JP4148373B2 - Cathodic protection method and apparatus for metal structures - Google Patents

Cathodic protection method and apparatus for metal structures Download PDF

Info

Publication number
JP4148373B2
JP4148373B2 JP09318798A JP9318798A JP4148373B2 JP 4148373 B2 JP4148373 B2 JP 4148373B2 JP 09318798 A JP09318798 A JP 09318798A JP 9318798 A JP9318798 A JP 9318798A JP 4148373 B2 JP4148373 B2 JP 4148373B2
Authority
JP
Japan
Prior art keywords
metal structure
anode
current
cathodic protection
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09318798A
Other languages
Japanese (ja)
Other versions
JPH11286793A (en
Inventor
正浩 高橋
英輔 和田
靖彦 高橋
Original Assignee
城南株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 城南株式会社 filed Critical 城南株式会社
Priority to JP09318798A priority Critical patent/JP4148373B2/en
Priority to TW88117247A priority patent/TW477832B/en
Publication of JPH11286793A publication Critical patent/JPH11286793A/en
Application granted granted Critical
Publication of JP4148373B2 publication Critical patent/JP4148373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、建物の外壁、屋根、橋梁などの大気中に暴露されている金属製構造物が酸化腐食されるのを電気的システムにより防止する陰極防食法および装置に関する。
【0002】
【従来の技術】
大気中に暴露されている金属製構造物は、その金属表面が塗装されていても、経時的に、雨水や空気中の湿気と大気中の汚染物質等によってその表面に形成される電解質水分とこの水分中の溶存酸素とにより、酸化腐食される。
【0003】
このような金属製構造物の塗装面の防食を行う保護陽極および陰極防食システムとして、シー・エル・アイ・システムズ・インコーポレイテッド(米国)が開発し、市販している装置がある(特願平3−306342号)。
【0004】
この電気防食装置は、大気中に暴露され、塗装により表面を保護されている金属製構造物の腐食防止に効果を発揮しているが、以下の2点の問題点は避けられないでいる。すなわち、
(1) 構成要素である電流制御手段は、湿度感応素子により検知される環境湿度に正比例する値の電流を流す機能を持たされている。しかし、実際には、海塩粒子や大気汚染物質が水膜に溶存する度合いによって、同じ湿度で水膜の厚さが同じであっても、明らかに、水膜自体の単位長さ当たりの電気抵抗は大きく異なってくる。そのため、水膜の水質によって、防食に必要な電流量は変わってくるので、同じ電流量を印加しても、そのときの環境水質により、防食電流の到達範囲にも変動が生じる。
【0005】
また、金属構造物の表面塗装の塗膜は、砂塵、その他の環境中の影響因子により、部分的に劣化され、その一部に欠陥が生じる。この欠陥部位が拡大すると、環境湿度が同じでも、欠陥部位をも含んだ金属構造物の広範な表面の防食に必要な電流量は、大幅に増大する。例えば、水膜に多量の海塩粒子が溶け込んで、さらに、塗膜の欠陥が、装置の保護陽極の周囲に発生した場合を考えると、湿度が60〜70%と低湿度で、電流が少量しか供給されないとすると、供給した電流は、前述の欠陥部位に流れ込んでしまうため、保護陽極の周辺の狭い範囲で消耗されることになり、防食電流の到達する範囲が狭くなってしまう。
【0006】
(2) 保護陽極近傍の金属製構造物の過防食を防止するために、陽極の出力電圧を最大12Vとしている。しかし、前述のように、前記塗膜の欠陥部位の領域が増大する場合、所期の範囲の防食を達成するためには、さらに電圧を高めて、電流を多く流してやる必要がある。この必要に対して、最大12Vの出力電圧による電流印加では、対応できない。
【0007】
【発明が解決しようとする課題】
本発明は、前記従来の事情を鑑みてなされたもので、その課題は、金属製構造物の電気防食において、一つの陽極によって防食可能とする範囲を、過防食を起こさずに、最大限にまで拡大することのできる金属製構造物の陰極防食法および装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために、下記のような実験検討を行い、本発明をなすに至った。
【0009】
実験では、各種システムを構築し、所期の機能を果たせるか否か試行錯誤を重ね、図1に示すシステムを初期に作り上げた。
【0010】
図中、1はAC100〜200V電源の端子、2はヒューズ、3はサージ電流吸収のバリスターである。4はトランスであり、出力を18〜20Vに落圧する。また、5は整流回路であり、交流を直流に変換する。6、7はコンデンサーである。8はレギュレータであり、主陽極15に印加する電圧を制御する。9および10はコンデンサーであり、21もコンデンサーである。22はレギュレータであり、パイロット陽極20に印加する電圧を一定値に制御する。23および24はコンデンサーである。
【0011】
以上の電源端子1ないしコンデンサー10、コンデンサー21、レギュレータ22、コンデンサー23および24の各部品は、制御器30に収納されている。
【0012】
トランジスター11、抵抗器12、14、ツェナーダイオード13は、主陽極15に供給される電流がある一定値以上流れないようにする第1の電流制限手段100を構成している。また、コンデンサー25、オペアンプ26、抵抗器27、28、29は、第2の電流制限手段101を構成しており、パイロット陽極20から防食対象である塗装鋼板(金属製構造物)16に流れ込む電流を検出し、その電流検出値に応じて、レギュレータ8のグランドを介して該レギュレータ8の出力電圧を制御し、それによって、所期の最適電流を主陽極15から塗装鋼板16に流す。主陽極15と塗装鋼板16との間には、電気抵抗を有する特殊な媒体70を介在させる。
【0013】
前記第1の電流制御手段100は、主陽極15に一体化し、第2の電流制御手段101は、パイロット陽極20に一体化する。なお、図中、17は防食対象である塗装鋼板16に施した塗装の塗膜である。18は前記塗膜17の欠陥部であり、19は塗装鋼板16の表面に形成される水膜を示す。
【0014】
前記構成の装置において、レギュレータ22の出力電圧を8V〜12Vのある一定値に制御し、水膜19の電気伝導度の増大および欠陥部18の拡大により電流が増加するとき、それに応じて、レギュレータ8の出力電圧を10Vから例えば15Vまで上げて、所期の最適防食電流を塗装鋼板16に供給する。
【0015】
図2は、図1に示した構成の電気防食装置の防食機能を確認するための試験設備の概要を示すものである。塗装鋼板16に主陽極15およびパイロット陽極20を絶縁性両面接合体を介して貼り付けた。制御器30からのアノード線30a,30aを、対応する主陽極15とパイロット陽極20に接続し、さらに、カソード線30bを塗装鋼板17の母材32に接続した。
【0016】
塗装鋼板16の陽極取付位置から離れた位置の塗膜の一部分を剥離し、直径10mmの人工の塗膜欠陥部18を形成した。塗膜欠陥部18に飽和KClを含む寒天でコーティングしたAg/AgCl微小電極(φ=0.1mm)31を設置した。この電極31に対する鋼板母材17の電位をバッファーを介してコンピュータに出力させ、データ収集を行った。
【0017】
制御器30にAC100V電源を接続し、パイロット陽極20の電圧が設定値10Vの一定になることを確認した後に、塗装鋼板16を約30日間の暴露テストにかけた。その結果、湿度が60%未満の状態では、主陽極15に印加されている電圧は、最小値10Vを示し、湿度が高くなる程、その電位が上昇し、降雨時に13V前後に到達した。
【0018】
さらに、塗膜欠陥部を、前述の位置に加えて、主陽極15およびパイロット陽極20のそれぞれの陽極と前記位置の塗膜欠陥部18との間にも形成して、降雨時における主陽極15の印加電圧が最大の15Vに達するようにした。
【0019】
この状態でも、塗膜欠陥部18の電位は、−850mV前後の値を示しており、十分に防食が達成できていることが判った。
【0020】
さらに、主陽極15の近傍の塗膜17にも過防食の兆候は見られず、主陽極15から塗膜17の欠陥部18に流れる電流が充分に大きいため、主陽極15の下部の絶縁接合体(特殊媒体)70表面の水膜における電圧降下によって、主陽極15近傍の塗膜部における電圧が過防食を引き起こす電圧よりも低くなっていることが推察できた。
【0021】
すなわち、主陽極15から2.5〜3.0m離れた位置の塗膜欠陥部18と主陽極15との間に他の塗膜欠陥部を増やしていって、所要防食電流が増える場合、従来の技術では、主陽極の電圧12Vが限界となり、塗膜欠陥部18の電位が防食電位まで低下しないこととなるのに対し、本発明の方法および装置では、電流所要量の増加とともに、(本テストでは15Vを最大値としたが、)電圧が上昇し、そのために、塗膜欠陥部がかなり増えても、最遠の欠陥部18の電位が充分低下して防食電位に達していることが確認された。このことから、本発明によって、防食能が従来技術よりも優れた新技術を確立することができた。
【0022】
塗膜形成塗料と陰極防食法の組み合わせによる最も経済的な金属製構造物の防食を行う方法として、下層は汎用の絶縁性塗料を塗布し、最上層には電気抵抗の低い導電性の塗料を施した金属製構造物(塗装鋼板)に、本発明による陰極防食法の設備を用いて、図2に示したテストを行った。
【0023】
最上層の塗料として電気抵抗値0.2Ωcmのものを使用して、主陽極15から5m離れた位置に塗膜の人工欠陥部を設けて、制御器30に通電し、塗装鋼板16の表面に散水して、塗膜欠陥部18の電位を測定した。
【0024】
その電位は、−850〜−950mVの値を示し、不活性領域内にあり、充分防食が果たされていることが明らかとなった。
【0025】
通常の絶縁性塗料を用いたカラー鋼板では、人工欠陥部が主陽極から2.5〜3.5m程度までしか防食電位に達しないのに対し、塗料と陰極防食の最適な組み合わせによって、防食範囲を大幅に拡大できる技術を確立することができた。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態を説明するが、本発明は、これらの実施の形態に限定されるものではない。
【0027】
図3は、本発明にかかる金属製構造物の陰極防食法を実現するのに好適な装置の回路図である。
【0028】
本方法では、被防食体である塗装鋼板16の塗膜17に欠陥部18があり、前記塗装面にアルミニウム製などの陽極150が絶縁性両面接合体70により接着されている。湿度が60%前後となる時、水膜19が塗装鋼材16を覆い、それに大気汚染物質や海塩粒子が溶け込んで、水膜19を構成する水は電解質水溶液となり、塗膜欠陥部分18に錆を発生させる条件が成立する。これに対し、本発明による制御器および陽極150から最適の防食電流を、水膜19を介して塗膜欠陥部18に供給することにより、塗膜欠陥部18における発錆を防止するものである。
【0029】
図に示すように、AC100〜200V電源の端子33から電気を導入し、ヒューズ34、サージ電流吸収のバリスター35、トランス36を介して、AC18〜20Vに落圧して、整流回路37によって直流にする。コンデンサー38によって電圧変動を吸収し、レギュレータ39によって直流17Vの電気を供給する。そして、コンデンサー40によって、DC17Vを安定化する。
【0030】
陽極150から水膜19を通して塗膜17の欠陥部18から塗装鋼板16に流入する電流の大きさによって変化する抵抗器48の電圧降下を、オペアンプ45で検出し、その値によって、トランジスター44のエミッターから流出する電流の電圧を制御する。抵抗器41、42、46、47、49、50およびコンデンサー43は、系の安定した作動を補助する。トランジスター51、ツェナーダイオード53、抵抗器52、54は、陽極150から流れ出る電流が一定値を越さないようにする電流制限手段102を構成している。
【0031】
前記電源端子33、ヒューズ34、バリスター35、トランス36、整流回路37、コンデンサー38、レギュレータ39、およびコンデンサー40は、一基の制御器30内に収納する。また、前記抵抗器41および42、コンデンサー43、トランジスター44、オペアンプ45、抵抗器46,47,48,49,および50、トランジスター51、抵抗器52、ツェナーダイオード53、および抵抗器54は、陽極150に一体的に組み込む。一基の制御器30は、一つあるいは複数の陽極システムへ一定電圧の電流を供給する。
【0032】
図4に、前記陽極150の一例を示す。
【0033】
図中、55は板状アルミニウム陽極であり、その上面に開口する凹部56中にトランジスター、オペアンプ、ツェナーダイオード、抵抗器等を含む前記電流制御手段102をはめ込み、その部分を硬質のエポキシ樹脂で固めた。
【0034】
前記電流制御手段102には、外部からのリード線58が接続されている。59は制御器30からのアノード配線を接続する圧着端子である。陽極55は、塗装鋼板16の塗膜17に、両面接合体70を用いて、貼り付ける。
【0035】
【発明の効果】
金属製構造物の表面塗装の塗膜には、目には見えない無数のピンホールが開いている場合が多い。また、砂埃、その他の大気中の環境因子により、経時的に、塗膜に欠陥が生じる。このような状況下で、大気中の湿度が60%を越すと、塗膜表面に水膜が形成されるが、この表面の水膜中には大気中の海塩粒子等が溶け込んで、水膜水は電解質水となる。この電解質水が前記ピンホールや塗膜欠陥部を通して、金属の表面に接触し、発錆の条件が整う。このときに、前記電解質水膜を通して防食電流を流して、発錆を抑制するのが、陰極防食法である。この陰極防食法において、本発明の方法は、従来の方法と異なって、所要電流量の増大に応じて陽極に印加する電圧を上昇させ、従来、過防食のために不可能と考えられていた陽極から離れた領域にまで防食電流を流すことができる。本発明では、防食対象である金属製構造物の塗膜と陽極との間に介在する電気抵抗を有する特殊媒体(電解質水膜)の特性の変動、および塗膜欠陥部の大きさに応じて、防食電流、電圧を最適に制御する。陽極の近傍の塗膜で過防食とならない最大電圧を、電流が大きくなっても保持することにより、陽極を出発点とする電気防食可能な領域を増大させることができた。
【0036】
また、汎用の絶縁性塗料の下塗りを行った上に、表面仕上げ塗装として導電性の特殊塗料を塗り、さらに、そこに本発明による陰極防食法を適用することにより、陽極を出発点とする電気防食領域を飛躍的に増大させることができた。したがって、塗料の種類と本発明による陰極防食法の電圧、電流の値の組み合わせによる最適化を図ることにより、経済性の高い金属製構造物の防食法を確立できる。
【図面の簡単な説明】
【図1】本発明の金属製構造物の陰極防食装置の一例の回路図である。
【図2】図1に示した装置の機能を測定するためのシステムの説明図である。
【図3】本発明の金属製構造物の陰極防食装置の他の例の回路図である。
【図4】図3に示した装置の陰極の一例を示す斜視図である。
【符号の説明】
1、33 電源端子
2、34 ヒューズ
3、35 バリスター
4、36 トランス
5、37 整流回路
6、7、9、10、21、23、24、25、38、40、43 コンデンサー
8、22、39 レギュレータ
11、44、51 トランジスター
12、14、27、28、29 抵抗器
13、53 ツェナーダイオード
15 主陽極
16 塗装鋼板(金属製構造物)
17 塗膜
18 前記塗膜の欠陥部
19 塗装鋼板の表面に形成される水膜
20 パイロット陽極
26、45 オペアンプ
30 制御器
30a 制御器からのアノード線
30b 制御器からのカソード線
31 Ag/AgCl微小電極(φ=0.1mm)
32 塗装鋼板の母材
41、42、46、47、48、49、50、52、54 抵抗器
55 板状アルミニウム陽極
56 凹部
58 リード線
59 圧着端子
70 絶縁性両面接合体(電気抵抗を有する特殊な媒体)
100 第1の電流制限手段
101 第2の電流制限手段
102電流制限手段
150 陽極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cathodic protection method and apparatus for preventing metal structures exposed to the atmosphere, such as building outer walls, roofs, and bridges, from being oxidatively corroded by an electrical system.
[0002]
[Prior art]
Even if the metal surface is exposed to the atmosphere, the metal structure exposed to the atmosphere, over time, the electrolyte moisture formed on the surface due to rainwater, moisture in the air and pollutants in the atmosphere, etc. Oxidation corrosion is caused by dissolved oxygen in the moisture.
[0003]
As a protective anode and cathode protection system that protects the painted surface of such metal structures, there is a device developed and marketed by CEL Systems, Inc. (US) 3-306342).
[0004]
Although this cathodic protection device is effective in preventing corrosion of a metal structure that is exposed to the atmosphere and whose surface is protected by painting, the following two problems are unavoidable. That is,
(1) The current control means, which is a constituent element, has a function of flowing a current having a value directly proportional to the environmental humidity detected by the humidity sensitive element. However, in practice, even if the thickness of the water film is the same at the same humidity, depending on the degree to which sea salt particles and air pollutants are dissolved in the water film, it is clear that the electricity per unit length of the water film itself Resistance varies greatly. For this reason, the amount of current required for anticorrosion varies depending on the water quality of the water film, and even if the same amount of current is applied, the reach of the anticorrosive current varies depending on the environmental water quality at that time.
[0005]
In addition, the coating film for the surface coating of a metal structure is partially deteriorated due to dust and other environmental influence factors, and a part thereof is defective. When this defect site is enlarged, the amount of current required for corrosion protection of a wide surface of the metal structure including the defect site is greatly increased even if the environmental humidity is the same. For example, when a large amount of sea salt particles are dissolved in the water film and a coating film defect occurs around the protective anode of the device, the humidity is 60 to 70% and the current is small. If only the current is supplied, the supplied current flows into the above-described defective portion, so that it is consumed in a narrow range around the protective anode, and the range where the anticorrosion current reaches becomes narrow.
[0006]
(2) In order to prevent over-corrosion of the metal structure near the protective anode, the output voltage of the anode is set to 12 V at the maximum. However, as described above, when the area of the defective portion of the coating film increases, in order to achieve the desired range of corrosion protection, it is necessary to further increase the voltage and pass a large amount of current. This need cannot be met by applying current with an output voltage of 12 V at maximum.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned conventional circumstances, and its problem is to maximize the range that can be prevented by one anode in the corrosion protection of a metal structure without causing overcorrosion. It is an object of the present invention to provide a cathodic protection method and apparatus for a metal structure that can be expanded to a maximum.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted the following experimental study and have come to make the present invention.
[0009]
In the experiment, various systems were constructed, and trial and error were repeated to determine whether or not the desired function could be performed, and the system shown in FIG.
[0010]
In the figure, 1 is a terminal of an AC 100 to 200V power source, 2 is a fuse, and 3 is a surge current absorbing varistor. Reference numeral 4 denotes a transformer that drops the output to 18 to 20V. Reference numeral 5 denotes a rectifier circuit that converts alternating current into direct current. Reference numerals 6 and 7 denote capacitors. A regulator 8 controls the voltage applied to the main anode 15. 9 and 10 are capacitors, and 21 is also a capacitor. A regulator 22 controls the voltage applied to the pilot anode 20 to a constant value. Reference numerals 23 and 24 denote capacitors.
[0011]
The power supply terminal 1 to the capacitor 10, the capacitor 21, the regulator 22, and the capacitors 23 and 24 are housed in the controller 30.
[0012]
The transistor 11, resistors 12, 14, and zener diode 13 constitute first current limiting means 100 that prevents the current supplied to the main anode 15 from flowing beyond a certain value. The capacitor 25, the operational amplifier 26, and the resistors 27, 28, and 29 constitute the second current limiting means 101, and the current that flows from the pilot anode 20 into the coated steel plate (metal structure) 16 that is a corrosion protection target. And the output voltage of the regulator 8 is controlled via the ground of the regulator 8 in accordance with the detected current value, thereby causing the desired optimum current to flow from the main anode 15 to the coated steel plate 16. A special medium 70 having electrical resistance is interposed between the main anode 15 and the coated steel plate 16.
[0013]
The first current control means 100 is integrated with the main anode 15, and the second current control means 101 is integrated with the pilot anode 20. In the figure, reference numeral 17 denotes a coating film applied to the coated steel plate 16 that is the object of corrosion protection. Reference numeral 18 denotes a defective portion of the coating film 17, and 19 denotes a water film formed on the surface of the coated steel plate 16.
[0014]
In the apparatus having the above-described configuration, when the output voltage of the regulator 22 is controlled to a certain value of 8V to 12V and the current increases due to the increase in the electric conductivity of the water film 19 and the enlargement of the defect portion 18, the regulator The output voltage of 8 is increased from 10V to 15V, for example, and the desired optimum anticorrosion current is supplied to the coated steel plate 16.
[0015]
FIG. 2 shows an outline of a test facility for confirming the anticorrosion function of the cathodic protection device having the configuration shown in FIG. The main anode 15 and the pilot anode 20 were affixed to the coated steel plate 16 via an insulating double-sided joined body. The anode wires 30 a and 30 a from the controller 30 were connected to the corresponding main anode 15 and pilot anode 20, and the cathode wire 30 b was connected to the base material 32 of the coated steel plate 17.
[0016]
A part of the coating film at a position away from the anode mounting position of the coated steel plate 16 was peeled off to form an artificial coating film defect portion 18 having a diameter of 10 mm. An Ag / AgCl microelectrode (φ = 0.1 mm) 31 coated with agar containing saturated KCl was placed on the coating film defect portion 18. The potential of the steel plate base material 17 with respect to the electrode 31 was output to a computer through a buffer, and data was collected.
[0017]
An AC 100V power source was connected to the controller 30 and after confirming that the voltage of the pilot anode 20 was constant at a set value of 10V, the coated steel plate 16 was subjected to an exposure test for about 30 days. As a result, when the humidity was less than 60%, the voltage applied to the main anode 15 showed a minimum value of 10V. The higher the humidity, the higher the potential and reached around 13V during rainfall.
[0018]
Further, in addition to the above-mentioned position, a coating film defect portion is also formed between each of the anodes of the main anode 15 and the pilot anode 20 and the coating film defect portion 18 at the above position, so that the main anode 15 at the time of raining is formed. The applied voltage reached 15 V, the maximum.
[0019]
Even in this state, the potential of the coating film defect portion 18 showed a value of around −850 mV, and it was found that corrosion protection was sufficiently achieved.
[0020]
Furthermore, no sign of overcorrosion is observed in the coating film 17 near the main anode 15 and the current flowing from the main anode 15 to the defective portion 18 of the coating film 17 is sufficiently large. It can be inferred that the voltage drop in the water film on the surface of the body (special medium) 70 is lower than the voltage that causes over-corrosion protection in the coating film near the main anode 15.
[0021]
That is, when the other coating film defect part is increased between the coating film defect part 18 and the main anode 15 at a position 2.5 to 3.0 m away from the main anode 15 and the required anticorrosion current is increased, In the above technique, the voltage of the main anode 12V becomes a limit, and the potential of the coating film defect portion 18 does not decrease to the anticorrosion potential. On the other hand, in the method and apparatus of the present invention, In the test, the maximum value was 15V), but the voltage increased. Therefore, even if the coating film defect part increased considerably, the potential of the farthest defect part 18 was sufficiently lowered to reach the anticorrosion potential. confirmed. Therefore, according to the present invention, a new technology having an anticorrosive ability superior to that of the conventional technology could be established.
[0022]
The most economical method of corrosion protection of metal structures by the combination of coating film forming coating and cathodic protection is to apply a general-purpose insulating coating to the lower layer and a conductive coating with low electrical resistance to the uppermost layer. The applied metal structure (coated steel plate) was subjected to the test shown in FIG. 2 using the cathodic protection method equipment according to the present invention.
[0023]
An uppermost coating material having an electrical resistance value of 0.2 Ωcm is used, an artificial defect portion of the coating film is provided at a position 5 m away from the main anode 15, the controller 30 is energized, and the surface of the coated steel plate 16 is applied. Water was sprayed and the potential of the coating film defect portion 18 was measured.
[0024]
The potential showed a value of −850 to −950 mV, which was in the inactive region, and it was revealed that the anticorrosion was sufficiently achieved.
[0025]
In the color steel plate using normal insulating paint, the artificial defect part reaches the anticorrosion potential only up to about 2.5 to 3.5m from the main anode, but by the optimal combination of paint and cathodic protection, the anticorrosion range We were able to establish a technology that can greatly expand
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
[0027]
FIG. 3 is a circuit diagram of an apparatus suitable for realizing the cathodic protection method for metal structures according to the present invention.
[0028]
In this method, the coating film 17 of the coated steel plate 16 that is the object to be protected has a defective portion 18, and an anode 150 made of aluminum or the like is bonded to the coated surface by an insulating double-sided bonded body 70. When the humidity is around 60%, the water film 19 covers the coated steel material 16 and air pollutants and sea salt particles are dissolved therein, so that the water constituting the water film 19 becomes an electrolyte aqueous solution, and the coating film defect portion 18 is rusted. The condition for generating is established. On the other hand, by supplying the optimum anticorrosive current from the controller and the anode 150 according to the present invention to the coating film defect portion 18 through the water film 19, rusting in the coating film defect portion 18 is prevented. .
[0029]
As shown in the figure, electricity is introduced from a terminal 33 of an AC 100 to 200 V power source, and the voltage is reduced to 18 to 20 V AC via a fuse 34, a surge current absorbing varistor 35, and a transformer 36. To do. The capacitor 38 absorbs the voltage fluctuation, and the regulator 39 supplies DC 17V electricity. Then, DC 17 V is stabilized by the capacitor 40.
[0030]
The voltage drop of the resistor 48 that changes depending on the magnitude of the current flowing from the defective part 18 of the coating film 17 through the water film 19 from the anode 150 to the coated steel plate 16 is detected by the operational amplifier 45, and the emitter of the transistor 44 is detected by the value. Control the voltage of the current flowing out of the. Resistors 41, 42, 46, 47, 49, 50 and capacitor 43 assist in the stable operation of the system. The transistor 51, the Zener diode 53, and the resistors 52 and 54 constitute current limiting means 102 that prevents the current flowing out from the anode 150 from exceeding a certain value.
[0031]
The power supply terminal 33, fuse 34, varistor 35, transformer 36, rectifier circuit 37, capacitor 38, regulator 39, and capacitor 40 are housed in a single controller 30. The resistors 41 and 42, the capacitor 43, the transistor 44, the operational amplifier 45, the resistors 46, 47, 48, 49, and 50, the transistor 51, the resistor 52, the Zener diode 53, and the resistor 54 are connected to the anode 150. Incorporated into the unit. One controller 30 supplies a constant voltage current to one or more anode systems.
[0032]
FIG. 4 shows an example of the anode 150.
[0033]
In the figure, 55 is a plate-like aluminum anode, and the current control means 102 including a transistor, an operational amplifier, a Zener diode, a resistor and the like is inserted into a recess 56 opened on the upper surface thereof, and the portion is hardened with a hard epoxy resin. It was.
[0034]
An external lead wire 58 is connected to the current control means 102. Reference numeral 59 denotes a crimp terminal for connecting the anode wiring from the controller 30. The anode 55 is attached to the coating film 17 of the coated steel plate 16 using the double-sided bonded body 70.
[0035]
【The invention's effect】
Innumerable pinholes that are invisible are often opened in the coating film of the surface coating of a metal structure. Also, the coating film becomes defective over time due to dust and other environmental factors in the atmosphere. Under such circumstances, when the humidity in the atmosphere exceeds 60%, a water film is formed on the surface of the coating film, and sea salt particles in the atmosphere are dissolved in the water film on the surface. The membrane water becomes electrolyte water. This electrolyte water comes into contact with the metal surface through the pinholes or coating film defects, and the conditions for rusting are established. At this time, it is a cathodic protection method that suppresses rusting by passing a corrosion protection current through the electrolyte water film. In this cathodic protection method, the method of the present invention, unlike the conventional method, increased the voltage applied to the anode in accordance with the increase in the required current amount, and was conventionally considered impossible for overcorrosion. The anticorrosion current can be passed to a region away from the anode. In the present invention, depending on the variation in characteristics of the special medium (electrolyte water film) having electrical resistance interposed between the coating film and the anode of the metal structure that is the object of corrosion prevention, and the size of the coating film defect portion Control the anticorrosion current, voltage optimally. By maintaining the maximum voltage at which the coating film in the vicinity of the anode does not cause over-corrosion even when the current is increased, the region where the cathodic protection is possible starting from the anode can be increased.
[0036]
In addition, after applying an undercoat of a general-purpose insulating paint, an electroconductive special paint is applied as a surface finish paint, and further, by applying the cathodic protection method according to the present invention, an electric source starting from the anode is used. It was possible to dramatically increase the anticorrosion area. Therefore, by optimizing the combination of the type of paint and the voltage and current values of the cathodic protection method according to the present invention, a highly economical corrosion prevention method for metal structures can be established.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an example of a cathodic protection device for a metal structure of the present invention.
2 is an explanatory diagram of a system for measuring the function of the apparatus shown in FIG. 1; FIG.
FIG. 3 is a circuit diagram of another example of the cathodic protection device for metal structures according to the present invention.
4 is a perspective view showing an example of a cathode of the apparatus shown in FIG. 3. FIG.
[Explanation of symbols]
1, 33 Power supply terminal 2, 34 Fuse 3, 35 Varistor 4, 36 Transformer 5, 37 Rectifier circuit 6, 7, 9, 10, 21, 23, 24, 25, 38, 40, 43 Capacitor 8, 22, 39 Regulator 11, 44, 51 Transistor 12, 14, 27, 28, 29 Resistor 13, 53 Zener diode 15 Main anode 16 Painted steel sheet (metal structure)
17 Coating film 18 Defect 19 of coating film Water film 20 formed on surface of coated steel plate Pilot anode 26, 45 Operational amplifier 30 Controller 30a Anode wire 30b from controller 31 Cathode wire 31 from controller Ag / AgCl minute Electrode (φ = 0.1mm)
32 Base material 41, 42, 46, 47, 48, 49, 50, 52, 54 of coated steel plate Resistor 55 Plate-like aluminum anode 56 Recess 58 Lead wire 59 Crimp terminal 70 Insulating double-sided bonded body (special with electric resistance) Medium)
100 First current limiting means 101 Second current limiting means 102 Current limiting means 150 Anode

Claims (7)

外部電源から金属製構造物に電流を通電させ、該金属製構造物の腐食を防止する陰極防食法であって、
前記金属製構造物の塗膜上に主陽極とパイロット陽極とを取り付けるとともに、該金属製構造物の金属母材に陰極を取り付け、前記パイロット陽極から前記金属製構造物に所定の電圧を印加し、腐食防止を行う対象である前記金属製構造物の防食電流所要量の大きさを、前記金属製構造物の腐食環境の変動に応じて変化する前記パイロット陽極の電流値から読みとり、この電流値に連動して前記主陽極の印加電圧を上下させ、これにより前記金属製構造物の腐食環境に応じた最適の防食電流を供給することを特徴する金属製構造物の陰極防食法。
A cathodic protection method in which current is applied to a metal structure from an external power source to prevent corrosion of the metal structure,
A main anode and a pilot anode are attached on the coating film of the metal structure, a cathode is attached to a metal base material of the metal structure, and a predetermined voltage is applied from the pilot anode to the metal structure. The amount of corrosion prevention current required for the metal structure that is subject to corrosion prevention is read from the current value of the pilot anode that changes according to the change in the corrosion environment of the metal structure, and this current value The cathodic anticorrosion method for a metal structure is characterized in that the voltage applied to the main anode is increased or decreased in conjunction with this to thereby supply an optimum anticorrosion current corresponding to the corrosive environment of the metal structure.
前記パイロット陽極と主陽極が1対1に対応していることを特徴とする請求項1に記載の陰極防食法。2. The cathodic protection method according to claim 1, wherein the pilot anode and the main anode are in a one-to-one correspondence . 前記パイロット陽極および主陽極を絶縁性両面接合体を介して防食対象である金属製構造物に取り付けることによって、前記金属製構造物の表面から前記各陽極に連続して水膜が形成され、前記金属製構造物の腐食条件が整った時に、前記陽極と、前記金属製構造物の金属母材に接続した前記陰極との間に、防食に最適な電流が流れるようにしたことを特徴とする請求項1または2の陰極防食法。  By attaching the pilot anode and the main anode to a metal structure that is an object to be protected through an insulating double-sided joined body, a water film is continuously formed from the surface of the metal structure to each of the anodes, When the corrosion condition of the metal structure is ready, an optimum current for corrosion prevention flows between the anode and the cathode connected to the metal base material of the metal structure. The cathodic protection method according to claim 1 or 2. 外部電源から金属製構造物に電流を通電させ、該金属製構造物の腐食を防止する陰極防食装置であって、
前記金属製構造物の塗膜上に取り付ける主陽極とパイロット陽極と、前記金属製構造物の金属母材に接続する陰極と、前記パイロット陽極から前記金属製構造物に所定の電圧を印加し、腐食防止を行う対象である前記金属製構造物の防食電流所要量の大きさを、前記金属製構造物の腐食環境の変動に応じて変化する前記パイロット陽極の電流値から読みとり、この電流値に連動して前記主陽極の印加電圧を上下させ、これにより前記金属製構造物の腐食環境に応じた最適の防食電流を供給する電流制御手段と、を有することを特徴する金属製構造物の陰極防食装置。
A cathodic protection device for energizing a metal structure from an external power source to prevent corrosion of the metal structure,
Applying a predetermined voltage from the pilot anode to the metal structure, a main anode and a pilot anode attached on the coating film of the metal structure, a cathode connected to a metal base material of the metal structure, The magnitude of the required amount of anticorrosion current of the metal structure to be subjected to corrosion prevention is read from the current value of the pilot anode that changes according to the change in the corrosion environment of the metal structure, and the current value And a current control means for supplying and supplying an optimum anticorrosion current according to the corrosive environment of the metal structure by raising and lowering the voltage applied to the main anode in conjunction with the cathode of the metal structure. Anticorrosion equipment.
前記パイロット陽極と主陽極が1対1に対応していることを特徴とする請求項4に記載の陰極防食装置。The cathodic protection device according to claim 4, wherein the pilot anode and the main anode are in a one-to-one correspondence . 前記パイロット陽極および主陽極を前記金属製構造物の表面に取り付けるための絶縁性両面接合体を、さらに有し、該絶縁性両面接合体を介して防食対象である金属製構造物に前記各陽極を取り付けることによって、前記金属製構造物の表面から前記各陽極に連続して水膜が形成され、前記金属製構造物の腐食条件が整った時に、前記陽極と、前記金属製構造物の金属母材に接続した前記陰極との間に、防食に最適な電流が流れるようにしたことを特徴とする請求項4または5に記載の陰極防食装置。  An insulating double-sided joined body for attaching the pilot anode and the main anode to the surface of the metal structure is further provided, and the respective anodes are attached to the metal structure that is an anticorrosion target via the insulating double-sided joined body. When a water film is continuously formed from the surface of the metal structure to each of the anodes and corrosion conditions of the metal structure are ready, the anode and the metal of the metal structure are attached. 6. The cathodic protection device according to claim 4, wherein an optimum current for corrosion prevention flows between the cathode connected to a base material. 防食対象である金属製構造物の塗装を、下層は絶縁性塗料とし、最上層を導電性塗料とする組み合わせにより、行い、塗装を完了した前記金属製構造物に、前記請求項1ないし3のいずれかの陰極防食を適用することを特徴とする金属製構造物の陰極防食法。The coating of the metal structure which is the object of anticorrosion is performed by a combination of an insulating paint for the lower layer and a conductive paint for the uppermost layer. A method for cathodic protection of a metal structure, characterized by applying any cathodic protection.
JP09318798A 1998-04-06 1998-04-06 Cathodic protection method and apparatus for metal structures Expired - Lifetime JP4148373B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP09318798A JP4148373B2 (en) 1998-04-06 1998-04-06 Cathodic protection method and apparatus for metal structures
TW88117247A TW477832B (en) 1998-04-06 1999-10-06 Cathodic corrosion reisting method for metallic structure, and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09318798A JP4148373B2 (en) 1998-04-06 1998-04-06 Cathodic protection method and apparatus for metal structures

Publications (2)

Publication Number Publication Date
JPH11286793A JPH11286793A (en) 1999-10-19
JP4148373B2 true JP4148373B2 (en) 2008-09-10

Family

ID=14075584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09318798A Expired - Lifetime JP4148373B2 (en) 1998-04-06 1998-04-06 Cathodic protection method and apparatus for metal structures

Country Status (2)

Country Link
JP (1) JP4148373B2 (en)
TW (1) TW477832B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025507A1 (en) * 1999-10-06 2001-04-12 Jonan Co., Ltd. Cathodic protection method and device for metal structure
KR100380113B1 (en) * 2000-05-20 2003-04-16 아키정보기술(주) A Corrosion Prediction System of Underground Metallic Structures and it's Analysis Method
JP3380985B2 (en) * 2001-02-14 2003-02-24 英夫 森 Electrodes in cathodic protection system with external power supply
US6562201B2 (en) 2001-06-08 2003-05-13 Applied Semiconductor, Inc. Semiconductive polymeric system, devices incorporating the same, and its use in controlling corrosion
KR100485953B1 (en) * 2002-12-13 2005-05-06 한국전력기술 주식회사 Method for cathodic protection for metal structure

Also Published As

Publication number Publication date
JPH11286793A (en) 1999-10-19
TW477832B (en) 2002-03-01

Similar Documents

Publication Publication Date Title
CA1094976A (en) Cathodic protection system for a motor vehicle
GB2140456A (en) Cathodic protection
US20140251793A1 (en) Cathodic protection current distribution method and apparatus for corrosion control of reinforcing steel in concrete structures
JP4148373B2 (en) Cathodic protection method and apparatus for metal structures
US6506295B1 (en) Cathodic protection method and device for metal structure
US20180187314A1 (en) Cathodic protection of metal substrates
JP2003519725A (en) Method and system for preventing corrosion of conductive structures
KR101347707B1 (en) Hybrid type cathode protection system sacrificial anode type cathode protection technologies for marine concrete structure
JP2001335974A (en) Cathodic protection method and system for metallic structure
US3055813A (en) Current controller for use in cathodic protection of steel structures
US11261530B2 (en) Cathodic protection system and miniaturized constant current rectifier
JP4502649B2 (en) Cathodic protection method for steel building and apparatus used for the method
JPH10251879A (en) Simple cathodic protection method of metallic structure and device therefor
JP7082368B2 (en) Anticorrosion method and equipment for structures
JPH1161460A (en) Electric corrosion protection of titanium-coated maritime structure
JP4201394B2 (en) Concrete steel structure covered with composite film electrode
JPH11314309A (en) Galvanic corrosion-proof coating and method
KR100453745B1 (en) Apparatus for protecting corrosion of metal structure
US20240035997A1 (en) A method and system for detecting and locating defects to a coating on a metallic object
JPH06235081A (en) Potential regulator
Bullard et al. Alternative consumable anodes for cathodic protection of reinforced concrete bridges
JPH1150279A (en) Electrode for liquid-sensing type electrical rust-preventive device
JP2579259B2 (en) Protective anode and cathodic protection system
JP3402959B2 (en) Corrosion protection equipment for steel structures
JP2010047814A (en) Current measurement method and current measurement device for sacrificial anode in electrically conductive liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term