JP2019026892A - Electric rust preventing device for power transmission steel tower and electric rust preventing method for power transmission steel tower - Google Patents

Electric rust preventing device for power transmission steel tower and electric rust preventing method for power transmission steel tower Download PDF

Info

Publication number
JP2019026892A
JP2019026892A JP2017147333A JP2017147333A JP2019026892A JP 2019026892 A JP2019026892 A JP 2019026892A JP 2017147333 A JP2017147333 A JP 2017147333A JP 2017147333 A JP2017147333 A JP 2017147333A JP 2019026892 A JP2019026892 A JP 2019026892A
Authority
JP
Japan
Prior art keywords
power transmission
anode
transmission tower
rust prevention
steel tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017147333A
Other languages
Japanese (ja)
Inventor
直樹 寺田
Naoki Terada
直樹 寺田
幸生 板橋
Yukio Itabashi
幸生 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017147333A priority Critical patent/JP2019026892A/en
Publication of JP2019026892A publication Critical patent/JP2019026892A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

To provide an electric rust preventing device for power transmission steel tower and an electric rust preventing method for power transmission steel tower capable of being easily installed and having no adverse effect on strength balance of whole power transmission steel tower.SOLUTION: Normally an insulation coating is coated on a power transmission steel tower 2 and an insulation coated film is formed, but the insulation coated film is degraded with time and rain water soaks into a crack when crack is generated. On the other hand, rain water during raining electrifies between an anode 3 and the power transmission steel tower 2 at a recess 13 and conducts, and current flows between the anode 3 and the power transmission steel tower 2. By current flows between the power transmission steel tower 2 and the anode 3, reverse electric reaction is achieved in the case that the power transmission steel tower 2 is corroded (oxidized) and corrosion of the power transmission steel tower 2 is prevented. Power is also fed to the anode 3 itself from a battery 5 via a lead wire 14, and it is not happen that it is consumed earlier as a mere sacrificial anode.SELECTED DRAWING: Figure 1

Description

本発明は送電鉄塔の腐食を電気防食する為の送電鉄塔用電気防錆装置及び送電鉄塔用電気防錆方法に関するものである。   The present invention relates to an electric rust prevention apparatus for a power transmission tower and an electric rust prevention method for a power transmission tower for preventing corrosion of the power transmission tower.

陽極防錆法や陰極防錆法などの電気防錆技術、すなわち電気防食が知られており、建築物、船、パイプライン、貯蔵タンクなどの構築物に使われている。
陽極防錆法は、電源を用いずに金属の持つ電位差を利用して、防錆対象物と異なる金属(アルミ合金など)を張り合わせる事により電気を起し、電子を補充して防錆効果を上げるものであり、この時、一方の金属は電子を奪われる事により消耗する事から犠牲陽極法とも云われる。
Electrorust prevention techniques such as anode rust prevention and cathode rust prevention, that is, anticorrosion, are known, and are used in structures such as buildings, ships, pipelines, and storage tanks.
The anode rust prevention method uses the potential difference of the metal without using a power source, and causes electricity by attaching different metals (such as aluminum alloys) to the rust prevention object, replenishing the electrons and rust prevention effect At this time, one metal is consumed by depriving of electrons, so it is also called a sacrificial anode method.

ところで経年劣化した鉄塔の腐食を防止する方法としては防錆塗装による被覆防食法が一般に採用されている。この被覆防食法を採用する場合、経時劣化によって塗膜にクラック等が発生すると、クラックに水が浸入し、腐食を防止することができなくなるため、一定期間ごとに塗装による被覆を反復して行う必要が有る。この塗装による被覆を行う費用は膨大であることから、この費用を節減するために塗装による被覆を反復して行う期間を引き延ばす対策が重要となる。
その対策として前述した陽極防錆法の採用を検討することができる。陽極防錆法は、塗膜が劣化して亀裂が生じたり剥がれた場合に母材と塗膜に設けた電気防食用電極との間に電流が流れる様にして母材の腐食を防止するものである。
By the way, as a method for preventing corrosion of a steel tower that has deteriorated over time, a coating anticorrosion method using rust-proof coating is generally employed. When this coating anticorrosion method is adopted, if cracks occur in the coating film due to deterioration over time, water will enter the cracks and corrosion cannot be prevented. Therefore, coating by coating is repeated every certain period. There is a need. Since the cost for coating by painting is enormous, it is important to take measures to extend the period of repeated coating by coating in order to save this cost.
As a countermeasure, the use of the above-described anode rust prevention method can be considered. The anode rust prevention method prevents corrosion of the base material by causing an electric current to flow between the base material and the electrode for cathodic protection provided on the coating film when the coating film deteriorates and cracks or peels off. It is.

塗膜が健全な状態では、絶縁塗膜により電流路が切断されており、鉄塔基材と電気防食用電極間には電流は殆ど流れない。塗膜が劣化し、塗膜にクラック等が発生すると、クラックに水が浸入し、水膜が形成され、その水膜を介して鉄塔基材と電気防食用電極間に電流が流れる様になる。通電状態では、鉄塔基材はカソード極に接続されており、鉄塔基材が腐食する場合の逆の電気反応が実現され、腐食が防止される。   In a healthy state of the coating film, the current path is cut by the insulating coating film, and current hardly flows between the tower base material and the electrode for cathodic protection. When a coating film deteriorates and a crack or the like occurs in the coating film, water enters the crack and a water film is formed, and an electric current flows between the steel tower base and the electrode for anticorrosion through the water film. . In the energized state, the steel tower base material is connected to the cathode electrode, and the reverse electrical reaction when the steel tower base material corrodes is realized, and corrosion is prevented.

この陽極防錆法に関し、特許文献1には、鉄塔基材に絶縁塗膜、導電塗膜が形成され、その導電塗膜に貼設される送電鉄塔用電気防錆装置であって、樹脂ブロックとその樹脂ブロックから突出した位置に電極の接触面が設けられ、前記樹脂ブロックを挿通するリード線が前記電極に接続され、前記接触面の周囲に前記導電塗膜を接着させる為の接着剤が充填される段差が形成された電気防食用電極が開示された。   Regarding this anode rust prevention method, Patent Document 1 discloses an electric rust prevention device for a power transmission tower in which an insulating coating film and a conductive coating film are formed on a steel tower base material, and are attached to the conductive coating film. And an electrode contact surface is provided at a position protruding from the resin block, a lead wire passing through the resin block is connected to the electrode, and an adhesive for adhering the conductive coating around the contact surface is provided. An electrode for cathodic protection in which a step to be filled is formed has been disclosed.

また特許文献2には太陽電池を併設したソーラーシステム電子防錆装置が開示された。この電子防錆装置は金属によって構築なされている建築物、船、パイプライン、貯蔵タンク、鉄塔などに対する防錆処理に関して、陽極防錆法や陰極防錆法などの電気防錆技術を応用した電子防錆技術であって、この電子防錆工法の電源として太陽電池を用いるものである。   Patent Document 2 discloses a solar system electronic rust preventive device provided with a solar cell. This electronic rust prevention device is an electronic device that applies electrical rust prevention technology such as anode rust prevention method and cathode rust prevention method for rust prevention treatment for buildings, ships, pipelines, storage tanks, steel towers, etc. that are constructed of metal. It is a rust prevention technique, and uses a solar cell as a power source for this electronic rust prevention method.

特開2013-108142号公報JP 2013-108142 A 実開平5−14160号公報Japanese Utility Model Publication No. 5-14160

特許文献1の電気防食用電極では、鉄塔に取り付ける位置によっては鉄塔の強度に影響を与えることが予想されることから、悪影響がないようにするための検討と長期の試験が必要となり、現実性がない。また電極に通電するための電源は特には明らかにされておらず、単なる犠牲陽極法ではないとしても、電極を早期に消耗させないようにするための電源を検討する必要も有る。
特許文献2のソーラーシステム電子防錆装置では電源として太陽電池を用いることは明らかにされてはいるものの、これを具体的にどのようにして鉄塔に取り付けるかは明らかにされていない。
The electrode for anticorrosion of Patent Document 1 is expected to affect the strength of the steel tower depending on the position attached to the steel tower. Therefore, examination and long-term tests are required to prevent adverse effects. There is no. Further, the power source for energizing the electrode is not particularly clarified, and even if it is not a simple sacrificial anode method, it is necessary to consider a power source for preventing the electrode from being consumed at an early stage.
Although it has been clarified that the solar system electronic rust preventive device of Patent Document 2 uses a solar cell as a power source, it is not clarified how to attach this to a steel tower.

本発明は以上の従来技術の問題に鑑み、簡単に設置可能で、送電鉄塔全体の強度バランスに悪影響を与えることがない送電鉄塔用電気防錆装置及び送電鉄塔用電気防錆方法を提供することを目的とする。   The present invention provides an electric rust prevention device for a power transmission tower and an electric rust prevention method for a power transmission tower that can be easily installed and do not adversely affect the strength balance of the entire power transmission tower in view of the above-described problems of the prior art. With the goal.

すなわち本発明の送電鉄塔用電気防錆装置は送電鉄塔に装着する電気防錆アノードを有する送電鉄塔用電気防錆装置において、前記電気防錆アノードは、送電鉄塔昇降用ステップボルトによって送電鉄塔に対し固定してなることを特徴とする。
また本発明の送電鉄塔用電気防錆方法は、電気防錆アノードを送電鉄塔に装着し、この電気防錆アノードにソーラパネルによって蓄電されるバッテリーによって給電する送電鉄塔用電気防錆方法において、前記電気防錆アノードを送電鉄塔昇降用ステップボルトによって送電鉄塔に対し固定することを特徴とする。
That is, the electric rust prevention device for a power transmission tower according to the present invention is an electric rust prevention device for a power transmission tower having an electric rust prevention anode attached to the power transmission tower. The electric rust prevention anode is connected to the power transmission tower by a step bolt for raising and lowering the power transmission tower. It is characterized by being fixed.
Further, the electric rust prevention method for a power transmission tower of the present invention is the above-described electric rust prevention method for a power transmission tower in which an electric rust prevention anode is attached to the power transmission tower and the electric rust prevention anode is fed by a battery stored by a solar panel. The electric rust preventive anode is fixed to the transmission tower with a step bolt for raising and lowering the transmission tower.

本発明の送電鉄塔用電気防錆装置及び送電鉄塔用電気防錆方法によれば、簡単に設置可能で、送電鉄塔全体の強度バランスに悪影響を与えることがない。   According to the electric rust prevention apparatus for a power transmission tower and the electric rust prevention method for a power transmission tower of the present invention, it can be easily installed and does not adversely affect the strength balance of the entire power transmission tower.

本発明の一実施の形態の送電鉄塔用電気防錆装置の模式図である。It is a schematic diagram of the electric rust prevention apparatus for power transmission towers of one embodiment of this invention. 本発明の一実施の形態の送電鉄塔用電気防錆装置の部分拡大断面図である。It is a partial expanded sectional view of the electric rust prevention apparatus for power transmission towers of one embodiment of this invention. 本発明の一実施の形態の送電鉄塔用電気防錆装置の(a)正面図、(b)側面図である。。It is the (a) front view and (b) side view of the electrorust prevention apparatus for power transmission towers of one embodiment of this invention. . 本発明の一実施の形態の送電鉄塔用電気防錆装置に用いる部品の(a)説明図、(b)他の説明図、(c)別の説明図、である。It is (a) explanatory drawing of the components used for the electric rust prevention apparatus for power transmission towers of one embodiment of this invention, (b) Other explanatory drawing, (c) Another explanatory drawing.

以下、図面を参照しつつ本発明の一実施の形態を説明する。
図1に示す本実施の形態の送電鉄塔用電気防錆装置1は例えば等辺山形鋼のアングル鉄塔である送電鉄塔2に装着する電気防錆アノード3と、この電気防錆アノード3にアノード防食コントローラ4a及び充電出力コントローラ4bを介して給電するためのリチウムイオン電池であるバッテリー5と、このバッテリー5に充電出力コントローラ4bを介して蓄電するソーラパネル6とを有する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
An electric rust prevention device 1 for a power transmission tower according to the present embodiment shown in FIG. 1 includes an electric rust prevention anode 3 mounted on a power transmission tower 2 which is an angle steel tower made of, for example, isosake mountain steel, and an anode anticorrosion controller. 4a and a battery 5 which is a lithium ion battery for supplying power via the charge output controller 4b, and a solar panel 6 which stores electricity in the battery 5 via the charge output controller 4b.

図2に示す様に平板方形状のアルミ合金製の電気防錆アノード3は、送電鉄塔昇降用ステップボルト8及びナット9a、9bによって送電鉄塔2に対し固定される。アノード3と送電鉄塔昇降用ステップボルト8間は絶縁スリーブ10によって絶縁される。またアノード3と送電鉄塔2間はポリテトラフルオロエチレン製絶縁体11によって絶縁される。   As shown in FIG. 2, the plate-shaped aluminum alloy electrorust-preventing anode 3 is fixed to the power transmission tower 2 by means of a transmission tower lifting step bolt 8 and nuts 9a, 9b. The anode 3 and the transmission tower raising / lowering step bolt 8 are insulated by an insulating sleeve 10. The anode 3 and the power transmission tower 2 are insulated by a polytetrafluoroethylene insulator 11.

絶縁スリーブ10は一端にフランジ部10aを形成した筒状に形成され、その筒部10b内径は送電鉄塔昇降用ステップボルト8を嵌合可能にされる。
送電鉄塔2とアノード3とポリテトラフルオロエチレン製絶縁体11のそれぞれには一連の貫通孔が形成され、その貫通孔に絶縁スリーブ10が挿通され、その絶縁スリーブ10内側に嵌合される態様で送電鉄塔昇降用ステップボルト8が装着され、ナット9a、9bと締結される。
その状態でアノード3の送電鉄塔2及びポリテトラフルオロエチレン製絶縁体11とは反対側の側面には絶縁スリーブ10のフランジ部10a側面が当接し、さらにそのフランジ部10aとナット9b間にはガラス素材の絶縁平ワッシャ12が介挿される。
The insulating sleeve 10 is formed in a cylindrical shape having a flange portion 10a formed at one end, and the inner diameter of the cylindrical portion 10b can be fitted with a step bolt 8 for raising and lowering a power transmission tower.
A series of through holes are formed in each of the power transmission tower 2, the anode 3, and the polytetrafluoroethylene insulator 11, and the insulating sleeve 10 is inserted into the through holes and fitted inside the insulating sleeve 10. A transmission tower elevating / lowering step bolt 8 is attached and fastened to the nuts 9a and 9b.
In this state, the side surface of the flange 10a of the insulating sleeve 10 is in contact with the side surface of the anode 3 opposite to the power transmission tower 2 and the polytetrafluoroethylene insulator 11, and further, glass is interposed between the flange portion 10a and the nut 9b. An insulating flat washer 12 of material is inserted.

以上において送電鉄塔2とアノード3とを絶縁するポリテトラフルオロエチレン製絶縁体11はアノード3より小なる外径を有する結果、送電鉄塔2とアノード3間にはポリテトラフルオロエチレン製絶縁体11外側位置に凹所13が形成される。
以上のアノード3にはバッテリー5からの給電用のリード線14が取り付けられる。
図3(a)(b)に示す様に送電鉄塔2に対するアノード3の取付姿勢は、アノード3の外側面が天地方向に対して傾斜する菱型状の取付姿勢とする。その様にすることによって凹所13に砂ほこり、ダスト等が入り込んだ場合でも雨水の流れで堆積しにくくすることができる。
In the above, the polytetrafluoroethylene insulator 11 that insulates the power transmission tower 2 and the anode 3 has an outer diameter smaller than that of the anode 3, so that the outer side of the polytetrafluoroethylene insulator 11 is interposed between the power transmission tower 2 and the anode 3. A recess 13 is formed at the position.
A lead wire 14 for supplying power from the battery 5 is attached to the anode 3 described above.
As shown in FIGS. 3A and 3B, the mounting posture of the anode 3 with respect to the power transmission tower 2 is a rhombus-shaped mounting posture in which the outer surface of the anode 3 is inclined with respect to the vertical direction. By doing so, even when sand dust, dust or the like enters the recess 13, it can be made difficult to deposit due to the flow of rainwater.

図4に各種の送電鉄塔昇降用ステップボルト8を示す。
図4(a)には山形鋼を用いてなる標準的なステップボルト8を示す。図4(b)にはえぼし形鉄塔用特殊ステップボルト8を示す。図4(c)には十字アングルのステップボルト8を示す。
これらは何れも本発明に用いることができ、この様な送電鉄塔昇降用ステップボルト8は全ての送電鉄塔2に取付けてある。全脚についている場合と1 脚、2 脚のみ取付けてある場合とがある。一般に地上1 m 程度から頂部まで約4 5 cm間隔で取付けてあり、送電鉄塔2の強度には、無関係のため付属品等を取付けることが可能にされている。また送電鉄塔2組立用ボルト(図示せず)と同じ材質である鉄製であり、亜鉛メッキ処理も施されており耐久性に優れる。この送電鉄塔昇降用ステップボルト8はボルト有効長が長く分厚い鉄塔材等にも使用可能であり、十分な厚み、例えば15mmのアノード3を取付ける事が可能である。
FIG. 4 shows various power transmission tower lifting / lowering step bolts 8.
FIG. 4A shows a standard step bolt 8 made of angle steel. FIG. 4B shows a special step bolt 8 for the Eboshi type steel tower. FIG. 4C shows a cross-angle step bolt 8.
Any of these can be used in the present invention, and such a transmission tower raising / lowering step bolt 8 is attached to all the transmission towers 2. There are cases where all legs are attached and only one or two legs are attached. Generally, it is attached at an interval of about 45 cm from about 1 m above the ground to the top, and since the strength of the transmission tower 2 is irrelevant, it is possible to attach accessories. Further, it is made of iron, which is the same material as the power transmission tower 2 assembly bolt (not shown), and is galvanized and has excellent durability. This transmission tower lifting / lowering step bolt 8 can be used for a thick steel tower material having a long effective bolt length and can be attached with an anode 3 having a sufficient thickness, for example, 15 mm.

この送電鉄塔昇降用ステップボルト8をアノード3の送電鉄塔2への取付に使用することによって防錆用アノード3を地上1 m 程度から頂部まで4 5 cmの一定間隔に取付ける事が可能となる。また送電鉄塔2自体の強度には直接影響を及ぼすことはなく、それ自体十分な強度を有する。またその様に送電鉄塔昇降用ステップボルト8にアノード3を取付けても送電鉄塔昇降用ステップボルト8本来の用途である昇降には問題を生じることはない。また既設の送電鉄塔昇降用ステップボルト8を使用するため、アノード3取付用の穴開作業を別途行う必要もない。また後のメンテナンスを行いやすく、新たなアノード3に交換する等の作業性も良い。   By using the transmission tower lifting / lowering step bolt 8 to attach the anode 3 to the transmission tower 2, the rust-preventing anode 3 can be attached at a regular interval of 45 cm from about 1 m above the ground to the top. Further, the strength of the power transmission tower 2 itself is not directly affected, and the strength is sufficient. Further, even if the anode 3 is attached to the step bolt 8 for raising and lowering the power transmission tower, there is no problem in raising and lowering which is the original use of the step bolt 8 for raising and lowering the power transmission tower. Further, since the existing transmission tower elevating / lowering step bolt 8 is used, it is not necessary to separately perform a drilling operation for attaching the anode 3. Further, it is easy to perform subsequent maintenance, and workability such as replacement with a new anode 3 is good.

送電鉄塔2には通常防錆塗料が塗布され、絶縁塗膜が形成されているが、時間が経過し、絶縁塗膜が劣化し、亀裂が生じた場合にはその亀裂に雨水が染込む。一方、雨天時の雨水は凹所13においてアノード3と送電鉄塔2間を通電させて導通し、アノード3と送電鉄塔2間に電流が流れる。ここで、送電鉄塔2とアノード3との間に電流が流れることで、送電鉄塔2が腐食(酸化)する場合の逆の電気反応が実現され、送電鉄塔2の腐食が防止される。   The power transmission tower 2 is usually coated with a rust preventive paint and an insulating coating film is formed. However, when time passes and the insulating coating film deteriorates and a crack is generated, rainwater infiltrates into the crack. On the other hand, rainwater during raining is conducted by energizing the anode 3 and the power transmission tower 2 in the recess 13, and a current flows between the anode 3 and the power transmission tower 2. Here, when a current flows between the power transmission tower 2 and the anode 3, a reverse electric reaction when the power transmission tower 2 is corroded (oxidized) is realized, and corrosion of the power transmission tower 2 is prevented.

一方、アノード3自体もバッテリー5からリード線14を介して給電されており、単なる犠牲陽極として早期に消耗することはない。しかも、バッテリー5にはソーラパネル6によって晴天時に常時、蓄電されており、そのための外部電源を用意する必要はない。   On the other hand, the anode 3 itself is also supplied with power from the battery 5 via the lead wire 14 and is not consumed quickly as a mere sacrificial anode. In addition, the battery 5 is always charged by the solar panel 6 in fine weather, and it is not necessary to prepare an external power source for that purpose.

なお本実施の形態ではアノード3にアルミ合金を用いアルミ合金製アノード3としたがこれには限定されず、アノード3としては亜鉛、カーボン、チタン合金、ボロン合金等を用いても良い。

In the present embodiment, an aluminum alloy is used as the anode 3 and the aluminum alloy anode 3 is used. However, the present invention is not limited to this, and the anode 3 may be zinc, carbon, titanium alloy, boron alloy, or the like.

2・・・送電鉄塔、7・・・アノード、凹所13、8・・・送電鉄塔昇降用ステップボルト。 2 ... Power transmission tower, 7 ... Anode, recess 13, 8 ... Step bolts for lifting the power transmission tower.

Claims (6)

送電鉄塔に装着する電気防錆アノードを有する送電鉄塔用電気防錆装置において、前記電気防錆アノードは、送電鉄塔昇降用ステップボルトによって送電鉄塔に対し固定してなることを特徴とする送電鉄塔用電気防錆装置。   An electric rust prevention device for a power transmission tower having an electric rust prevention anode attached to the power transmission tower, wherein the electric rust prevention anode is fixed to the power transmission tower by a step bolt for raising and lowering the power transmission tower. Electric rust prevention device. 前記電気防錆アノードに給電するためのバッテリーと、このバッテリーに蓄電するソーラパネルとを有することを特徴とする送電鉄塔用電気防錆装置。   An electric rust prevention apparatus for a power transmission tower, comprising: a battery for supplying power to the electric rust prevention anode; and a solar panel for storing electricity in the battery. 前記電気防錆アノードと送電鉄塔昇降用ステップボルト間を絶縁スリーブによって絶縁し、アノードと送電鉄塔間はポリテトラフルオロエチレン製絶縁体によって絶縁する請求項1に記載した送電鉄塔用電気防錆装置。   The electric rust prevention apparatus for power transmission towers according to claim 1, wherein an insulation sleeve is used to insulate the electric rust prevention anode and the transmission tower raising / lowering step bolts, and an insulation between the anode and the power transmission tower is provided by an insulator made of polytetrafluoroethylene. 送電鉄塔とアノードとを絶縁するポリテトラフルオロエチレン製絶縁体はアノードより小なる外径を有する請求項3に記載した送電鉄塔用電気防錆装置。   The electric rust prevention device for a power transmission tower according to claim 3, wherein the polytetrafluoroethylene insulator for insulating the power transmission tower and the anode has an outer diameter smaller than that of the anode. 送電鉄塔に対するアノードの取付姿勢は、アノードの外側面が天地方向に対して傾斜する取付姿勢とする請求項1〜請求項4のいずれか一に記載した送電鉄塔用電気防錆装置。   The electric rust prevention apparatus for power transmission towers according to any one of claims 1 to 4, wherein the mounting posture of the anode with respect to the power transmission tower is a mounting posture in which the outer surface of the anode is inclined with respect to the vertical direction. 電気防錆アノードを送電鉄塔に装着し、この電気防錆アノードにソーラパネルによって蓄電されるバッテリーによって給電する送電鉄塔用電気防錆方法において、前記電気防錆アノードを送電鉄塔昇降用ステップボルトによって送電鉄塔に対し固定することを特徴とする送電鉄塔用電気防錆方法。   In the electric rust prevention method for a power transmission tower in which an electric rust prevention anode is mounted on a power transmission tower and the electric rust prevention anode is fed by a battery stored by a solar panel, the electric rust prevention anode is transmitted by a step bolt for raising and lowering the power transmission tower. An electric rust prevention method for a power transmission tower characterized by fixing to a steel tower.
JP2017147333A 2017-07-31 2017-07-31 Electric rust preventing device for power transmission steel tower and electric rust preventing method for power transmission steel tower Pending JP2019026892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017147333A JP2019026892A (en) 2017-07-31 2017-07-31 Electric rust preventing device for power transmission steel tower and electric rust preventing method for power transmission steel tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017147333A JP2019026892A (en) 2017-07-31 2017-07-31 Electric rust preventing device for power transmission steel tower and electric rust preventing method for power transmission steel tower

Publications (1)

Publication Number Publication Date
JP2019026892A true JP2019026892A (en) 2019-02-21

Family

ID=65475840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017147333A Pending JP2019026892A (en) 2017-07-31 2017-07-31 Electric rust preventing device for power transmission steel tower and electric rust preventing method for power transmission steel tower

Country Status (1)

Country Link
JP (1) JP2019026892A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113550642A (en) * 2021-08-05 2021-10-26 华能通辽风力发电有限公司 Power transmission tower
CN114909012A (en) * 2022-05-06 2022-08-16 安徽航塔新能源科技有限公司 Multifunctional intelligent low-carbon 5G communication launching tower and tower manufacturing process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173161U (en) * 1988-05-27 1989-12-08
JPH0514160U (en) * 1991-08-01 1993-02-23 振興自動車株式会社 Solar system electronic anticorrosion device
JPH07286986A (en) * 1994-04-15 1995-10-31 Nippon Steel Corp Corrosion potential measurement electrode structure for marine steel structures
JP2001207280A (en) * 2000-01-25 2001-07-31 Junkosha Co Ltd Electrode wire for electric corrosion prevention
JP2004060042A (en) * 2002-07-25 2004-02-26 Chitose Tsusho Kk Electrolytic protection system in atmospheric environment
JP2012062545A (en) * 2010-09-17 2012-03-29 Chugoku Electric Power Co Inc:The Corrosion prevention structure of metallic body
JP2013108142A (en) * 2011-11-22 2013-06-06 Ihi Corp Electrode for electrolytic protection
JP2014125661A (en) * 2012-12-27 2014-07-07 Sumitomo Chemical Co Ltd Treatment container

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173161U (en) * 1988-05-27 1989-12-08
JPH0514160U (en) * 1991-08-01 1993-02-23 振興自動車株式会社 Solar system electronic anticorrosion device
JPH07286986A (en) * 1994-04-15 1995-10-31 Nippon Steel Corp Corrosion potential measurement electrode structure for marine steel structures
JP2001207280A (en) * 2000-01-25 2001-07-31 Junkosha Co Ltd Electrode wire for electric corrosion prevention
JP2004060042A (en) * 2002-07-25 2004-02-26 Chitose Tsusho Kk Electrolytic protection system in atmospheric environment
JP2012062545A (en) * 2010-09-17 2012-03-29 Chugoku Electric Power Co Inc:The Corrosion prevention structure of metallic body
JP2013108142A (en) * 2011-11-22 2013-06-06 Ihi Corp Electrode for electrolytic protection
JP2014125661A (en) * 2012-12-27 2014-07-07 Sumitomo Chemical Co Ltd Treatment container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113550642A (en) * 2021-08-05 2021-10-26 华能通辽风力发电有限公司 Power transmission tower
CN114909012A (en) * 2022-05-06 2022-08-16 安徽航塔新能源科技有限公司 Multifunctional intelligent low-carbon 5G communication launching tower and tower manufacturing process

Similar Documents

Publication Publication Date Title
CN106760870B (en) A kind of power transmission tower column foot anti-corrosion method
CN102537010A (en) Reduced-corrosion fastened assembly
CN103726057A (en) Corrosion resistant system and method of offshore wind power generating set base
JP2019026892A (en) Electric rust preventing device for power transmission steel tower and electric rust preventing method for power transmission steel tower
CN102277578A (en) ICCP (impressed current cathodic protection) method of leg type platform
CN205039503U (en) Anticorrosive device of communication pipe
CN203947161U (en) Cathode protection structure of buried pipeline with heat-insulating layer
WO2020170830A1 (en) Corrosion prevention device
CN110484923B (en) Cathode protection anticorrosion device for copper armor layer of submarine cable
JP2006063439A (en) Sprayed coating for corrosion prevention to reinforcing bar in concrete structure
CN208046183U (en) Down conductor paster component
JPH1161460A (en) Electric corrosion protection of titanium-coated maritime structure
CN220393913U (en) Special anode device for impressed current of offshore wind turbine generator system
JP4784952B1 (en) Metal body anticorrosion structure
JP2008144257A (en) Corrosion prevention structure
JP5834817B2 (en) Electrodes for anticorrosion
JPH04297643A (en) Reinforced concrete structure and structural member, and electric protection method for reinforced concrete
Alzetouni Impressed current cathodic protection for oil well casing and associated flow lines
Gagné et al. Protecting Reinforced concrete structures with external zinc anodes
JP7082368B2 (en) Anticorrosion method and equipment for structures
CN216891227U (en) Negative potential corrosion-resistant protection system for cable trench grounding electrode
KR102521624B1 (en) Electric anti-corrosion controlling system with ai managing undergrould pipelines and managing method by the same
CA2966265C (en) Preventing corrosion in a greenhouse
KR102652545B1 (en) Impressed current cathodic protection system for pipe
JP2005290502A (en) Contamination preventive system for cathode

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190207