JP7082368B2 - Anticorrosion method and equipment for structures - Google Patents

Anticorrosion method and equipment for structures Download PDF

Info

Publication number
JP7082368B2
JP7082368B2 JP2018152202A JP2018152202A JP7082368B2 JP 7082368 B2 JP7082368 B2 JP 7082368B2 JP 2018152202 A JP2018152202 A JP 2018152202A JP 2018152202 A JP2018152202 A JP 2018152202A JP 7082368 B2 JP7082368 B2 JP 7082368B2
Authority
JP
Japan
Prior art keywords
anode
coating film
film
conductive coating
anticorrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018152202A
Other languages
Japanese (ja)
Other versions
JP2020026558A (en
Inventor
敦子 井手
Original Assignee
株式会社サンアメニティ
Filing date
Publication date
Application filed by 株式会社サンアメニティ filed Critical 株式会社サンアメニティ
Priority to JP2018152202A priority Critical patent/JP7082368B2/en
Publication of JP2020026558A publication Critical patent/JP2020026558A/en
Application granted granted Critical
Publication of JP7082368B2 publication Critical patent/JP7082368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、大気中に露出する構造物の防食方法及び装置に関する。 The present invention relates to anticorrosion methods and devices for structures exposed to the atmosphere.

大気中に露出する壁、階段、架台、橋梁、あるいは工業プラントのタンク類等の構造物は、鋼製であることが多い。鋼には炭素等の不純物が含まれており、鋼の表面は無数のミクロ電池(陽極・陰極を有する)の集合体である。鋼の表面が大気中の水分や雨水に触れると、陽極側から陽イオン(腐食物Fe2+)が大気中の水分や雨水を介して陰極側に移動し、陰極側で陽イオンが酸素等と反応して錆が発生する。 Structures such as walls, stairs, pedestals, bridges, or tanks in industrial plants that are exposed to the atmosphere are often made of steel. Steel contains impurities such as carbon, and the surface of steel is an aggregate of innumerable micro batteries (having an anode and a cathode). When the surface of the steel comes into contact with moisture or rainwater in the atmosphere, cations (corrosive Fe 2+ ) move from the anode side to the cathode side via the moisture or rainwater in the atmosphere, and the cations become oxygen etc. on the cathode side. It reacts and rust is generated.

錆の発生を防止するために、大気中に露出する構造物に耐候性塗料を塗布する塗装による防食工法が広く使用されている。しかし、塗装ムラ等の塗装欠陥、物理的損傷、塗料の劣化等により構造物の一部が露出すると、構造物の露出した部分が腐食する。このため、定期的に、特に海岸近傍の塩害地区では短期間に補修あるいは再塗装が繰り返される。 In order to prevent the occurrence of rust, an anticorrosion method is widely used in which a weather resistant paint is applied to a structure exposed to the atmosphere. However, when a part of the structure is exposed due to coating defects such as uneven coating, physical damage, deterioration of the paint, etc., the exposed part of the structure is corroded. For this reason, repairs and repainting are repeated regularly, especially in salt-damaged areas near the coast, in a short period of time.

再塗装までの期間を延長するために、下塗り、中塗り、上塗りからなる重防食塗装が一般の塗装技術として定着している。しかし、重防食塗装は施工を複雑化するだけでなく、大きなコストアップの要因になっている。 In order to extend the period until repainting, heavy-duty anticorrosion coating consisting of undercoat, intermediate coat, and topcoat has become established as a general coating technique. However, heavy-duty anticorrosion coating not only complicates construction, but also causes a large cost increase.

重防食塗装の上記問題点を解決するために、亜鉛等による流電陽極方式や外部電源方式の電気防食技術が提案されている。流電陽極方式は、地中構造物や船舶などに採用されているが、陽極が消耗するという原理的な問題があり、その用途は限定されている。外部電源方式の電気防食技術についても、数多くの提案がなされているが、塗装面に形成される水膜にムラがあることが多く、水膜を介して均一に防食電流を流すことや過防食を生じさせない電流量の制御が課題となり、経済性や簡便性などに未解決の問題が多い。 In order to solve the above-mentioned problems of heavy-duty anticorrosion coating, galvanic anode method using zinc or the like or an external power source type electrocorrosion protection technique has been proposed. The galvanic anode method is used for underground structures and ships, but its use is limited due to the principle problem that the anode is consumed. Many proposals have been made for electrical anticorrosion technology using an external power supply method, but the water film formed on the painted surface is often uneven, and a uniform anticorrosion current is applied through the water film and overcorrosion protection is achieved. The problem is to control the amount of current that does not cause the problem, and there are many unsolved problems in terms of economy and convenience.

外部電源方式の電気防食技術において、前述の防食電流の流路を確保することを目的として、構造物に絶縁性塗膜を形成し、その上に導電性塗膜を形成し、導電性塗膜に陽極を電気的に接続し、導電性塗膜の上に上塗り膜を形成し、導電性塗膜に電圧を印加する防食方法が開示されている(特許文献1参照)。 In the electric anticorrosion technology of the external power supply method, for the purpose of securing the above-mentioned anticorrosion current flow path, an insulating coating film is formed on the structure, a conductive coating film is formed on the insulating coating film, and the conductive coating film is formed. Disclosed is an anticorrosion method in which an anode is electrically connected to a conductive coating film, a topcoat film is formed on the conductive coating film, and a voltage is applied to the conductive coating film (see Patent Document 1).

特許文献1の発明によれば、導電性塗膜に直流電圧を印加するので、導電性塗膜と構造物との間に腐食電流と逆方向に防食電流を流すことができ、構造物の腐食を抑制することができる。また、導電性塗膜に防食電流を流すので、防食電流の流路を確保することができる。 According to the invention of Patent Document 1, since a DC voltage is applied to the conductive coating film, an anticorrosion current can flow between the conductive coating film and the structure in the direction opposite to the corrosion current, and the structure is corroded. Can be suppressed. Further, since the anticorrosion current is passed through the conductive coating film, the flow path of the anticorrosion current can be secured.

特開平11-314309号公報Japanese Unexamined Patent Publication No. 11-314309

しかし、特許文献1の発明にあっては、導電性塗膜に直流電圧を印加すると、導電性塗膜の上の上塗り膜の光沢度が低下してしまい、上塗り膜が劣化するという課題がある。上塗り膜が劣化すると、その下の導電性塗膜やその下の絶縁性塗膜に悪影響を及ぼす。 However, the invention of Patent Document 1 has a problem that when a DC voltage is applied to the conductive coating film, the glossiness of the topcoat film of the conductive coating film is lowered and the topcoat film is deteriorated. .. When the topcoat film deteriorates, it adversely affects the conductive coating film underneath and the insulating coating film underneath.

本発明は、上記の課題を鑑みてなされたものであり、導電性塗膜上の上塗り膜が劣化するのを防止でき、長期に亘って信頼性が高い防食方法及び装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a highly reliable anticorrosion method and apparatus for a long period of time, which can prevent the topcoat film on the conductive coating film from deteriorating. And.

上記課題を解決するために、本発明の一態様は、構造物に絶縁性塗膜を形成し、前記絶縁性塗膜の上に導電性塗膜を形成し、前記導電性塗膜に第1陽極を電気的に接続し、前記導電性塗膜の上に上塗り膜を形成し、前記上塗り膜に第2陽極を設置し、前記第1陽極に直流電圧を印加し、前記第2陽極に直流電圧を印加する構造物の防食方法である。 In order to solve the above problems, in one aspect of the present invention, an insulating coating film is formed on the structure, a conductive coating film is formed on the insulating coating film, and the conductive coating film is first. An anode is electrically connected, a topcoat film is formed on the conductive coating film, a second anode is installed on the topcoat film, a DC voltage is applied to the first anode, and a direct current is applied to the second anode. This is an anticorrosion method for structures to which a voltage is applied.

本発明の他の態様は、絶縁性塗膜が形成され、この絶縁性塗膜の上に導電性塗膜が形成され、この導電性塗膜の上に上塗り膜が形成される構造物の、前記導電性塗膜に電気的に接続される第1陽極と、前記構造物の前記上塗り膜に設置される第2陽極と、前記第1陽極に直流電圧を印加し、前記第2陽極に直流電圧を印加する電力供給装置と、を備える構造物の防食装置である。 Another aspect of the present invention is a structure in which an insulating coating film is formed, a conductive coating film is formed on the insulating coating film, and a top coat film is formed on the conductive coating film. A direct current voltage is applied to the first anode electrically connected to the conductive coating film, the second anode installed in the topcoat film of the structure, and the first anode, and direct current is applied to the second anode. It is an anticorrosion device for a structure including a power supply device for applying a voltage.

本発明によれば、導電性塗膜の上に形成された上塗り膜に第2陽極を設置し、上塗り膜に直流電圧を印加するので、上塗り膜が電気防食されて上塗り膜の光沢度の劣化が抑制される。このため、塗装面全面の延命が可能となり、長期に亘って信頼性が高い電気防食が可能になる。 According to the present invention, since the second anode is installed on the topcoat film formed on the conductive coating film and a DC voltage is applied to the topcoat film, the topcoat film is electrically protected and the glossiness of the topcoat film is deteriorated. Is suppressed. Therefore, the life of the entire painted surface can be extended, and highly reliable electric corrosion protection can be performed for a long period of time.

本発明の一実施形態の防食装置の模式図である。It is a schematic diagram of the anticorrosion apparatus of one Embodiment of this invention. 第1陽極の間隔及び第2陽極の間隔の一例を示す図である。It is a figure which shows an example of the spacing of the 1st anode and the spacing of the 2nd anode. 本実施形態の電力供給装置の一定電圧制御ユニットの回路図である。It is a circuit diagram of the constant voltage control unit of the power supply device of this embodiment. 本実施形態の電力供給装置の一定電流制御ユニットの回路図である。It is a circuit diagram of the constant current control unit of the power supply device of this embodiment.

以下、添付図面に基づいて、本発明の実施形態の構造物の防食方法及び装置を詳細に説明する。ただし、本発明の構造物の防食方法及び装置は種々の形態で具体化することができ、本明細書に記載される実施形態に限定されるものではない。本実施形態は、明細書の開示を十分にすることによって、当業者が発明の範囲を十分に理解できるようにする意図をもって提供されるものである。
(防食装置の構成)
Hereinafter, the anticorrosion method and the apparatus of the structure according to the embodiment of the present invention will be described in detail with reference to the accompanying drawings. However, the anticorrosion method and the apparatus of the structure of the present invention can be embodied in various forms, and are not limited to the embodiments described in the present specification. The present embodiment is provided with the intention of allowing those skilled in the art to fully understand the scope of the invention by adequately disclosing the specification.
(Configuration of anticorrosion device)

図1は、本発明の一実施形態の防食装置の模式図である。1は構造物、4は第1陽極、6は第2陽極、7は電力供給装置である。まず、構造物1を説明する。 FIG. 1 is a schematic view of an anticorrosion device according to an embodiment of the present invention. 1 is a structure, 4 is a first anode, 6 is a second anode, and 7 is a power supply device. First, the structure 1 will be described.

構造物1は、鋼製等である。構造物1の全面には、絶縁性塗膜2が形成される。絶縁性塗膜2を構成する塗料は、塗料の材料として実績のある有機系の樹脂であるエポキシ、ウレタン、アクリル等である。 The structure 1 is made of steel or the like. An insulating coating film 2 is formed on the entire surface of the structure 1. The paint constituting the insulating coating film 2 is an organic resin such as epoxy, urethane, acrylic, etc., which has a proven track record as a paint material.

絶縁性塗膜2の上には、通電可能な導電性塗膜3が形成される。導電性塗膜3を構成する塗料は、塗料の材料として実績のある有機系の樹脂であるエポキシ、ウレタン、アクリル等を基材として、カーボン粒子等の導電性粒子又は粉末を混合して導電率を調整した導電性塗料である。必要に応じてカーボン粒子にニッケル、アルミニウム、亜鉛等の金属粉末を併用することも可能である。導電性塗膜3の導電性は、大気環境下において、10Ω/cm~10,000Ω/cm、好ましくは20Ω/cm~1,000Ω/cm、さらに好ましくは20Ω/cm~500Ω/cmが適当である。 A conductive coating film 3 that can be energized is formed on the insulating coating film 2. The paint constituting the conductive coating film 3 is made of an organic resin such as epoxy, urethane, or acrylic, which has a proven track record as a paint material, as a base material, and is mixed with conductive particles or powder such as carbon particles to have conductivity. It is a conductive paint adjusted for. If necessary, metal powders such as nickel, aluminum, and zinc can be used in combination with the carbon particles. The conductivity of the conductive coating film 3 is preferably 10 Ω / cm to 10,000 Ω / cm, preferably 20 Ω / cm to 1,000 Ω / cm, and more preferably 20 Ω / cm to 500 Ω / cm in an atmospheric environment. be.

導電性塗膜3は、絶縁性塗膜2の一部分100の上に形成される。構造物1の不連続な形状の部分、すなわち非平面部分1aは、短期的に錆が発生し易い。導電性塗膜3は、この非平面部分1aを含む絶縁性塗膜2の一部分100の上に形成される。 The conductive coating film 3 is formed on a part 100 of the insulating coating film 2. The discontinuously shaped portion of the structure 1, that is, the non-planar portion 1a is prone to rust in a short period of time. The conductive coating film 3 is formed on a portion 100 of the insulating coating film 2 including the non-planar portion 1a.

導電性塗膜3には、第1陽極4が電気的に接続される。第1陽極4は、導電性塗膜3に電力を給電する。第1陽極4は、ステンレス又は銅の薄板から構成される。第1陽極4には、例えば3~4Vの直流電圧が印加され、例えば0.01~0.1mAの電流が流れる。 The first anode 4 is electrically connected to the conductive coating film 3. The first anode 4 supplies electric power to the conductive coating film 3. The first anode 4 is made of a thin plate of stainless steel or copper. A DC voltage of, for example, 3 to 4 V is applied to the first anode 4, and a current of, for example, 0.01 to 0.1 mA flows.

第1陽極4は、絶縁性塗膜2の上に第1陽極4を取り付け、その後、絶縁性塗膜2の上に導電性塗膜3を形成することで、導電性塗膜3に電気的に接続されてもよいし、導電性塗膜3の上に第1陽極4を取り付けることで、導電性塗膜3に電気的に接続されてもよい。 The first anode 4 is electrically attached to the conductive coating film 3 by mounting the first anode 4 on the insulating coating film 2 and then forming the conductive coating film 3 on the insulating coating film 2. It may be electrically connected to the conductive coating film 3 by mounting the first anode 4 on the conductive coating film 3.

導電性塗膜3及び絶縁性塗膜2の残りの部分200(導電性塗膜3が形成されていない部分)の上には、耐候性又は絶縁性の上塗り膜5が形成される。上塗り膜5を構成する塗料には、構造物1の外面の塗料として実績のあるものを用いる。例えば、エポキシ樹脂を変性剤を用いて高分子量化したビニル変性エポキシ樹脂塗料等の絶縁性塗料、又は水性自己架橋形アクリルエマルジョン塗料等の疎水性塗料を用いることができる。 A weather-resistant or insulating topcoat film 5 is formed on the remaining portion 200 (the portion where the conductive coating film 3 is not formed) of the conductive coating film 3 and the insulating coating film 2. As the paint constituting the topcoat film 5, a paint having a proven track record as a paint on the outer surface of the structure 1 is used. For example, an insulating paint such as a vinyl-modified epoxy resin paint obtained by increasing the molecular weight of an epoxy resin using a modifier, or a hydrophobic paint such as an aqueous self-crosslinking acrylic emulsion paint can be used.

上塗り膜5の上には、第2陽極6が大気に露出するように設置される。第2陽極6は、上塗り膜5に電力を給電する。第2陽極6は、例えばアルミニウム製である。第2陽極6には、例えば20~50Vの直流電圧が印加され、例えば0.05~1.00mAの電流が流れる。 The second anode 6 is installed on the topcoat film 5 so as to be exposed to the atmosphere. The second anode 6 supplies electric power to the topcoat film 5. The second anode 6 is made of, for example, aluminum. A DC voltage of, for example, 20 to 50 V is applied to the second anode 6, and a current of, for example, 0.05 to 1.00 mA flows through the second anode 6.

第1陽極4は、電力供給装置7の端子8bに接続される。第2陽極6は、電力供給装置7の端子8aに接続される。電力供給装置7の端子8cは、アース10によって接地される。構造物1は、アース9によって接地される。なお、電力供給装置7の端子8cを構造物1に接続することも可能である。 The first anode 4 is connected to the terminal 8b of the power supply device 7. The second anode 6 is connected to the terminal 8a of the power supply device 7. The terminal 8c of the power supply device 7 is grounded by the ground 10. The structure 1 is grounded by the ground 9. It is also possible to connect the terminal 8c of the power supply device 7 to the structure 1.

電力供給装置7は、第1陽極4及び第2陽極6それぞれに独立した電圧と電流を印加する。電力供給装置7が第2陽極6に印加する直流の最大出力電圧:電力供給装置7が第1陽極4に印加する直流の最大出力電圧は、3~17:1である。電力供給装置7の構成は後述する。 The power supply device 7 applies an independent voltage and current to each of the first anode 4 and the second anode 6. Maximum DC output voltage applied to the second anode 6 by the power supply device 7: The maximum DC output voltage applied to the first anode 4 by the power supply device 7 is 3 to 17: 1. The configuration of the power supply device 7 will be described later.

このように、上塗り膜5の表面の水膜を導電媒体とする第2陽極6には、比較的高い電圧を与え、広範囲の防食を達成する。また、出力電流に対して実効電流が低いので、相対的に高い電流値を設定して防食の確度を上げる。導電性塗膜3を導電媒体とする第1陽極4には、大気環境による影響を大きく受けることがないので、過防食を勘案した比較的低い電圧と電流が設定できる。電力供給装置7の詳細な構成は後述する。 As described above, a relatively high voltage is applied to the second anode 6 using the water film on the surface of the topcoat film 5 as the conductive medium, and a wide range of corrosion protection is achieved. Moreover, since the effective current is low with respect to the output current, a relatively high current value is set to improve the accuracy of corrosion protection. Since the first anode 4 using the conductive coating film 3 as a conductive medium is not significantly affected by the atmospheric environment, a relatively low voltage and current can be set in consideration of overcorrosion. The detailed configuration of the power supply device 7 will be described later.

図2に示すように、第1陽極4及び第2陽極6の個数は、カバーする構造物1の形状及び面積により決定され、通常はそれぞれ複数である。第1陽極4の有効範囲は、第1陽極4を中心とする導電性塗膜3部分の例えば半径7mである。第2陽極6の有効範囲は、第2陽極6を中心とする上塗り膜5部分の例えば半径2.5m~3.0mである。隣り合う第1陽極4間の間隔P1(P1=7m×2)は、隣り合う第2陽極6間の間隔P2(P2=2.5m~3.0m×2)よりも長い。
(防食装置の効果)
As shown in FIG. 2, the number of the first anode 4 and the second anode 6 is determined by the shape and area of the structure 1 to be covered, and is usually a plurality of each. The effective range of the first anode 4 is, for example, a radius of 7 m of the conductive coating film 3 portion centered on the first anode 4. The effective range of the second anode 6 is, for example, a radius of 2.5 m to 3.0 m of the topcoat film 5 portion centered on the second anode 6. The distance P1 (P1 = 7 m × 2) between the adjacent first anodes 4 is longer than the distance P2 (P2 = 2.5 m to 3.0 m × 2) between the adjacent second anodes 6.
(Effect of anticorrosion device)

本実施形態の防食装置によれば、以下の効果を奏する。 According to the anticorrosion device of the present embodiment, the following effects are obtained.

第1陽極4に直流電圧を印加するので、導電性塗膜3と構造物1との間に腐食電流と逆方向に防食電流を流すことができ、構造物1の腐食を抑制することができる。 Since a DC voltage is applied to the first anode 4, an anticorrosion current can flow between the conductive coating film 3 and the structure 1 in the direction opposite to the corrosion current, and corrosion of the structure 1 can be suppressed. ..

第1陽極4に直流電圧を印加すると、導電性塗膜3の上の上塗り膜5の光沢度が低下し、上塗り膜5が劣化する。しかし、上塗り膜5に第2陽極6を設置し、第2陽極6に直流電圧を印加するので、上塗り膜5が電気防食されて上塗り膜5の光沢度の劣化が抑制される。このため、塗装面全面の延命が可能となり、長期に亘って信頼性が高い電気防食が可能になる。 When a DC voltage is applied to the first anode 4, the glossiness of the topcoat film 5 of the conductive coating film 3 decreases, and the topcoat film 5 deteriorates. However, since the second anode 6 is installed on the topcoat film 5 and a DC voltage is applied to the second anode 6, the topcoat film 5 is electrically protected and the deterioration of the glossiness of the topcoat film 5 is suppressed. Therefore, the life of the entire painted surface can be extended, and highly reliable electric corrosion protection can be performed for a long period of time.

第1陽極4と第2陽極6に独立した別個の防食電流を供給するので、上塗り膜5の上の水膜を導電媒体とする防食、及び導電性塗膜3を導電媒体とする防食それぞれの機能が向上する。導電性塗膜3の導電性適正化が容易であり、塗料のコスト低下に加えて塗膜劣化や変質が改善される。 Since an independent anticorrosion current is supplied to the first anode 4 and the second anode 6, the anticorrosion using the water film on the topcoat film 5 as the conductive medium and the anticorrosion using the conductive coating film 3 as the conductive medium, respectively. Function is improved. It is easy to optimize the conductivity of the conductive coating film 3, and in addition to reducing the cost of the coating film, deterioration and deterioration of the coating film are improved.

導電性塗膜3を絶縁性塗膜2の一部分100の上、すなわち錆が短期的に発生し易い不連続な形状の非平面部分1aを含む一部分100の上に形成するので、導電性塗膜3を形成する部分を少なくすることができ、経済性を確保することができる。これに対して、従来のように導電性塗膜3を絶縁性塗膜2の全面に形成すると、塗料及び塗装工事のコストが割高になり、経済性に難点がある。
(電力供給装置の構成)
Since the conductive coating film 3 is formed on a part 100 of the insulating coating film 2, that is, on a part 100 including a discontinuously shaped non-planar portion 1a where rust is likely to occur in a short period of time, the conductive coating film 3 is formed. The portion forming 3 can be reduced, and economic efficiency can be ensured. On the other hand, if the conductive coating film 3 is formed on the entire surface of the insulating coating film 2 as in the conventional case, the cost of the coating film and the coating work becomes high, and there is a difficulty in economy.
(Configuration of power supply device)

本実施形態の電力供給装置7は、一定電圧制御ユニット41(図3参照)と、一定電流制御ユニット42(図4参照)と、を備える。一定電圧制御ユニット41には、第1陽極4用のものと、第2陽極6用のものとが存在する。第1陽極4用の一定電圧制御ユニット41の構成と第2陽極6用の一定電圧制御ユニット41の構成とは、略同一である。一定電流制御ユニット42は、電力供給装置7のケース内に配置されてもよいし、第1陽極4及び第2陽極6に内蔵されてもよい。 The power supply device 7 of the present embodiment includes a constant voltage control unit 41 (see FIG. 3) and a constant current control unit 42 (see FIG. 4). The constant voltage control unit 41 includes one for the first anode 4 and one for the second anode 6. The configuration of the constant voltage control unit 41 for the first anode 4 and the configuration of the constant voltage control unit 41 for the second anode 6 are substantially the same. The constant current control unit 42 may be arranged in the case of the power supply device 7, or may be built in the first anode 4 and the second anode 6.

図3は、一定電圧制御ユニット41の回路図の一例である。一般に使用されている100~200Vの交流電源に電源プラグ11を接続し、入力される交流電圧をトランス14にて降圧し、整流回路15で直流に変換する。ここで、過剰電圧又は過剰電流による一定電圧制御ユニット41の破壊を防止するために、トランス14の一次側にヒューズ12及び/又はバリスタ13を挿入してもよい。トランス14の2次側の出力電圧は、3~4V(第1陽極4用)又は20~50V(第2陽極6用)に設定される。レギュレータ18は、出力電圧を微調整して、一定電圧制御ユニット41の出力電圧の一定化を図る。レギュレータ18前後のコンデンサー16,17,19及び20は、電圧変動及び/又は外乱ノイズを抑制・吸収して、出力電圧の一定化を補助する。さらに、一定電圧制御ユニット41の出力部の陽極-陰極間に、発光ダイオード21及び抵抗器22を並列に挿入して、一定電圧制御ユニット41の動作を、発光ダイオード21の発光により視覚的に表示する。 FIG. 3 is an example of a circuit diagram of the constant voltage control unit 41. A power plug 11 is connected to a commonly used AC power supply of 100 to 200 V, the input AC voltage is stepped down by a transformer 14, and converted into direct current by a rectifier circuit 15. Here, in order to prevent the constant voltage control unit 41 from being destroyed by an excess voltage or an excess current, a fuse 12 and / or a varistor 13 may be inserted on the primary side of the transformer 14. The output voltage on the secondary side of the transformer 14 is set to 3 to 4 V (for the first anode 4) or 20 to 50 V (for the second anode 6). The regulator 18 finely adjusts the output voltage to make the output voltage of the constant voltage control unit 41 constant. The capacitors 16, 17, 19 and 20 around the regulator 18 suppress and absorb voltage fluctuations and / or disturbance noise to help stabilize the output voltage. Further, the light emitting diode 21 and the resistor 22 are inserted in parallel between the anode and the cathode of the output unit of the constant voltage control unit 41, and the operation of the constant voltage control unit 41 is visually displayed by the light emission of the light emitting diode 21. do.

図4は、一定電流制御ユニット42の回路図の一例である。27は負荷抵抗である。一定電圧制御ユニット41によって一定電圧に制御された電力は、トランジスタ24に印加される。トランジスタ24、抵抗器23、ツェナーダイオード25、及び抵抗器26は、電流が所定値以上に流れないように制御して、負荷27に電力を供給する。LED29は、電力の入力を表示する。抵抗器28は、LEDに流れる電流を必要最小限に抑える。 FIG. 4 is an example of a circuit diagram of the constant current control unit 42. 27 is a load resistance. The electric power controlled to a constant voltage by the constant voltage control unit 41 is applied to the transistor 24. The transistor 24, the resistor 23, the Zener diode 25, and the resistor 26 are controlled so that the current does not flow more than a predetermined value, and power is supplied to the load 27. The LED 29 displays a power input. The resistor 28 minimizes the current flowing through the LED.

電力供給装置7の外部電源は、商用電源に限られることはない。商用電源が得られない過疎地の鉄塔等の長期的防食を確保する場合、商用電源以外に太陽電池やワイヤレス給電装置を用いることもできる。ワイヤレス給電装置は、送電側で電流を電磁波に変換し、受電側でアンテナから電磁波を受信し、整流回路で電磁波を電流に変換する。 The external power source of the power supply device 7 is not limited to the commercial power source. In order to secure long-term corrosion protection for steel towers in depopulated areas where commercial power cannot be obtained, solar cells and wireless power supply devices can be used in addition to commercial power. In the wireless power supply device, the power transmission side converts the current into an electromagnetic wave, the power receiving side receives the electromagnetic wave from the antenna, and the rectifier circuit converts the electromagnetic wave into an electric current.

第1陽極4として、20mm×50mm×t2mmの銅板を用いた。構造物1に絶縁性塗膜2を形成した後、両面テープにより第1陽極4を絶縁性塗膜2に貼り付けた。第1陽極4間の間隔を14mに設定した。その後、第1陽極4に電気的に接続するように、絶縁性塗膜2の一部分100の上に導電性塗膜3を形成した。 A 20 mm × 50 mm × t2 mm copper plate was used as the first anode 4. After forming the insulating coating film 2 on the structure 1, the first anode 4 was attached to the insulating coating film 2 with double-sided tape. The distance between the first anodes 4 was set to 14 m. After that, the conductive coating film 3 was formed on a part 100 of the insulating coating film 2 so as to be electrically connected to the first anode 4.

導電性塗膜3が形成されていない絶縁性塗膜2の残りの部分200の上、及び導電性塗膜3の上に上塗り膜5を形成した。第2陽極6として、50mm×50mm×15mmのアルミ製の直方体を用いた。第2陽極6を両面テープにより上塗り膜5の上に貼り付けた。第2陽極6間の間隔を5mに設定した。 The topcoat film 5 was formed on the remaining portion 200 of the insulating coating film 2 on which the conductive coating film 3 was not formed, and on the conductive coating film 3. As the second anode 6, a rectangular parallelepiped made of aluminum having a size of 50 mm × 50 mm × 15 mm was used. The second anode 6 was attached onto the topcoat film 5 with double-sided tape. The distance between the second anodes 6 was set to 5 m.

電力供給装置7の外部電源には、100Vの商用電源を用いた。電力供給装置7の最大出力は、第1陽極4用がDC4V、10mA(20chの第1陽極4に対応可能)であり、第2陽極6用がDC50V、200mA(20chの第2陽極6に対応可能)であった。電力供給装置7には、サージ電流で自動遮断し、自動復帰するものを用いた。第1陽極4に3Vの直流電圧を印加し、第2陽極6に50Vの直流電圧を印加した。 As the external power source of the power supply device 7, a commercial power source of 100 V was used. The maximum output of the power supply device 7 is DC4V, 10mA for the first anode 4 (corresponding to the first anode 4 of 20ch), and DC50V, 200mA for the second anode 6 (corresponding to the second anode 6 of 20ch). It was possible). As the power supply device 7, a device that automatically shuts off with a surge current and automatically recovers is used. A DC voltage of 3 V was applied to the first anode 4, and a DC voltage of 50 V was applied to the second anode 6.

上塗り膜5の光沢度が長期に亘って維持されることが、暴露試験やその他の実証実験により確認された。第1陽極4単独の場合よりも上塗り膜5表面の紫外線による劣化が顕著に抑制された。従来の防食方法では成し得ない信頼性の高い防食が可能になった。また、従来の防食方法は費用面でもその用途が著しく限定されていたが、本発明は費用面でも多種多様の構造物1に適用可能であることがわかった。 It was confirmed by exposure tests and other demonstration experiments that the glossiness of the topcoat film 5 was maintained for a long period of time. Deterioration of the surface of the topcoat film 5 due to ultraviolet rays was significantly suppressed as compared with the case of the first anode 4 alone. It has become possible to provide highly reliable anticorrosion that cannot be achieved by conventional anticorrosion methods. Further, although the conventional anticorrosion method has been remarkably limited in its use in terms of cost, it has been found that the present invention can be applied to a wide variety of structures 1 in terms of cost.

1…構造物
2…絶縁性塗膜
3…導電性塗膜
4…第1陽極
5…上塗り膜
6…第2陽極
7…電力供給装置
100…絶縁性塗膜の一部分
200…絶縁性塗膜の残りの部分
P1…第1陽極間の間隔
P2…第2陽極間の間隔
1 ... Structure 2 ... Insulating coating film 3 ... Conductive coating film 4 ... First anode 5 ... Topcoat film 6 ... Second anode 7 ... Power supply device 100 ... Part of insulating coating film 200 ... Insulating coating film Remaining part P1 ... Spacing between the first anodes P2 ... Spacing between the second anodes

Claims (6)

構造物に絶縁性塗膜を形成し、前記絶縁性塗膜の上に導電性塗膜を形成し、前記導電性塗膜に第1陽極を電気的に接続し、前記導電性塗膜の上に上塗り膜を形成し、前記上塗り膜に第2陽極を設置し、前記第1陽極に直流電圧を印加し、前記第2陽極に直流電圧を印加する構造物の防食方法。 An insulating coating film is formed on the structure, a conductive coating film is formed on the insulating coating film, a first anode is electrically connected to the conductive coating film, and the conductive coating film is coated on the conductive coating film. A method for preventing corrosion of a structure in which a topcoat film is formed on the topcoat film, a second anode is installed on the topcoat film, a DC voltage is applied to the first anode, and a DC voltage is applied to the second anode. 前記導電性塗膜を前記絶縁性塗膜の一部分の上に形成し、前記絶縁性塗膜の残りの部分の上に前記上塗り膜を形成することを特徴とする請求項1に記載の構造物の防食方法。 The structure according to claim 1, wherein the conductive coating film is formed on a part of the insulating coating film, and the top coating film is formed on the remaining portion of the insulating coating film. Anti-corrosion method. 前記第2陽極に印加する直流の最大出力電圧:前記第1陽極に印加する直流の最大出力電圧が、3~17:1であることを特徴とする請求項1に記載の構造物の防食方法。 The method for preventing corrosion of a structure according to claim 1, wherein the maximum output voltage of the direct current applied to the second anode: the maximum output voltage of the direct current applied to the first anode is 3 to 17: 1. .. 隣り合う前記第1陽極間の間隔が隣り合う前記第2陽極間の間隔よりも長いことを特徴とする請求項1又は2に記載の構造物の防食方法。 The anticorrosion method for a structure according to claim 1 or 2, wherein the distance between the adjacent first anodes is longer than the distance between the adjacent second anodes. 前記直流電圧の電源は、商用電源、太陽電池、ワイヤレス給電装置の少なくとも一つを含むことを特徴とする請求項1又は2に記載の構造物の防食方法。 The anticorrosion method for a structure according to claim 1 or 2, wherein the DC voltage power source includes at least one of a commercial power source, a solar cell, and a wireless power feeding device. 絶縁性塗膜が形成され、この絶縁性塗膜の上に導電性塗膜が形成され、この導電性塗膜の上に上塗り膜が形成される構造物の、前記導電性塗膜に電気的に接続される第1陽極と、
前記構造物の前記上塗り膜に設置される第2陽極と、
前記第1陽極に直流電圧を印加し、前記第2陽極に直流電圧を印加する電力供給装置と、を備える構造物の防食装置。
An insulating coating film is formed, a conductive coating film is formed on the insulating coating film, and an overcoat film is formed on the conductive coating film. The first anode connected to, and
A second anode installed on the topcoat film of the structure, and
A structure anticorrosion device comprising a power supply device for applying a DC voltage to the first anode and applying a DC voltage to the second anode.
JP2018152202A 2018-08-13 Anticorrosion method and equipment for structures Active JP7082368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018152202A JP7082368B2 (en) 2018-08-13 Anticorrosion method and equipment for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152202A JP7082368B2 (en) 2018-08-13 Anticorrosion method and equipment for structures

Publications (2)

Publication Number Publication Date
JP2020026558A JP2020026558A (en) 2020-02-20
JP7082368B2 true JP7082368B2 (en) 2022-06-08

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335974A (en) 2000-05-25 2001-12-07 Jonan Kk Cathodic protection method and system for metallic structure
CN105609307A (en) 2016-02-25 2016-05-25 新奥科技发展有限公司 Corrosion protection device and corrosion protection method
WO2017137814A1 (en) 2016-02-09 2017-08-17 Universiti Brunei Darussalam Anti-corrosion electrolyte coating system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335974A (en) 2000-05-25 2001-12-07 Jonan Kk Cathodic protection method and system for metallic structure
WO2017137814A1 (en) 2016-02-09 2017-08-17 Universiti Brunei Darussalam Anti-corrosion electrolyte coating system and method
CN105609307A (en) 2016-02-25 2016-05-25 新奥科技发展有限公司 Corrosion protection device and corrosion protection method

Similar Documents

Publication Publication Date Title
US3868313A (en) Cathodic protection
US6402933B1 (en) Method and system of preventing corrosion of conductive structures
EA005659B1 (en) Semiconductive polymeric system, devices incorporating the same, and its use in controlling corrosion
JP7082368B2 (en) Anticorrosion method and equipment for structures
KR100765589B1 (en) Method and system of preventing corrosion of conductive structures
KR20010030856A (en) Cathodic protection methods and apparatus
US20020046956A1 (en) Method and system of preventing corrosion of conductive structures
KR101347707B1 (en) Hybrid type cathode protection system sacrificial anode type cathode protection technologies for marine concrete structure
US20180187314A1 (en) Cathodic protection of metal substrates
JP2020026558A (en) Structure corrosion prevention method and device
Nadzri et al. A review of cathodic protection in repairing reinforced concrete structures
JP2019026892A (en) Electric rust preventing device for power transmission steel tower and electric rust preventing method for power transmission steel tower
JPH11286793A (en) Cathodic corrosion protecting method for metallic structure, and device therefor
JPH1161460A (en) Electric corrosion protection of titanium-coated maritime structure
US5954938A (en) Simplified cathodic corrosion protection method and apparatus for metal structure
JP2005213594A (en) Cathodic protection method for steel product structure and apparatus used for the method
JP3402959B2 (en) Corrosion protection equipment for steel structures
US20180175639A1 (en) Electrical equipment and electronic circuit for anti corrosion treatment on metal surfaces
BR202015025065U2 (en) electro-electronic circuit improvement of anti-corrosion treatment equipment on metal surfaces
JP3135420U (en) Simple cathodic protection device
JP2005290502A (en) Contamination preventive system for cathode
CN203708172U (en) Corrosion-resistant solar photovoltaic power station bracket
WO2022118284A1 (en) A method and system for detecting and locating defects to a coating on a metallic object
JP2001335974A (en) Cathodic protection method and system for metallic structure
AU2005227402B2 (en) Semiconductive polymeric system, devices incorporating the same, and its use in controlling corrosion