JP7319574B1 - Corrosive environment monitor - Google Patents

Corrosive environment monitor Download PDF

Info

Publication number
JP7319574B1
JP7319574B1 JP2022067888A JP2022067888A JP7319574B1 JP 7319574 B1 JP7319574 B1 JP 7319574B1 JP 2022067888 A JP2022067888 A JP 2022067888A JP 2022067888 A JP2022067888 A JP 2022067888A JP 7319574 B1 JP7319574 B1 JP 7319574B1
Authority
JP
Japan
Prior art keywords
galvanic current
sensor
corrosion
corrosive environment
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022067888A
Other languages
Japanese (ja)
Other versions
JP2023157771A (en
Inventor
英治 西川
保孝 山口
善和 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinkei System Corp
Original Assignee
Kinkei System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinkei System Corp filed Critical Kinkei System Corp
Priority to JP2022067888A priority Critical patent/JP7319574B1/en
Application granted granted Critical
Publication of JP7319574B1 publication Critical patent/JP7319574B1/en
Publication of JP2023157771A publication Critical patent/JP2023157771A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

【課題】Atmospheric Corrosion Monitor 型腐食センサー(以後ACMセンサーと言う)のガルバニック電流を計測することで周囲の腐食環境監視を行う腐食環境監視装置において、ACMセンサーの寿命を延ばし、交換の手間を省く。【解決手段】ガルバニック電流計測回路に更に切り替え回路を設け、非計測時にはACMセンサーの電極間に防蝕電圧を印加し非計測時のガルバニック電流を抑制する。また、ガルバニック電流抑制時は直前のガルバニック電流抑制前の電流値がそのまま流れ続けたものとして電流値を積算する機能を設けた。【選択図】図1A corrosive environment monitoring device that monitors the surrounding corrosive environment by measuring the galvanic current of an Atmospheric Corrosion Monitor type corrosion sensor (hereinafter referred to as an ACM sensor), in which the service life of the ACM sensor is extended and the labor for replacement is saved. A switching circuit is further provided in the galvanic current measurement circuit, and an anti-corrosion voltage is applied between the electrodes of the ACM sensor during non-measurement to suppress the galvanic current during non-measurement. In addition, when the galvanic current is suppressed, a function is provided to integrate the current value assuming that the current value before the galvanic current suppression immediately before continues to flow. [Selection drawing] Fig. 1

Description

本発明は、Atmospheric Corrosion Monitor 型腐食センサー(以後ACMセンサーという)による腐食環境監視装置および、そのシステムに関するものである。 The present invention relates to a corrosive environment monitoring apparatus and system using an Atmospheric Corrosion Monitor type corrosion sensor (hereinafter referred to as an ACM sensor).

橋梁の鉄骨や送電線の鉄塔などへの金属腐食の環境計測のためにACMセンサーを用いて腐食環境を監視する装置が考案されている。[特許文献1] A device for monitoring corrosive environments using an ACM sensor has been devised for environmental measurement of metal corrosion on steel frames of bridges, steel towers of transmission lines, and the like. [Patent Document 1]

ACMセンサーは鉄などの薄い金属板の上に部分的に絶縁層を設け、その上に銀など溶出しにくい金属をコーティングしたもので、コーティングされた銀の面の淵が一定の長さを保つような形に溝が掘られており、下地の鉄板がその溝の部分に露出していて、雨滴などが掛かるとコーティングされた金属面の淵で絶縁層を跨いで双方の金属が導通し、金属がイオンとなって溶出し、その溶出量に応じて電極間に電流が流れるようになっている。 An ACM sensor is made by partially forming an insulating layer on a thin metal plate such as iron, and then coating it with a metal such as silver that does not dissolve easily. A groove is dug in such a shape, and the underlying iron plate is exposed in the groove. Metal is eluted as ions, and current flows between the electrodes according to the amount of elution.

上記電流をガルバニック電流と言い、これをセンサー出力とし、前記の腐食環境監視装置および同装置を備えた腐食環境監視システムはこのACMセンサーの出力電流をセンサーの電極間に接続した電流計によって計測し、その値を、通信ネットワークを利用して遠方に伝送するものである。 The above current is called a galvanic current, which is used as a sensor output, and the corrosive environment monitoring device and the corrosive environment monitoring system equipped with the same measure the output current of this ACM sensor with an ammeter connected between the electrodes of the sensor. , its value is transmitted over a long distance using a communication network.

この場合、ACMセンサーの一方の電極材料の鉄は電極に電子を残してイオン化し溶出する。この電子は電流計を通して陽極となる銀の電極に流れるが、この電流値の積算結果は正確に鉄の溶出量に比例する。よって、この電流値を計測して単位時間分積算すれば鉄の単位時間内の溶出量が判り、環境による腐食性が評価できる。 In this case, iron, which is one of the electrode materials of the ACM sensor, is ionized and eluted leaving electrons on the electrode. These electrons flow through the ammeter to the silver electrode, which serves as the anode, and the integrated result of this current value is precisely proportional to the amount of eluted iron. Therefore, if this current value is measured and integrated for a unit time, the amount of elution of iron within a unit time can be known, and the corrosiveness due to the environment can be evaluated.

しかしながら、ACMセンサーの電極の鉄がイオン化して溶出し、劣化するため数か月毎にセンサーを交換することが必要となる。しかるに、このACMセンサーは河川に掛けられた橋梁の鉄骨部分や山間部の鉄塔のかなりの地上高の部分など、人が容易に近づけない所に取り付けられることが多いため、センサーの交換は容易なことではないという問題があった。 However, the iron in the electrode of the ACM sensor is ionized, eluted, and degraded, so it is necessary to replace the sensor every few months. However, this ACM sensor is often installed in places where people cannot easily access, such as the steel frame part of a bridge over a river or the part of a steel tower in a mountainous area that is considerably high above the ground, so it is not easy to replace the sensor. The problem was that it wasn't.

また、センサーの設置場所毎にセンサーの劣化の度合いも異なるため一律に交換するのは無駄が多く、かといって個々に管理して一定の劣化度に達した時点で交換するのは管理が大変で手間が掛かり、ミスも発生しやすく管理が容易でない。
(特許第6812335号)腐食環境監視装置および同装置を備えた腐食環境監視システム
In addition, since the degree of deterioration of the sensor varies depending on the location where the sensor is installed, it is wasteful to replace it uniformly. It takes time and effort, mistakes are likely to occur, and management is not easy.
(Patent No. 6812335) Corrosive Environment Monitoring Device and Corrosive Environment Monitoring System Equipped with the same device

こういった点に鑑みて、本願が解決すべき課題は、従来の計測機能に影響を与えることなくACMセンサーの長寿命化を図り、ACMセンサーの交換が必要となる頻度を低減した腐食環境監視装置を提供することにある。 In view of these points, the problem to be solved by the present application is to extend the life of the ACM sensor without affecting the conventional measurement function, and reduce the frequency of replacing the ACM sensor. It is to provide a device.

腐食は徐々に進展する現象であるため、腐食時に生じるガルバニック電流の観測は10分に1回程度で良く、[引用文献1]の装置においてもデータ収録間隔は10分に1回である。一方でセンサーの電極間に取り付けられている配線は非計測時においてもそのままで、計測していない間もガルバニック電流は流れ続けており、流れた電流のクーロン値に応じた電極材料の金属がイオンとなって流出して電極が消耗し続ける。 Since corrosion is a phenomenon that progresses gradually, it is sufficient to observe the galvanic current generated during corrosion about once every 10 minutes. On the other hand, the wiring attached between the electrodes of the sensor remains as it is even when not measuring, and the galvanic current continues to flow even when not measuring, and the metal of the electrode material according to the coulomb value of the flowing current is ionized As a result, the electrode continues to be consumed.

そのため、この無駄な金属イオンの流出を防ぐことが出来れば必要以上の電極の消耗を避けることができ、センサーを長持ちさせ、センサー交換の手間を省くことができると考えられる。 Therefore, if it is possible to prevent this useless outflow of metal ions, it is possible to avoid unnecessary consumption of the electrode, prolong the life of the sensor, and save the trouble of replacing the sensor.

そこで、本願の発明者は電気防食の技術を用いることで容易にACMセンサーの劣化を低減させることができるのではないかと考えた。すなはち、非計測時はガルバニック電流の計測回路を外し、ACMセンサーの陰極にマイナス、陽極に+の電圧を外部から過防蝕にならない程度に印加することでセンサーの劣化を低減させられると考えたのである。 Therefore, the inventors of the present application thought that the deterioration of the ACM sensor could be easily reduced by using the cathodic protection technique. In other words, it is thought that deterioration of the sensor can be reduced by removing the galvanic current measurement circuit when not measuring and applying a negative voltage to the cathode of the ACM sensor and a + voltage to the anode from the outside to the extent that it does not become over-corrosion resistant. It was.

また、非計測時においても防蝕せずガルバニック電流を流し続けた場合の総腐食量を推定する場合は、計測時の計測結果の電流値の積算量をディジタル演算で求めることができると考えた。 In addition, when estimating the total amount of corrosion when galvanic current continues to flow without corrosion protection even during non-measurement, we thought that the integrated amount of the current value of the measurement result during measurement could be obtained by digital calculation.

具体的には従来のガルバニック電流の計測回路にリレーを設け、そのリレーのON接点側(a接点側)に従来の計測回路を接続し、OFF接点(b接点側)に防蝕電圧印加回路の電圧を掛けておく。 Specifically, a relay is provided in the conventional galvanic current measurement circuit, the conventional measurement circuit is connected to the ON contact side (a contact side) of the relay, and the voltage of the anti-corrosion voltage application circuit is connected to the OFF contact (b contact side). hang up.

そして、計測時のみリレーの接点をONにすることで、計測時のみセンサー出力回路の接続先がガルバニック電流計測回路に切り替わってガルバニック電流値が計測され、非計測時にはセンサー出力回路の接続先が防食電圧印加回路側に切り替わってガルバニック電流の通電が阻止され、かつ防蝕電圧が印加されてセンサー電極の劣化は阻止される。 By turning on the relay contact only during measurement, the connection destination of the sensor output circuit is switched to the galvanic current measurement circuit only during measurement, and the galvanic current value is measured, and when not measuring, the connection destination of the sensor output circuit is protected against corrosion. It is switched to the voltage application circuit side to prevent the conduction of the galvanic current, and the anti-corrosion voltage is applied to prevent deterioration of the sensor electrode.

また、計測値はデータロガーを設けて、そこでガルバニック電流を収集記録し、また、ガルバニック電流の積算値をディジタル演算で算出させることで、ガルバニック電流を流し続けた場合の総腐食量を推定することとすれば、従来の機能を害することなくACMセンサーの長寿命化を図ることができる。 In addition, a data logger is installed to collect and record the measured value of the galvanic current, and by calculating the integrated value of the galvanic current by digital calculation, the total amount of corrosion when the galvanic current continues to flow can be estimated. If so, the life of the ACM sensor can be extended without impairing the conventional function.

本願第一の発明は、近接させて設置した2個の異種の金属を電極とし、これをACMセンサーとしてその間のガルバニック電流を計測することで周囲の腐食環境計測を行う腐食環境監視装置において、ACMセンサー、ガルバニック電流計測回路、切り替え回路および防蝕電圧発生回路を設け、非計測時には前記ACMセンサーとガルバニック電流計測回路間の接続を切り離し、前記ACMセンサーを防蝕電圧発生回路側に接続して、前記ACMセンサーの電極間に防蝕電圧を印加することを特徴とした腐食環境監視装置である。 The first invention of the present application is a corrosive environment monitoring device that measures the surrounding corrosive environment by using two dissimilar metals placed close to each other as electrodes and measuring the galvanic current between them as an ACM sensor. A sensor, a galvanic current measuring circuit, a switching circuit, and an anti-corrosion voltage generating circuit are provided, and when measurement is not performed, the connection between the ACM sensor and the galvanic current measuring circuit is cut off, the ACM sensor is connected to the anti-corrosion voltage generating circuit side, and the ACM It is a corrosive environment monitoring device characterized by applying a corrosion-resistant voltage between the electrodes of the sensor.

また、本願第二の発明は、上記装置において、更にガルバニック電流積算部を設け、一定時間毎にガルバニック電流値を計測し、ディジタルデータに変換するとともに、上記ガルバニック電流積算部において、ガルバニック電流計測値に計測時間間隔を掛けて計測の度に積算し、単位時間毎にガルバニック電流積算値を算出することを特徴とした腐食環境監視装置である。 In addition, the second invention of the present application provides a galvanic current integrator in the above device, measures a galvanic current value at regular time intervals, converts it into digital data, and measures the galvanic current measured value in the galvanic current integrator. is multiplied by the measurement time interval and integrated each time measurement is performed to calculate a galvanic current integrated value for each unit time.

本願発明により、計測時以外はセンサーの電極に防食電圧が印加され、ガルバニック電流の流れが阻止されるのでセンサー電極の錆の進行を遅らせることができ、センサーを長持ちさせ交換のインターバルを長期化できる。しかも、金属の溶出量は積算演算により非計測時も金属溶出が続いたものとして算出されるので従来の様にガルバニック電流を流し放しにした場合の溶出量推定が可能であり、従来通りの腐食環境監視が可能である。 According to the invention of the present application, an anti-corrosion voltage is applied to the electrodes of the sensor except during measurement , and the flow of galvanic current is blocked, so the progress of rusting of the sensor electrodes can be delayed, and the sensor can be used for a long time and the replacement interval can be extended. can be Moreover, since the metal elution amount is calculated assuming that the metal elution continues even when the measurement is not performed, it is possible to estimate the elution amount when the galvanic current is left flowing as in the conventional method, and the conventional corrosion can be performed. Environmental monitoring is possible.

以下に本願の実施形態を詳細に説明する。図1は本願の装置全体を示す概念図である。 Embodiments of the present application will be described in detail below. FIG. 1 is a conceptual diagram showing the entire apparatus of the present application.

図1に示すように、本願装置は主にACMセンサー、ガルバニック電流計測回路、切り替え回路、ガルバニック電流積算部、防食電圧発生回路、から成る。 As shown in FIG. 1, the device of the present application mainly consists of an ACM sensor, a galvanic current measuring circuit, a switching circuit, a galvanic current integrating section, and an anti-corrosion voltage generating circuit.

ACMセンサーの電極からの配線は切り替え回路に接続されており、切り替え回路は10分に1回の計測時には、計測中の約数秒から数十秒の間、ガルバニック電流計測回路に接続される。一方、前記ガルバニック電流計測回路では切り替え後の電流値をその値の安定したところで計測し、A/D変換する。 Wiring from the electrodes of the ACM sensor is connected to a switching circuit, and the switching circuit is connected to the galvanic current measurement circuit for several seconds to several tens of seconds during measurement when measuring once every 10 minutes. On the other hand, the galvanic current measurement circuit measures the current value after switching when the value is stabilized, and performs A/D conversion.

また、非計測時にはACMセンサーの電極からの配線は切り替え回路によって防食電圧発生回路に接続される。 Also, during non-measurement, the wiring from the electrode of the ACM sensor is connected to the anti-corrosion voltage generating circuit by the switching circuit.

防食電圧発生回路は非計測時においてACMセンサーの電極に防食用の電圧(電極間に発生する電圧値と同極性で若干高めの防食用電圧)を印加するための起電力を有する。 The anticorrosion voltage generation circuit has an electromotive force for applying an anticorrosion voltage (anticorrosion voltage having the same polarity as the voltage value generated between the electrodes and being slightly higher) to the electrodes of the ACM sensor during non-measurement.

この防食電圧は高すぎるとセンサー電極面に電気二重層コンデンサ―を形成させ、さらには電極に付着した水滴を電気分解するに至る。そのような場合、電気二重層コンデンサ―に蓄積された電荷は計測時に計測値が安定するまでの時間が掛かる原因となり、また電気分解状態になると電極表面にガスが発生し、計測値を乱す原因になるので防食に必要な最小限の値としている。 If this anti-corrosion voltage is too high, an electric double layer capacitor is formed on the sensor electrode surface, and water droplets adhering to the electrode are electrolyzed. In such a case, the electric charge accumulated in the electric double layer capacitor will cause it to take time for the measured value to stabilize during measurement, and when it becomes electrolyzed, gas will be generated on the electrode surface, causing the measured value to be disturbed. Therefore, the minimum value necessary for corrosion prevention is set.

計測タイミングが近くなった時、この防食用起電力の電圧値はACMセンサー内に蓄電された余分な電荷をディスチャージし端子間開放時のACMセンサーの本来の電圧になるよう調整される。 When the measurement timing approaches, the voltage value of this electromotive force for anti-corrosion discharges excess electric charge stored in the ACM sensor and is adjusted to the original voltage of the ACM sensor when the terminals are open.

この電圧調整の代わりに、別途短絡用回路を設け、計測に先立ってACMセンサー内部の余分な電荷をディスチャージするために出力端子間を短時間短絡しても良い。 Instead of this voltage adjustment, a separate short circuit may be provided to short the output terminals for a short time to discharge excess charge inside the ACM sensor prior to measurement.

10分の計測時間間隔内で実際に計測に必要な時間は数秒もしくは数十秒であり、回路切り替え後ガルバニック電流値が安定した時点で計測している。残りの時間は切り替え回路が防食電圧発生回路に接続され、この間ガルバニック電流は流れない。しかし、腐食の進み具合を評価する上においてはこの期間もガルバニック電流が流れたとして金属イオンの総流出量を算出する必要があるので、10分ごとの計測で得られたガルバニック電流値はガルバニック電流積算部でディジタル的に積算され単位時間毎の積算結果を出力している。 The time actually required for measurement within the measurement time interval of 10 minutes is several seconds or several tens of seconds, and the measurement is performed when the galvanic current value is stabilized after circuit switching. The rest of the time the switching circuit is connected to the anticorrosion voltage generating circuit, during which no galvanic current flows. However, in order to evaluate the progress of corrosion, it is necessary to calculate the total outflow of metal ions assuming that the galvanic current still flows during this period. The integrating section digitally integrates and outputs the integrated result for each unit time.

例えば10分毎の計測値が10[μA]、20[μA]、30[μA]、40[μA]、50[μA]、60[μA]のように計測された場合、その1時間のガルバニック電流積算値はそれらの合計値“210[μA]”に10[min]/60[min]を掛けて、210[μA]×10[min]/60[min]=35[μAh]と計算されて出力されるが、実際にセンサーに流れるガルバニック電流値は各々の計測時にその時間間隔600秒の内の数秒から数十秒間のみなので35[μAh]より遥かに小さな値となる。 For example, if the measured values are 10 [μA], 20 [μA], 30 [μA], 40 [μA], 50 [μA], 60 [μA] every 10 minutes, the galvanic The integrated current value is calculated as 210[μA]×10[min]/60[min]=35[μAh] by multiplying the total value “210[μA]” by 10[min]/60[min]. However, the galvanic current value actually flowing through the sensor is only for several seconds to several tens of seconds within the time interval of 600 seconds at each measurement, so the value is much smaller than 35 [μAh].

なお、本願装置の電源はバッテリーおよび太陽光パネルを用いているが、有線でDC電源を外部から接続しても良い。 Although a battery and a solar panel are used as the power source of the device of the present application, a DC power source may be connected from the outside with a wire.

本願装置の出力データはディジタルデータとして無線で外部のサーバもしくはクライアント端末装置に送られるが、パソコンなどから成るモニター装置を構成して有線で接続しデータ出力しても良い。 The output data of the device of the present application is wirelessly sent to an external server or client terminal device as digital data, but the data may be output by configuring a monitor device comprising a personal computer or the like and connecting with a wire.

図2の写真は左が従来の方式によるロガーに接続してセンサーを腐食環境下に2カ月間放置した場合のACMセンサーの状態を示しており、右が本願装置に接続して同一環境下に2カ月間放置した場合のACMセンサーの状態を示したものである。 The photograph in Fig. 2 shows the state of the ACM sensor when the sensor is left in a corrosive environment for two months after being connected to a conventional logger on the left. It shows the state of the ACM sensor when left for two months.

左のACMセンサーはスリットの部分に黒い点が多数見えることより、明らかに右のACMセンサーより腐食が進んでいることが判る。なお、図2の写真の左側のセンサーの現物は赤茶色の錆を生じており、目視で容易に見分けがつく。錆の部分が増えると錆の酸化鉄は不導体であるためガルバニック電流を阻害して電流値計測が正しく行えなくなるのでセンサーの交換が必要となる。 The ACM sensor on the left clearly has more black spots than the ACM sensor on the right, as many black dots are visible in the slit. The actual sensor on the left side of the photograph in FIG. 2 has reddish-brown rust, which can be easily distinguished visually. If the rusted area increases, the iron oxide in the rust is a non-conductor, so it interferes with the galvanic current and the current value cannot be measured correctly, so the sensor needs to be replaced.

装置全体の構成図Configuration diagram of the entire device 従来方式(左)と本願方式(右)でのACMセンサーの腐食状態比較Comparison of corrosion state of ACM sensor between conventional method (left) and proposed method (right)

Claims (2)

近接させて設置した2個の異種の金属を電極とし、これをAtmospheric Corrosion Monitor 型腐食センサー(以後ACMセンサーという)としてその間のガルバニック電流を計測することで周囲の腐食環境計測を行う腐食環境監視装置において、ACMセンサー、ガルバニック電流計測回路、切り替え回路および防蝕電圧発生回路を設け、非計測時には前記ACMセンサーとガルバニック電流計測回路間の接続を切り離し、前記ACMセンサーを防蝕電圧発生回路側に接続して、前記ACMセンサーの電極間に防蝕電圧を印加することを特徴とした腐食環境監視装置。 A corrosive environment monitoring device that measures the surrounding corrosive environment by measuring the galvanic current between two dissimilar metals placed close to each other as electrodes and using them as Atmospheric Corrosion Monitor type corrosion sensors (hereafter referred to as ACM sensors). , an ACM sensor, a galvanic current measuring circuit, a switching circuit, and an anti-corrosion voltage generating circuit are provided, the connection between the ACM sensor and the galvanic current measuring circuit is cut off when not measuring, and the ACM sensor is connected to the anti-corrosion voltage generating circuit side. A corrosive environment monitoring device characterized by applying a corrosion-resistant voltage between electrodes of said ACM sensor. 請求項1に記載の腐食環境監視装置において、一定時間毎にガルバニック電流計測値を計測し、ディジタルデータに変換するとともに、更にガルバニック電流積算部を設け、上記計測値に計測時間間隔を掛けて計測の度に積算し、単位時間毎にガルバニック電流積算値を算出することを特徴とした腐食環境監視装置。
The corrosive environment monitoring apparatus according to claim 1, wherein the galvanic current measurement value is measured at regular time intervals and converted into digital data, and further provided with a galvanic current integration unit, and the measurement value is multiplied by the measurement time interval and measured. A corrosive environment monitoring device characterized by integrating every time and calculating a galvanic current integrated value for each unit time.
JP2022067888A 2022-04-15 2022-04-15 Corrosive environment monitor Active JP7319574B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022067888A JP7319574B1 (en) 2022-04-15 2022-04-15 Corrosive environment monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022067888A JP7319574B1 (en) 2022-04-15 2022-04-15 Corrosive environment monitor

Publications (2)

Publication Number Publication Date
JP7319574B1 true JP7319574B1 (en) 2023-08-02
JP2023157771A JP2023157771A (en) 2023-10-26

Family

ID=87469602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022067888A Active JP7319574B1 (en) 2022-04-15 2022-04-15 Corrosive environment monitor

Country Status (1)

Country Link
JP (1) JP7319574B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137759A (en) 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd Outdoor structure
JP2019086308A (en) 2017-11-01 2019-06-06 株式会社シュリンクス Method for measuring corrosion speed using acm sensor and environment monitoring device
JP2020046440A (en) 2019-12-24 2020-03-26 日本電信電話株式会社 Soil corrosiveness evaluation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137759A (en) 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd Outdoor structure
JP2019086308A (en) 2017-11-01 2019-06-06 株式会社シュリンクス Method for measuring corrosion speed using acm sensor and environment monitoring device
JP2020046440A (en) 2019-12-24 2020-03-26 日本電信電話株式会社 Soil corrosiveness evaluation device

Also Published As

Publication number Publication date
JP2023157771A (en) 2023-10-26

Similar Documents

Publication Publication Date Title
RU2365681C2 (en) Accumulator water heater with adjusted cathodic protection
KR101680798B1 (en) System of impressed current cathodic protection for realtime monitoring corrosion of coldest place pipeline, and method for the same
US20150198518A1 (en) Cathodic protection reference cell article and method
JP7319574B1 (en) Corrosive environment monitor
JP2006522932A (en) Electromagnetic flow transducer and flow meter incorporating the same
JP2007263788A (en) Analyzing method of macroscopic electrochemical system
JP3139938B2 (en) Cathodic protection current monitor and monitoring system using the same
JP6767275B2 (en) Electrocorrosion protection system and constant current circuit
US5338417A (en) Cathodic corrosion protection for an aluminum-containing substrate
CN103590334A (en) Stay rope structure having corrosion preventing function and corrosion preventing protection method of stay rope
JP2010047814A (en) Current measurement method and current measurement device for sacrificial anode in electrically conductive liquid
JP2019026892A (en) Electric rust preventing device for power transmission steel tower and electric rust preventing method for power transmission steel tower
JP4601155B2 (en) Anticorrosion monitoring method
JP7483190B2 (en) Sacrificial anode monitoring sensor and monitoring method
KR102023553B1 (en) Corrosion monitoring system
Ukaru et al. PERFORMANCE OF IMPRESSED CURRENT SYSTEM OF CATHODICPROTECTION IN SEAWATER: A CASE STUDY
Bashi et al. Cathodic protection system
JP4148373B2 (en) Cathodic protection method and apparatus for metal structures
Schwarz et al. A novel type of discrete galvanic zinc anodes for the prevention of incipient anodes induced by patch repair
JPS60128272A (en) Electrolytic protection
KR100731621B1 (en) Electric Corrosion Preventing System
WO2015108525A1 (en) Cathodic protection reference cell article and method
JP3798189B2 (en) Repair method for concrete structures
JPH02156095A (en) Method and device for anticorrosion
JP3177049B2 (en) Corrosion protection potential estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R150 Certificate of patent or registration of utility model

Ref document number: 7319574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150