progresses and the states of the metals 11 and 12 change, the magnitude of the potential difference generated between the metals 11 and 12 changes. By visualizing this change with the measuring unit 21, the soil corrosiveness of the soil 100 to the metals 11 and 12 can be evaluated.

以上説明したように本実施形態の土壌腐食性評価装置1は、2つの金属11,12、回路20、及び測定部21の簡単な構成で、土壌100の土壌腐食性を評価するための金属11と12との間に生じる電位差の大きさの変化を表示する。このように土壌腐食性評価装置1は、簡便な土壌腐食性の評価を可能にする。よって、実際に金属構造物が埋設される現場における土壌腐食性の評価も可能にする。 As described above, the soil corrosiveness evaluation device 1 of the present embodiment has a simple configuration of two metals 11, 12, a circuit 20, and a measuring unit 21, and is a metal 11 for evaluating the soil corrosiveness of the soil 100. The change in the magnitude of the potential difference that occurs between and 12 is displayed. As described above, the soil corrosiveness evaluation device 1 enables a simple evaluation of soil corrosiveness. Therefore, it is possible to evaluate soil corrosiveness at the site where the metal structure is actually buried.

〔第2実施形態〕
図2に、第1実施形態に係る土壌腐食性評価装置2の機能構成例を示す。土壌腐食性評価装置2は、測定部21に代えて、金属11,12間に接続される電圧計である測定部22を備える。
[Second Embodiment]
FIG. 2 shows an example of the functional configuration of the soil corrosiveness evaluation device 2 according to the first embodiment. The soil corrosion evaluation device 2 includes a measuring unit 22 which is a voltmeter connected between the metals 11 and 12 in place of the measuring unit 21.

このように測定部22は、電圧計で構成してもよい。電圧計は一般的なものでよい。 In this way, the measuring unit 22 may be configured by a voltmeter. The voltmeter may be a general one.

なお、一般的な電圧計よりも簡単な構成で金属11,12間の電圧を測定することが可能である。図3に、その測定部22の具体例を示す。 It is possible to measure the voltage between the metals 11 and 12 with a simpler configuration than a general voltmeter. FIG. 3 shows a specific example of the measuring unit 22.

図3は、直流電源23と発光ダイオード24で測定部22を構成した例である。 FIG. 3 shows an example in which the measuring unit 22 is composed of the DC power supply 23 and the light emitting diode 24.

直流電源23の負極は金属11と接続され、直流電源23の正極は発光ダイオード24のアノード電極に接続され、発光ダイオード24のカソード電極は金属12に接続される。つまり、直流電源23と発光ダイオード24は、金属11,12の間に直列に接続される。 The negative electrode of the DC power supply 23 is connected to the metal 11, the positive electrode of the DC power supply 23 is connected to the anode electrode of the light emitting diode 24, and the cathode electrode of the light emitting diode 24 is connected to the metal 12. That is, the DC power supply 23 and the light emitting diode 24 are connected in series between the metals 11 and 12.

測定部22を接続した状態で時間が経過すると、例えば金属11(例えば鉄)の表面に錆が生じ、金属12(例えば亜鉛)が減肉して行く。これによって、金属11,12の間の電位差は小さくなる。 When time elapses with the measuring unit 22 connected, for example, the surface of the metal 11 (for example, iron) is rusted, and the metal 12 (for example, zinc) is thinned. As a result, the potential difference between the metals 11 and 12 becomes small.

図4に、自然電位が時間の経過に伴って小さくなる様子を模式的に示す。土壌腐食性の大小の境の電位差を、例えばV1と定めておくと、図4中のパターンαの変化をたどる土壌100の土壌腐食性を小とし、パターンβの変化をたどる土壌100の土壌腐食性を大として分類することができる。 FIG. 4 schematically shows how the natural potential decreases with the passage of time. If the potential difference between the magnitudes of soil corrosiveness is defined as V1, for example, the soil corrosiveness of the soil 100 that follows the change in pattern α in FIG. 4 is set to be small, and the soil corrosion of the soil 100 that follows the change in pattern β. Gender can be classified as large.

この場合、発光ダイオード24の順方向電圧をV3、直流電源23の電圧をV2とすると、V2=V3−V1となるように設定しておけば、発光ダイオード24の点灯の有無によって土壌腐食性の大小を識別することができる。つまり、V3=V2+V1なので、金属11と12の間の自然電位がV1よりも小さくなると、発光ダイオード24にかかる電圧は順方向電圧以下になり、発光ダイオード24が消灯する。 In this case, assuming that the forward voltage of the light emitting diode 24 is V3 and the voltage of the DC power supply 23 is V2, if V2 = V3-V1 is set, soil corrosion is caused by the presence or absence of lighting of the light emitting diode 24. The size can be identified. That is, since V3 = V2 + V1, when the natural potential between the metals 11 and 12 becomes smaller than V1, the voltage applied to the light emitting diode 24 becomes equal to or less than the forward voltage, and the light emitting diode 24 is turned off.

本実施形態の測定部22は、発光ダイオード24と直流電源23の直列接続で構成される。この構成によれば、腐食が進んで自然電位がV1より小さくなると発光ダイオード24が消灯する。その結果、電位差がV1まで低下したこと(腐食が進んだこと)を知ることができる。つまり、消灯を確認したオペレータは、土壌腐食性が大きいと判定することができる。 The measuring unit 22 of the present embodiment is configured by connecting the light emitting diode 24 and the DC power supply 23 in series. According to this configuration, the light emitting diode 24 is turned off when the corrosion progresses and the natural potential becomes smaller than V1. As a result, it can be known that the potential difference has decreased to V1 (corrosion has progressed). That is, the operator who confirms that the light is turned off can determine that the soil is highly corrosive.

以上説明したように本実施形態の土壌腐食性評価装置2は、直流電源23と発光ダイオード24の簡単な構成で、土壌腐食性の大小を表示することができる。 As described above, the soil corrosiveness evaluation device 2 of the present embodiment can display the magnitude of soil corrosiveness with a simple configuration of the DC power supply 23 and the light emitting diode 24.

〔第3実施形態〕
図5に、第3実施形態に係る土壌腐食性評価装置3の機能構成例を示す。土壌腐食性評価装置3は、土壌腐食性評価装置1(図1)に対して支持部30を備える点で異なる。
[Third Embodiment]
FIG. 5 shows an example of the functional configuration of the soil corrosiveness evaluation device 3 according to the third embodiment. The soil corrosiveness evaluation device 3 differs from the soil corrosiveness evaluation device 1 (FIG. 1) in that a support portion 30 is provided.

支持部30は、例えば棒状の金属11と12を、当該棒状の一方の端部を、土壌100の表面部分で支持するものである。支持部30を備えることで、金属11,12の土壌100への埋設を容易にすることができる。 The support portion 30 supports, for example, rod-shaped metals 11 and 12 with one end of the rod-shaped metal on the surface portion of the soil 100. By providing the support portion 30, it is possible to facilitate the burying of the metals 11 and 12 in the soil 100.

また、支持部30は、金属11と12の間隔を所定の間隔に固定するので、金属11と12の間隔を、評価する現場ごとに一定にする手間を省くことができる。また、金属11
,12の長さを固定にし、支持部30を土壌100の表面まで押し込むことで、金属11と12の深さ方向の条件も揃えることができる。
Further, since the support portion 30 fixes the distance between the metals 11 and 12 at a predetermined distance, it is possible to save the trouble of making the distance between the metals 11 and 12 constant for each evaluation site. Also, metal 11
By fixing the lengths of, 12 and pushing the support portion 30 to the surface of the soil 100, the conditions in the depth direction of the metals 11 and 12 can be matched.

なお、本実施形態の金属11,12と回路20は、切り離せるようにしても良い。金属11,12と回路20の切り離しを可能にすることで、全ての土壌腐食性評価装置3に回路20を設ける必要が無くなる。よって、土壌腐食性評価装置3のコストを下げることができる。 The metals 11 and 12 of the present embodiment and the circuit 20 may be separated from each other. By making it possible to separate the metals 11 and 12 from the circuit 20, it is not necessary to provide the circuit 20 in all the soil corrosiveness evaluation devices 3. Therefore, the cost of the soil corrosiveness evaluation device 3 can be reduced.

なお、回路20を金属11,12から切り離すと、金属11と12は、土壌100以外では絶縁された状態になる。その状態では、ガルバニック腐食が起きないので、腐食の進行速度が遅くなる課題がある。次に、この課題を解決した第4実施形態を説明する。 When the circuit 20 is separated from the metals 11 and 12, the metals 11 and 12 are in an insulated state except for the soil 100. In that state, galvanic corrosion does not occur, so there is a problem that the progress rate of corrosion is slowed down. Next, a fourth embodiment that solves this problem will be described.

〔第4実施形態〕
図6に、第4実施形態に係る土壌腐食性評価装置4の機能構成例を示す。土壌腐食性評価装置4は、土壌腐食性評価装置3(図5)に対して短絡部31を備える点で異なる。
[Fourth Embodiment]
FIG. 6 shows an example of the functional configuration of the soil corrosiveness evaluation device 4 according to the fourth embodiment. The soil corrosiveness evaluation device 4 is different from the soil corrosiveness evaluation device 3 (FIG. 5) in that a short-circuit portion 31 is provided.

短絡部31は、金属11,12と回路20を切り離した場合に、金属11と12の間を短絡させる。短絡部31は、例えば回路20に設けた凸部と、支持部30に設けた接点とで容易に実現することができる。つまり、回路20を切り離した場合に導通する接点の接点間に、回路20の凸部が挿入されるように構成すればよい。なお、その構成(凸部と接点)の表記は省略する。 The short-circuit portion 31 short-circuits between the metals 11 and 12 when the metals 11 and 12 and the circuit 20 are separated. The short-circuit portion 31 can be easily realized by, for example, a convex portion provided in the circuit 20 and a contact provided in the support portion 30. That is, the convex portion of the circuit 20 may be inserted between the contacts of the contacts that conduct when the circuit 20 is disconnected. The notation of the configuration (convex portion and contact point) is omitted.

また、磁石を用いてもよい。回路20に、支持部30に設けられたリレーをOFFする磁石を配置しておくことで短絡部31を構成できる。回路20を切り離した場合に、金属11と12の間を接続するリレーがONし、ガルバニック腐食が生じる。 Moreover, you may use a magnet. The short-circuit portion 31 can be configured by arranging a magnet for turning off the relay provided on the support portion 30 in the circuit 20. When the circuit 20 is disconnected, the relay connecting between the metals 11 and 12 is turned on, and galvanic corrosion occurs.

本実施形態の土壌腐食性評価装置4は、短絡部31を備えることで、回路20を切り離した場合でも金属11と12の間にガルバニック腐食を生じさせることができる。また、短絡部31は、金属11,12間を電圧計で接続するよりも、金属11,12間に大きな電流(ガルバニック腐食電流)を流せる。したがって、本実施形態の土壌腐食性評価装置4は、電圧計(測定部22)を常時接続した場合よりも評価時間を短縮できる。 By providing the short-circuit portion 31, the soil corrosion evaluation device 4 of the present embodiment can cause galvanic corrosion between the metals 11 and 12 even when the circuit 20 is disconnected. Further, the short-circuit portion 31 can pass a large current (galvanic corrosion current) between the metals 11 and 12 as compared with connecting the metals 11 and 12 with a voltmeter. Therefore, the soil corrosion evaluation device 4 of the present embodiment can shorten the evaluation time as compared with the case where the voltmeter (measurement unit 22) is always connected.

(応用例I)
本実施形態の土壌腐食性評価装置を、複数用いて土壌腐食性評価を行ってもよい。図7に、土壌腐食性評価装置1を3個用いた応用例Iを示す。
(Application Example I)
A plurality of soil corrosiveness evaluation devices of the present embodiment may be used to evaluate soil corrosiveness. FIG. 7 shows Application Example I using three soil corrosiveness evaluation devices 1.

図7において、3個の土壌腐食性評価装置1,72,73は並べて配置されている。一方の端の土壌腐食性評価装置1は、参照符号から明らかなように上記の土壌腐食性評価装置1と同じものである。 In FIG. 7, the three soil corrosion evaluation devices 1, 72, and 73 are arranged side by side. The soil corrosiveness evaluation device 1 at one end is the same as the above-mentioned soil corrosiveness evaluation device 1 as is clear from the reference reference numerals.

なお、本実施形態の土壌腐食性評価装置は、上記の通り金属11,12と回路20を切り離しても良いことから、応用例Iにおいても異種金属対のみで構成してもよい。つまり、土壌100に埋設する2つの金属11,12、2つの金属14,15、及び2つの金属16,17で構成される土壌腐食性評価装置としてもよい。 Since the metal 11 and 12 and the circuit 20 may be separated from each other as described above, the soil corrosion evaluation apparatus of the present embodiment may be composed of only dissimilar metal pairs in Application Example I. That is, it may be a soil corrosiveness evaluation device composed of two metals 11, 12, two metals 14, 15 and two metals 16, 17 buried in the soil 100.

真ん中の土壌腐食性評価装置72は、土壌腐食性評価装置1に対して直流電源723の電圧が異なる。また、土壌腐食性評価装置72の一方の金属14の材質は、金属11と同じで且つ厚みが金属11よりも薄い。また、真ん中の土壌腐食性評価装置72の他方の金属15の材質は、金属12と同じで且つ厚みが金属12よりも薄い。なお、金属15の厚みは、金属14と同じである。 The soil corrosiveness evaluation device 72 in the middle has a different voltage of the DC power supply 723 from the soil corrosiveness evaluation device 1. Further, the material of one metal 14 of the soil corrosiveness evaluation device 72 is the same as that of the metal 11, and the thickness is thinner than that of the metal 11. Further, the material of the other metal 15 of the soil corrosion evaluation device 72 in the middle is the same as that of the metal 12, and the thickness is thinner than that of the metal 12. The thickness of the metal 15 is the same as that of the metal 14.

他方の端の土壌腐食性評価装置73は、土壌腐食性評価装置1,72に対して直流電源733の電圧が異なる。また、土壌腐食性評価装置73の一方の金属16の材質は、金属14と同じで且つ厚みが金属14よりも薄い。また、他方の端の土壌腐食性評価装置73の他方の金属17の材質は、金属15と同じで且つ厚みが金属15よりも薄い。なお、金属17の厚みは金属16と同じである。 In the soil corrosion evaluation device 73 at the other end, the voltage of the DC power supply 733 is different from that of the soil corrosion evaluation devices 1 and 72. Further, the material of one metal 16 of the soil corrosiveness evaluation device 73 is the same as that of the metal 14, and the thickness is thinner than that of the metal 14. Further, the material of the other metal 17 of the soil corrosion evaluation device 73 at the other end is the same as that of the metal 15, and the thickness is thinner than that of the metal 15. The thickness of the metal 17 is the same as that of the metal 16.

つまり応用例Iは、2つの金属から成る金属対を2組み以上備え、各金属対の金属は固有の厚みである。 That is, Application Example I includes two or more sets of metal pairs composed of two metals, and the metal of each metal pair has a unique thickness.

このように、2つの金属の組み合わせを同じにして、厚みを異ならせることで、2つの金属間の電位差の経時変化を調整することができる。金属のそれぞれの厚みを厚くした場合と、薄くした場合とでは、薄くした場合の方が電位差が小さくなるまでの期間が短くなる。 In this way, by making the combination of the two metals the same and making the thickness different, it is possible to adjust the change over time in the potential difference between the two metals. When the thickness of each metal is increased and when the thickness is reduced, the period until the potential difference becomes smaller is shorter when the thickness is reduced.

図8に、評価時間に対する傾きが異なる3個の2つの金属間の電位差の変化を模式的に示す。γは、金属16,17の厚みも一番薄くした土壌腐食性評価装置73の2つの金属間の電位差の変化を表す。βは、金属14,15の厚みを中位にした土壌腐食性評価装置72の2つの金属間の電位差の変化を表す。αは、金属11,12の厚みを一番厚くした土壌腐食性評価装置1の2つの金属間の電位差の変化を表す。 FIG. 8 schematically shows a change in the potential difference between three metals having different slopes with respect to the evaluation time. γ represents the change in the potential difference between the two metals of the soil corrosion evaluation device 73 in which the thicknesses of the metals 16 and 17 are also the thinnest. β represents the change in the potential difference between the two metals of the soil corrosion evaluation device 72 with the thicknesses of the metals 14 and 15 set to the middle. α represents the change in the potential difference between the two metals of the soil corrosion evaluation device 1 in which the thicknesses of the metals 11 and 12 are the thickest.

最も大きな電位差の変化を示す土壌腐食性評価装置73の直流電源733の電圧をVα、中位の電位差の変化を示す土壌腐食性評価装置72の直流電源723の電圧をVβ、及び最も小さな電位差の変化を示す土壌腐食性評価装置1の直流電源23の電圧をVγとする。このように直流電源23,723,733のそれぞれの電圧を変えておくことで、土壌腐食性を多段階で表示することができる。 The voltage of the DC power supply 733 of the soil corrosion evaluation device 73 showing the largest change in potential difference is Vα, the voltage of the DC power supply 723 of the soil corrosion evaluation device 72 showing the change of medium potential difference is Vβ, and the voltage of the smallest potential difference. Let Vγ be the voltage of the DC power supply 23 of the soil corrosiveness evaluation device 1 showing a change. By changing the respective voltages of the DC power supplies 23, 723, and 733 in this way, the soil corrosiveness can be displayed in multiple stages.

例えば、発光ダイオード24,724,734の全てが点灯(腐食度A)、発光ダイオード734のみが消灯(腐食度B)、発光ダイオード734と724が消灯(腐食度C)、発光ダイオード24,724,734の全てが消灯(腐食度D)の4段階で土壌腐食性を表すことができる。 For example, all of the light emitting diodes 24,724,734 are lit (corrosion degree A), only the light emitting diode 734 is turned off (corrosion degree B), the light emitting diodes 734 and 724 are turned off (corrosion degree C), and the light emitting diodes 24,724, Soil corrosiveness can be expressed in four stages of turning off all 734s (corrosion degree D).

(応用例II)
複数の土壌腐食性評価装置の異種金属対10の金属の組み合わせの種類を異ならせてもよい。応用例Iと同様に3個の土壌腐食性評価装置1,74,75を用いる場合は、それぞれの異種金属対10の材質の組み合わせを異ならせる。
(Application Example II)
The type of metal combination of dissimilar metals to 10 of a plurality of soil corrosion evaluation devices may be different. When three soil corrosion evaluation devices 1, 74, 75 are used as in Application Example I, the combination of materials of each dissimilar metal to 10 is different.

図9に、土壌腐食性評価装置1を3個用いた応用例IIを示す。応用例IIは、2つの金属から成る金属対の金属の材質の組み合わせが固有で有る。応用例IIは、応用例Iと同じ作用効果を奏する。 FIG. 9 shows Application Example II using three soil corrosiveness evaluation devices 1. Application Example II is unique in the combination of metal materials in a metal pair consisting of two metals. Application Example II has the same effect as Application Example I.

応用例IIで、例えば異なる金属に対する土壌腐食性を評価したい場合は、その対象とする金属それぞれと、それよりも貴(高い)な自然電位を有する金属とをそれぞれ組み合わせる。そうすることで、異なる金属の同時評価を可能にする。 In Application Example II, for example, when it is desired to evaluate soil corrosiveness to different metals, each of the target metals and a metal having a higher (higher) natural potential are combined. Doing so allows for simultaneous evaluation of different metals.

(変形例)
図10に、土壌腐食性評価装置3の変形例の機能構成例を示す。土壌腐食性評価装置3の変形例は、金属42,43の形状が、土壌腐食性評価装置2(図4)と異なる。
(Modification example)
FIG. 10 shows a functional configuration example of a modified example of the soil corrosiveness evaluation device 3. In the modified example of the soil corrosiveness evaluation device 3, the shapes of the metals 42 and 43 are different from those of the soil corrosiveness evaluation device 2 (FIG. 4).

金属42,43は、一方の端部から土壌100側の先端に向けて断面積が小さくなるテーパ形状の棒である。 The metals 42 and 43 are tapered rods whose cross-sectional area decreases from one end toward the tip on the soil 100 side.

このように金属42,43を形成することで、金属42,43を土壌100に埋設し易くできる。つまり、金属42,43を備えた支持部30を土壌100に押し入れる場合の抵抗を小さくできるので、金属42,43を土壌100に埋設し易くできる。 By forming the metals 42 and 43 in this way, the metals 42 and 43 can be easily buried in the soil 100. That is, since the resistance when the support portion 30 provided with the metals 42 and 43 is pushed into the soil 100 can be reduced, the metals 42 and 43 can be easily embedded in the soil 100.

以上説明したように本実施形態の土壌腐食性評価装置1,2,3,4は、簡便な土壌腐食性の評価を可能にする。よって、実際に金属構造物が埋設される現場における土壌腐食性の評価も可能にする。 As described above, the soil corrosiveness evaluation devices 1, 2, 3 and 4 of the present embodiment enable simple evaluation of soil corrosiveness. Therefore, it is possible to evaluate soil corrosiveness at the site where the metal structure is actually buried.

なお、金属11,12等の形状は、棒状を例に説明を行ったが、棒状に限られない。金属11,12等の形状は、どのような形状で有っても構わない。また、第3実施形態の土壌腐食性評価装置3は、土壌腐食性評価装置1(図1)に支持部30を追加する構成で説明を行ったが、この例に限定されない。第2実施形態の土壌腐食性評価装置2に、支持部30を追加する構成で有ってもよい。 The shapes of the metals 11, 12 and the like have been described by taking a rod shape as an example, but the shape is not limited to the rod shape. The shape of the metals 11, 12, etc. may be any shape. Further, the soil corrosiveness evaluation device 3 of the third embodiment has been described with a configuration in which the support portion 30 is added to the soil corrosiveness evaluation device 1 (FIG. 1), but the present invention is not limited to this example. The support portion 30 may be added to the soil corrosiveness evaluation device 2 of the second embodiment.

また、応用例I,IIは、土壌腐食性評価装置1(図1)を3個用いる例で説明を行ったが、土壌腐食性評価装置2及び3を複数個用いてもよい。このように本発明は、上記の実施形態に限定されるものではなく、その要旨の範囲内で変形が可能である。 Further, although the application examples I and II have been described by using three soil corrosiveness evaluation devices 1 (FIG. 1), a plurality of soil corrosiveness evaluation devices 2 and 3 may be used. As described above, the present invention is not limited to the above-described embodiment, and can be modified within the scope of the gist thereof.

1、2、3、72、73、74、75:土壌腐食性評価装置
10:異種金属対
11、12、14、15、16、17、18、19、40、41、42、43:金属
20:回路
21、22:測定部
23、723、733:直流電源
24、724,734:発光ダイオード
30:支持部
31:短絡部
100:土壌
α、β、γ:自然電位の変化パターン
1, 2, 3, 72, 73, 74, 75: Soil corrosion evaluation device 10: Dissimilar metal pairs 11, 12, 14, 15, 16, 17, 18, 19, 40, 41, 42, 43: Metal 20 : Circuits 21, 22: Measuring units 23, 723, 733: DC power supply 24, 724,734: Light emitting diode 30: Support part 31: Short circuit part 100: Soil α, β, γ: Change pattern of natural potential

Claims (2)

土壌に埋設された2つの金属の電位差から、前記土壌が前記金属を腐食する程度を評価するための土壌腐食性評価装置であって、
前記土壌に埋設する2つの金属と、
前記2つの金属間に接続される回路と、
を備え、
前記回路は、
陽極を構成する一方の前記金属に負電源端子を接続させる直流電源と、
前記直流電源の正電源端子にアノード電極を接続させ、カソード電極を他方の前記金属に接続させる発光ダイオードと
を備え、
記金属の腐食が進んだ場合の前記電位差をV1、前記直流電源の電圧をV2、及び前記発光ダイオードの順方向電圧をV3とした場合に、前記V2をV2=V3-V1となるように設定す
とを特徴とする土壌腐食性評価装置。
A soil corrosiveness evaluation device for evaluating the degree to which the soil corrodes the metal from the potential difference between two metals buried in the soil.
The two metals buried in the soil and
The circuit connected between the two metals and
With
The circuit
A DC power supply that connects a negative power supply terminal to one of the metals that make up the anode,
With a light emitting diode in which an anode electrode is connected to the positive power supply terminal of the DC power supply and the cathode electrode is connected to the other metal.
With
The potential difference in the case where the corrosion has proceeded before Kikin genus V1, the voltage of the DC power supply V2, and the forward voltage of the light emitting diode when the V3, so that the V2 and V2 = V3-V1 Ru set Teisu to
Soil corrosion evaluation apparatus according to claim and this.
前記金属と前記回路は切り離しが可能であることを特徴とする請求項1に記載の土壌腐食性評価装置。 The soil corrosiveness evaluation device according to claim 1, wherein the metal and the circuit can be separated from each other.
JP2019232700A 2019-12-24 2019-12-24 Soil corrosion evaluation device Active JP6857710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019232700A JP6857710B2 (en) 2019-12-24 2019-12-24 Soil corrosion evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019232700A JP6857710B2 (en) 2019-12-24 2019-12-24 Soil corrosion evaluation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016240116A Division JP2018096767A (en) 2016-12-12 2016-12-12 Soil corrosiveness evaluation device

Publications (2)

Publication Number Publication Date
JP2020046440A JP2020046440A (en) 2020-03-26
JP6857710B2 true JP6857710B2 (en) 2021-04-14

Family

ID=69899715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019232700A Active JP6857710B2 (en) 2019-12-24 2019-12-24 Soil corrosion evaluation device

Country Status (1)

Country Link
JP (1) JP6857710B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319574B1 (en) 2022-04-15 2023-08-02 株式会社近計システム Corrosive environment monitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379053A (en) * 1986-09-22 1988-04-09 Nippon Steel Corp Corrosion test for metal material
JP4987574B2 (en) * 2007-06-01 2012-07-25 株式会社ベンチャー・アカデミア Corrosion assessment method for buried metal structures and creation method of corrosion risk map
US20130037420A1 (en) * 2011-08-10 2013-02-14 Miki Funahashi Method and apparatus for detecting moisture on metal and other surfaces, including surfaces under thermal insulation
JP2017172997A (en) * 2016-03-18 2017-09-28 シャープ株式会社 Microorganism fuel cell system

Also Published As

Publication number Publication date
JP2020046440A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
US6132593A (en) Method and apparatus for measuring localized corrosion and other heterogeneous electrochemical processes
Kim et al. Global and local parameters for characterizing and modeling external corrosion in underground coated steel pipelines: A review of critical factors
US4078510A (en) Relating to the cathodic protection of structures
Tan et al. Evaluating localised corrosion intensity using the wire beam electrode
JP6857710B2 (en) Soil corrosion evaluation device
JP2010266342A (en) Metal corrosion diagnostic method
JP4987574B2 (en) Corrosion assessment method for buried metal structures and creation method of corrosion risk map
JP2007278843A (en) Device and method for diagnosing corrosion in underground buried steel structure
JP6623329B2 (en) Corrosion sensor
JPWO2018092264A1 (en) Corrosion evaluation method
Tan et al. Field and laboratory assessment of electrochemical probes for visualizing localized corrosion under buried pipeline conditions
CN108663408A (en) A kind of steel oil-gas pipeline Directional Drilling erosion resistant coating breakage rate determines method
Wang et al. An array of multielectrodes for locating, visualizing, and quantifying stray current corrosion
JP6370701B2 (en) Soil corrosion evaluation method
JP2018096767A (en) Soil corrosiveness evaluation device
JP6532084B2 (en) Soil ventilation evaluation method and soil ventilation measurement apparatus
Reichling et al. Method to determine electrochemical potential gradients without reinforcement connection in concrete structures
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JP2010203824A (en) Method and device for detecting rust of steel structure
JP2017129435A (en) Buried-object soundness assessment method
JP2013096958A (en) Method and apparatus for estimating potential of coating defect part of underground pipe, and method and apparatus for electric protection management
KR100508877B1 (en) method for detecting the coating defect and corrosion points of the pipelines in soil using the electrochemical impedance spectroscopy
JP2010271200A (en) Method for measuring resistance of coating film by fall-of-potential method
JP2000044364A (en) Detection of repair-needing portion of concrete structure and its repair
JP4522289B2 (en) Corrosion estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R150 Certificate of patent or registration of utility model

Ref document number: 6857710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150