JP3167654B2 - Method and apparatus for locating corrosion protection coating on buried metal pipes - Google Patents

Method and apparatus for locating corrosion protection coating on buried metal pipes

Info

Publication number
JP3167654B2
JP3167654B2 JP24772897A JP24772897A JP3167654B2 JP 3167654 B2 JP3167654 B2 JP 3167654B2 JP 24772897 A JP24772897 A JP 24772897A JP 24772897 A JP24772897 A JP 24772897A JP 3167654 B2 JP3167654 B2 JP 3167654B2
Authority
JP
Japan
Prior art keywords
coating
magnetic field
buried
metal pipe
buried metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24772897A
Other languages
Japanese (ja)
Other versions
JPH1172480A (en
Inventor
郁男 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP24772897A priority Critical patent/JP3167654B2/en
Publication of JPH1172480A publication Critical patent/JPH1172480A/en
Application granted granted Critical
Publication of JP3167654B2 publication Critical patent/JP3167654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、埋設金属管の防食
被覆損傷位置の磁界法による探査方法及び装置の改良に
係り、より詳細には地中に埋められた塗覆装金属管の塗
装損傷位置並びに該金属管と他の金属構造物との接触位
置を、該金属管と地中に埋設した対極との間に交流信号
電流を流し、該金属管の防食被覆損傷位置に流出入する
電流によって発生する磁界強度の変化を少なくとも2つ
のコイルを使用して地表面上において非接触で探査する
方法並びに埋設金属管の防食被覆損傷位置探査装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a method and an apparatus for searching for a position of a corrosion protection coating on a buried metal pipe by a magnetic field method, and more particularly to a coating damage of a coated metal pipe buried underground. An AC signal current flows between the metal tube and a counter electrode buried in the ground at a position and a contact position between the metal tube and another metal structure, and a current flowing into and out of the corrosion prevention coating damaged position of the metal tube. The present invention relates to a method for contactlessly detecting a change in magnetic field intensity generated by the above-mentioned method using at least two coils on the ground surface, and an apparatus for detecting the position of corrosion prevention coating on a buried metal pipe.

【0002】[0002]

【従来の技術】一般に地中に敷設する金属管、例えば都
市ガス埋設鋼管の外面は土壌腐食や電食を防止するため
にポリエチレン等の塗覆装と電気防食との二重の防食処
置がとられている。しかし、これら塗覆装金属管を敷設
した後に第三者の工事等で塗覆装が損傷を受けると、電
気防食装置からの防食電流がこの損傷部分に集中して周
囲に防食電流が行き渡らなくなり防食機能が低下する。
特に、この塗覆装損傷部分で他の金属埋設物と接触する
と防食電流が本来防食対象とはなっていない金属埋設物
にも流入するために大幅な防食電流の不足が生じて塗覆
装金属管の土壌腐食や電食が起こるおそれがある。
2. Description of the Related Art In general, the outer surface of a metal pipe laid underground, for example, a steel pipe buried in city gas, is subjected to a double anticorrosion treatment of a coating of polyethylene or the like and a cathodic protection in order to prevent soil corrosion and electric corrosion. Have been. However, if the coating is damaged by the construction of a third party after laying these coated metal pipes, the anticorrosion current from the cathodic protection device will concentrate on this damaged part and the anticorrosion current will not spread to the surrounding area. The anticorrosion function decreases.
In particular, when this coating-covered damaged part comes into contact with another metal buried object, the anticorrosion current flows into the metal buried object that is not originally the target of anticorrosion. There is a risk of soil corrosion and electric corrosion of the pipe.

【0003】このように塗覆装が損傷を受け電気防食の
効果が懸念される場合には、何らかの方法で損傷位置を
探査し、掘削して補修する等の処置を施さなければなら
ない。従来からこの塗覆装損傷位置の探査方法として、
損傷部に電流を通じて地表面の電位変化からその位置を
知る電位法と、損傷部における磁界の強さの変化からそ
の位置を知る磁界法が知られている。
[0003] In the case where the coating material is damaged and the effect of the cathodic protection is concerned as described above, it is necessary to search for the damaged position by some method, and to take measures such as excavation and repair. Conventionally, as a method of searching for the location of this coating covering damage,
There are known a potential method in which the position is determined from a change in the potential of the ground surface through a current flowing through the damaged portion, and a magnetic field method in which the position is determined from a change in the strength of the magnetic field at the damaged portion.

【0004】[0004]

【発明が解決しようとする課題】電位法には直流法と、
例えば特開昭61−210935号公報および特開昭6
3−191049号公報に開示されているような交流法
の2種類があり、磁界法と比べると一般に塗覆装の微小
損傷の探査に優れているが、いずれも地表面にセンサを
接触させて電位分布を検出する方法であるために、アス
ファルトなどの電気抵抗の高い舗装路面では散水して感
度をあげる必要があるなど作業性が悪いという欠点があ
る。
SUMMARY OF THE INVENTION The potential method includes a DC method,
For example, JP-A-61-210935 and JP-A-6-210935
There are two types of alternating current methods as disclosed in Japanese Patent Application Laid-Open No. 3-194949, which are generally superior to the magnetic field method in detecting micro-damage of a coating and covering method. Since it is a method of detecting a potential distribution, there is a drawback that workability is poor such that it is necessary to increase the sensitivity by spraying water on a pavement road surface having a high electric resistance such as asphalt.

【0005】一方、磁界法として、例えば特開昭63−
300991号公報には図4に示すように、埋設金属管
の直上から側方にずれた位置に、管軸(x軸)、直角
(y軸)、垂直(x軸)に設置したコイルLx,Ly,
Lzを管軸方向に移動して金属管1から発生する磁界強
度の変化を捕らえ、この磁界強度の急変部分を他金属管
4との接触位置として探査する方法が開示されている
が、管内電流I0の変化から磁界強度の変化を検出する
方法はコイルを3個必要とするので、回路が複雑とな
り、更に一般に磁界の変化点が明瞭でないために他金属
管との接触位置の特定が困難という問題点がある。
On the other hand, as a magnetic field method, for example,
Japanese Patent No. 300991 discloses, as shown in FIG. 4, coils Lx, which are installed on a tube axis (x-axis), a right angle (y-axis), and a vertical (x-axis) at positions shifted laterally from immediately above a buried metal tube. Ly,
A method is disclosed in which Lz is moved in the direction of the tube axis to detect a change in the magnetic field intensity generated from the metal tube 1, and a portion where the magnetic field intensity changes suddenly is detected as a contact position with another metal tube 4. The method of detecting a change in magnetic field strength from a change in I 0 requires three coils, which complicates the circuit, and in general, it is difficult to identify a contact position with another metal tube because the magnetic field change point is not clear. There is a problem.

【0006】また、例えば特開昭63−78063号公
報には図5に示すように、発信器5を金属管1と対極と
に接続し、金属管1の塗覆装の損傷部分2に流出入する
漏れ電流i1によって生じる磁界強度をコイル軸をxz
面に平行に設置したコイル3を管軸に沿って移動して検
出し、その検出信号の極大値を塗覆装損傷位置として探
査する方法が開示されている。しかし、漏れ電流i1
一般に微小であるので、塗覆装損傷位置の特定が不正確
なことが多いことやデータの解析が容易でないという問
題点がある。
For example, in Japanese Patent Application Laid-Open No. 63-78063, a transmitter 5 is connected to a metal tube 1 and a counter electrode as shown in FIG. xz coil axis magnetic field intensity generated by the leakage current i 1 to enter
A method is disclosed in which a coil 3 installed in parallel with a plane is detected by moving along a tube axis, and a local maximum value of the detection signal is detected as a paint-coating damage position. However, since the leakage current i 1 is generally very small, there are problems that the specification of the damaged position of the coating material is often inaccurate and that the analysis of the data is not easy.

【0007】また、従来の磁界法においては磁界の強さ
をコイルの受信信号の振幅を読み取ることにより検出し
ているために検出感度が低いことから、特開昭61−2
10935号公報で開示されているような送信信号の一
部を参照信号として高感度にする同期検波法もあるが、
同期信号を伝送するための回路が必要となるために回路
構成が複雑となる、などの欠点があった。
In the conventional magnetic field method, since the strength of the magnetic field is detected by reading the amplitude of the received signal of the coil, the detection sensitivity is low.
There is also a synchronous detection method that makes a part of a transmission signal highly sensitive as a reference signal as disclosed in Japanese Patent No. 10935,
There is a drawback in that a circuit for transmitting a synchronization signal is required, which complicates the circuit configuration.

【0008】本発明は、以上述べた従来の埋設金属管の
防食被覆損傷位置探査方法の問題点を解決し、埋設金属
管の防食被覆損傷位置及び他埋設金属体との接触位置を
簡単な装置で容易且つ正確に探査することを目的とする
ものである。
The present invention solves the problems of the above-described conventional method for detecting the position of the corrosion protection coating on a buried metal pipe, and makes it possible to simply determine the position of the corrosion protection coating on the buried metal pipe and the contact position with another buried metal body. The purpose of the present invention is to easily and accurately search.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明者が研究を行なった結果、 従来xz面内の磁界の測定には、1測定点につきx
軸方向とz軸方向の2方向に各1個づつ計2個のコイル
を使用しているが、コイルを地表面に対してほぼ45°
傾斜させることにより、1個の磁界検出用コイルにx軸
とz軸の両方向の成分を持たせることができるので、従
来よりも磁界検出用コイルの数を半減することができ
る、 原理的には1個の磁界検出用コイルでも間に合う
が、地表面に対してほぼ45°傾斜させた1のコイルで
検出された信号と、このコイルに直交する別のコイルで
検出された信号との相関をとることにより、同期検波法
のように同期信号を伝送するための回路を設けなくとも
高感度で磁界強度の検出ができる、 更に、上記方法で検出された相関出力を二乗和すれ
ば、磁界の角度変化に対して従来方法よりも2倍の感度
が得られる、などの知見を得て本発明を成すに至った。
As a result of the present inventor's research to achieve the above-mentioned object, the conventional measurement of the magnetic field in the xz plane has x
A total of two coils are used, one in each of the two directions, the axial direction and the z-axis direction.
By inclining, one magnetic field detecting coil can have components in both the x-axis and the z-axis, so that the number of magnetic field detecting coils can be reduced by half compared to the conventional one. In principle, Although one magnetic field detection coil can be used in time, a signal detected by one coil inclined at approximately 45 ° with respect to the ground surface is correlated with a signal detected by another coil orthogonal to this coil. As a result, the magnetic field intensity can be detected with high sensitivity without providing a circuit for transmitting the synchronization signal as in the synchronous detection method. Furthermore, if the sum of squares of the correlation output detected by the above method is used, the angle of the magnetic field can be obtained. The present invention has been accomplished based on the finding that the sensitivity to the change is twice as high as that of the conventional method.

【0010】従って本発明の埋設金属管の防食被覆損傷
位置探査方法は、外面に防食被覆を施して地中に埋設し
た金属管に交流信号電流を流して該埋設金属管の防食被
覆損傷位置に流出入する電流により磁界を発生させ、上
記金属管の管軸に沿った垂直面内で地表面に対して45
°傾斜させ且つ互いの軸を直交させて配置した別のコイ
ルを設け、これら2つのコイルを上記管軸に沿って走査
することにより各々磁界強度を連続的に検出し、この2
つのコイルの出力間の相関をとり、その相関出力信号か
ら磁界強度の変化を計測することにより埋設金属管の防
食被覆損傷位置を探査することを要旨とする。
Therefore, the method for detecting the position of the corrosion protection coating on a buried metal pipe according to the present invention provides an anticorrosion coating on the outer surface of the buried metal pipe, and applies an AC signal current to the metal pipe buried in the ground so that the corrosion protection coating damage position of the buried metal pipe is detected. A magnetic field is generated by the inflowing and outgoing electric current, and the magnetic field is set to 45
Another coil is provided which is tilted and arranged so that its axes are orthogonal to each other, and the two coils are scanned along the tube axis to continuously detect the magnetic field strength, respectively.
The gist of the present invention is to find the position of corrosion protection coating damage on a buried metal pipe by calculating the correlation between the outputs of the two coils and measuring the change in magnetic field strength from the correlation output signal.

【0011】また本発明の埋設金属管の防食被覆損傷位
置探査装置は、地中に埋設した外面に防食被覆を施した
金属管と対極との間に交流信号電流を流す発信器と、該
発信器から上記埋設金属管の防食被覆損傷位置に流出入
する電流により発生する磁界強度を検出するための管軸
に沿った垂直面内に地表面に対して傾斜させ且つ互いに
直交させて配置した2つのコイルと、該コイルを上記金
属管の管軸に沿って走査することにより検出された出力
信号からノイズを除去する回路と、ノイズを除去した出
力信号を移相させる回路と、移相された信号を相関演算
する回路と、相関出力信号から埋設金属管の防食被覆損
傷位置を表示する表示装置とから構成されることを要旨
とする。
Further, the present invention provides an apparatus for locating the position of an anticorrosion coating on a buried metal tube, comprising: a transmitter for passing an AC signal current between a metal tube having an anticorrosion coating on the outer surface buried underground and a counter electrode; 2 is disposed perpendicular to the ground surface and perpendicular to each other in a vertical plane along the pipe axis for detecting the magnetic field intensity generated by the current flowing into and out of the corrosion protection coating damaged position of the buried metal pipe from the vessel. Two coils, a circuit for removing noise from an output signal detected by scanning the coil along the tube axis of the metal tube, and a circuit for phase shifting the output signal from which noise has been removed. The gist of the present invention includes a circuit for performing a correlation operation on a signal and a display device for displaying a damaged position of the anticorrosion coating of the buried metal tube from the correlation output signal.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態を図面
により具体的に説明する。図1は本発明による埋設金属
管の防食被覆損傷位置の探査方法を示す概略図である。
図1において、1は電気防食対象物である埋設金属管、
4は埋設金属管に接触している他の金属構造物(例えば
水道管)であり、埋設金属管1と金属構造物4とは塗覆
装の損傷部分2で電気的接続状態にある。5は埋設金属
属管1に交流信号電流を流すための発信器であり、この
発信器の他極は地中に埋設された対極6(例えば電気防
食用マグネシウム陽極)と接続されている。3aおよび
3bは埋設金属管1に交流信号電流を流したときに塗覆
装の損傷部分から流出入する電流による地表面の磁界強
度を検出するコイルであり、コイル3aおよび3bは地
表面に対してそれぞれφ1=45°,φ2=45°の角度
で傾斜させられ、略V字形またはハ字形(φ1=135
°,φ2=135°)をなし、且つ、両コイルはコイル
軸の延長線上で直交するように配置されている。
Next, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic view showing a method for searching for a position where a corrosion protection coating is damaged on a buried metal pipe according to the present invention.
In FIG. 1, reference numeral 1 denotes a buried metal pipe which is an object of cathodic protection,
Reference numeral 4 denotes another metal structure (for example, a water pipe) in contact with the buried metal pipe, and the buried metal pipe 1 and the metal structure 4 are in an electrically connected state at the damaged portion 2 of the coating. Reference numeral 5 denotes a transmitter for passing an AC signal current through the buried metal pipe 1, and the other pole of the transmitter is connected to a counter electrode 6 buried underground (for example, a magnesium anode for cathodic protection). Reference numerals 3a and 3b denote coils for detecting the magnetic field strength on the ground surface due to the current flowing in and out of the damaged portion of the coating when the AC signal current flows through the buried metal tube 1. Coil 3a and 3b Are inclined at angles of φ 1 = 45 ° and φ 2 = 45 °, respectively, and are substantially V-shaped or C-shaped (φ 1 = 135 °).
°, φ 2 = 135 °), and both coils are arranged so as to be orthogonal to each other on the extension of the coil axis.

【0013】本発明の方法では、発信器5より金属管1
に交流信号電流を流すと共にコイル3a,3bを金属管
1の管路付近を矢印方向に走査する。塗覆装の損傷がな
い金属管1上では管内電流I0のみであるから発生磁界
は管軸に沿った方向でほぼ一定である。そして塗覆装の
損傷部分に近づくにつれてその部分に流出入する電流の
密度が大きくなるので発生磁界は管軸に沿った方向で大
きさが変化し、その変化割合は大きくなって損傷部分の
直上付近で極大となる。従ってコイル3a,3bの走査
により磁界強度を連続的に検出し、その各検出信号間の
相関をとり、各相関出力信号の二乗和の値を求めると、
その値の極大値となるコイルの走査位置が埋設金属管1
の防食被覆損傷位置である。
In the method of the present invention, the metal tube 1 is transmitted from the transmitter 5.
And the coils 3a and 3b scan the vicinity of the conduit of the metal tube 1 in the direction of the arrow. On the metal pipe 1 is not damaged the coating-covering is the magnetic field generated from only tube current I 0 is substantially constant in the direction along the tube axis. As the density of the current flowing into and out of the damaged part of the coating increases as it approaches the damaged part, the intensity of the generated magnetic field changes in the direction along the tube axis, and the rate of change increases to just above the damaged part. It becomes local maximum. Accordingly, when the magnetic field strength is continuously detected by scanning the coils 3a and 3b, the correlation between the respective detection signals is obtained, and the value of the sum of squares of each correlation output signal is obtained.
The scanning position of the coil having the maximum value is the buried metal tube 1
This is the position of the anticorrosion coating damage.

【0014】図2は上記方法を実施するための埋設金属
管の防食被覆損傷位置探査装置の概略構成を示す。同図
において、7a,7bはコイル3a,及び3bのリード
線、8a,8bは増幅器、9a,9bはバンドパスフィ
ルタ、10a,10bは移相回路、11a,11bは相
関をとるための掛算回路、12a,12bはローパスフ
ィルタである。また、13a,13bは相関出力E1
2をそれぞれ二乗する二乗回路、14は二乗和を得る
ための加算回路、15は加算回路14の出力信号を表示
する記録計などの表示器である。なお、12a,12b
と13a,13bとを合わせた回路は、包絡線検波器ま
たは全波整流回路でも二乗回路と同様の効果が得られ
る。なお、図2において、埋設金属管、発信器等の図示
は省略した。
FIG. 2 shows a schematic configuration of an apparatus for locating a corrosion prevention coating on a buried metal pipe for performing the above method. In the figure, 7a and 7b are lead wires of the coils 3a and 3b, 8a and 8b are amplifiers, 9a and 9b are band-pass filters, 10a and 10b are phase shift circuits, and 11a and 11b are multiplication circuits for obtaining correlation. , 12a and 12b are low-pass filters. 13a and 13b are correlation outputs E 1 ,
A squaring circuit for squaring E 2 , an addition circuit 14 for obtaining the sum of squares, and a display 15 such as a recorder for displaying an output signal of the addition circuit 14. In addition, 12a, 12b
13a and 13b can provide the same effect as the squaring circuit even with an envelope detector or a full-wave rectifier circuit. In FIG. 2, illustration of a buried metal tube, a transmitter, and the like is omitted.

【0015】この装置において、xz平面に沿ってφ1
=φ2=π/4(45°)の傾きを持たせたコイル3a
及び3bを、埋設金属管に交流信号電流を流すことによ
り発生する傾きθの磁界H内で走査して得られた誘導信
号(検出信号)は、増幅器8a及び8bで増幅された
後、バンドパスフィルタ9a、9bで信号周波数以外の
雑音が除去されてから、移相回路10a、10bで位相
をそれぞれ45°づつ移相され、掛算回路11a、11
bに与えられ、該回路によりコイル3a、3bの出力を
移相した各信号間の相関演算が行われ、ローパスフィル
タ12a、12bで掛算回路の相関出力信号から交流分
が除去されて直流分が抽出される。このようにして得ら
れた直流分の相関出力E1及びE2は二乗回路13a、
13bで二乗され加算器14で加算されて二乗和出力η
が得られ、表示装置15に表示される。
In this device, φ 1 along the xz plane
= Φ 2 = coil 3a having a slope of π / 4 (45 °)
And 3b are scanned in a magnetic field H having an inclination θ generated by flowing an AC signal current through the buried metal tube, and the induction signals (detection signals) obtained are amplified by the amplifiers 8a and 8b and then band-passed. After noises other than the signal frequency are removed by the filters 9a and 9b, the phases are shifted by 45 ° by the phase shifters 10a and 10b, respectively, and the multiplications 11a and 11b are performed.
b, the output of the coils 3a and 3b is phase-shifted by the circuit, and the correlation operation is performed between the signals. The low-pass filters 12a and 12b remove the AC component from the correlation output signal of the multiplication circuit, thereby reducing the DC component. Is extracted. The DC-correlated outputs E1 and E2 obtained in this way are squared by the squaring circuit 13a.
13b, and is added by the adder 14, and the square sum output η
Is obtained and displayed on the display device 15.

【0016】ここでコイル3a及び3bの出力の大きさ
は、 esa=Hcos(θ+π/4) esb=Hcos(θ−π/4) に比例する。よって、相関後の出力E1及びE2は E1=A・H2cos(θ+π/4)cos(θ−π/
4)cosπ/4 E2=A・H2cos(θ+π/4)cos(θ−π/
4)cos(−π/4) (Aは増幅器8a、8bの利得) となるので、E1,E2の二乗和出力ηは η=(E12+(E22=k・H4(cos2θ)2 …(1) のように表わされる。なお、kは比例定数である。
[0016] Here, the magnitude of the output of the coils 3a and 3b is proportional to e sa = Hcos (θ + π / 4) e sb = Hcos (θ-π / 4). Therefore, the outputs E 1 and E 2 after correlation are E 1 = A · H 2 cos (θ + π / 4) cos (θ−π /
4) cosπ / 4 E 2 = A · H 2 cos (θ + π / 4) cos (θ−π /
4) cos (−π / 4) (A is the gain of the amplifiers 8a and 8b), and the sum of squares output η of E 1 and E 2 is η = (E 1 ) 2 + (E 2 ) 2 = k · H 4 (cos 2θ) 2 ... (1) Here, k is a proportional constant.

【0017】塗覆装の損傷がない埋設金属管上では管内
電流I0のみであるのでH≒0となりη=0であるが、
塗覆装の損傷部分に近づくにつれて塗覆装の損傷部分に
流出入する電流i1電流密度が大きくなってxz面内に
磁界Hが傾きθをもって生じるのでηは次第に大きくな
り、更に損傷部分の直上では磁界のz成分が無くなるた
めにθ=0°になってηは極大値を示す。
On a buried metal tube having no damage to the coating, H 電流 0 and η = 0 since only the tube current I 0 is obtained.
As approaching the damaged portion of the coating, the current i 1 flowing into and out of the damaged portion of the coating increases, the current density increases, and the magnetic field H is generated with a gradient θ in the xz plane, so that η gradually increases. Immediately above, since the z component of the magnetic field disappears, θ = 0 °, and η shows a maximum value.

【0018】従って表示装置15の画面上で二乗和出力
ηが極大となる管軸(x軸)1上の位置が損傷部分を表
示していることになり、容易に埋設金属管の塗覆装の損
傷部分を探査することができる。
Therefore, the position on the tube axis (x-axis) 1 where the sum of squares output η is maximum on the screen of the display device 15 indicates the damaged portion, and the coating of the buried metal tube is easily performed. Can detect the damaged part.

【0019】なお、本発明では損傷位置探査のためにコ
イルによる検出信号の相関出力の二乗和をとっているの
で、式(1)から分かるように磁界Hの角度θに対して
二乗和出力ηはcos2θで変化し、磁界角度θの変化
に対する感度は従来の方法の2倍となるので、磁界強度
の変化が明瞭に表れるから探査が容易である。なお、二
乗和をとることなく、ローパスフィルタ12a,12b
の出力E1,E2を直接に2チャンネル表示器またはレコ
ーダに表示させても、埋設金属管の塗覆装の損傷部分を
探査することができる。
In the present invention, since the sum of squares of the correlation output of the detection signal by the coil is calculated for the purpose of searching for a damage position, the sum of squares output .eta. Changes by cos 2θ, and the sensitivity to the change of the magnetic field angle θ is twice that of the conventional method, so that the change of the magnetic field intensity appears clearly, so that the search is easy. The low-pass filters 12a and 12b can be used without taking the sum of squares.
Even if the outputs E 1 and E 2 are directly displayed on a two-channel display or a recorder, the damaged portion of the coating of the buried metal tube can be detected.

【0020】[0020]

【実施例】地表面から1.5mの深さに水平に埋設した
直径100mmのポリエチレンライニング鋼管の給電点
から23m地点に100cm2(10cm×10cm)
の模擬塗覆装損傷部を作り、信号周波数がハムの影響の
少ない725Hzの交流信号電流を上記鋼管に流し、図
2に示した装置のコイル3a,3bを図1に示すように
該埋設管に沿って走査して損傷部の探査を行なった。そ
の探査結果を図3に示す。実験結果の二乗和出力ηの波
形はほぼ23m付近で極大値を示し、式(1)と良い一
致が見られた。
EXAMPLE 100 cm 2 (10 cm × 10 cm) at 23 m from the feeding point of a 100 mm diameter polyethylene-lined steel pipe buried horizontally at a depth of 1.5 m from the ground surface
A 725 Hz AC signal current having a signal frequency less affected by hum is passed through the steel pipe, and the coils 3a and 3b of the apparatus shown in FIG. 2 are connected to the buried pipe as shown in FIG. The damaged area was searched by scanning along. FIG. 3 shows the results of the search. The waveform of the sum-of-squares output η of the experimental result shows a local maximum value at about 23 m, which is in good agreement with the equation (1).

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、従
来の装置よりも少ないコイル数で、且つ同期検波法をと
ることなく簡単な回路構成で埋設金属管の防食被覆損傷
位置を高感度で探査できるので、定期的に或いは電気防
食効果の低減が発見された時などに埋設金属管の診断を
行なうことにより損傷位置を正確に把握できて、塗覆装
を補修する際の掘削位置の誤認による無駄な費用の大幅
な削減ができ、また、都市ガス埋設鋼管からのガス漏れ
等の事故を未然に防ぐことができるなどの優れた効果を
奏する。
As described above, according to the present invention, the number of coils is smaller than that of the conventional device, and the position of the corrosion protection coating on the buried metal tube can be detected with high sensitivity by using a simple circuit configuration without using the synchronous detection method. The damage can be accurately grasped by conducting a diagnosis of the buried metal pipe periodically or when the reduction of the cathodic protection effect is discovered, so that the location of the excavation when repairing the coating can be determined. It is possible to significantly reduce wasteful costs due to misidentification and to prevent accidents such as gas leaks from steel pipes buried in city gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による埋設金属管の防食被覆損傷位置の
探査方法を示す概略図である。
FIG. 1 is a schematic view showing a method of searching for a position of a corrosion protection coating on a buried metal pipe according to the present invention.

【図2】本発明の埋設金属管の防食被覆損傷位置検知装
置の検知器の概略構成を示すブロック図である。
FIG. 2 is a block diagram illustrating a schematic configuration of a detector of the corrosion prevention coating damage position detecting device for a buried metal pipe according to the present invention.

【図3】本発明の試験結果により埋設金属管の防食被覆
損傷位置を探査した際の出力波形を示すグラフである。
FIG. 3 is a graph showing an output waveform when an anticorrosion coating damage position of a buried metal pipe is detected based on a test result of the present invention.

【図4】従来の埋設金属管の防食被覆損傷位置探査方法
の一例を示す概略図である。
FIG. 4 is a schematic view showing an example of a conventional method for detecting the position of a corrosion protection coating on a buried metal pipe.

【図5】従来の埋設金属管の防食被覆損傷位置探査方法
の一例を示す概略図である。
FIG. 5 is a schematic view showing an example of a conventional method for detecting the position of a corrosion protection coating on a buried metal pipe.

【符号の説明】[Explanation of symbols]

1 埋設金属管 2 塗覆装の損傷部分 3,3a,3b コイル 4 他の金属構造物 5 発信器 6 対極 7a,7b リード線 8a,8b 増幅器 9a,9b バンドパスフィルタ 10a,10b 移相回路 11a,11b 掛算回路 12a,12b ローパスフィルタ 13a,13b 二乗回路 14 加算回路 15 表示装置 I0 管内電流 i1 漏れ電流 E1,E2 相関出力 H 磁界 η 出力 θ 磁界の傾き φ1,φ2 コイルの傾き Lx,Ly,Lz コイルREFERENCE SIGNS LIST 1 buried metal pipe 2 damaged part of coating 3, 3 a, 3 b coil 4 other metal structure 5 transmitter 6 counter electrode 7 a, 7 b lead wire 8 a, 8 b amplifier 9 a, 9 b bandpass filter 10 a, 10 b phase shift circuit 11 a , 11b Multiplication circuit 12a, 12b Low-pass filter 13a, 13b Square circuit 14 Addition circuit 15 Display device I 0 Tube current i 1 Leakage current E 1 , E 2 Correlation output H Magnetic field η Output θ Magnetic field gradient φ 1 , φ 2 Lx, Ly, Lz coil

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外面に防食被覆を施して地中に埋設した
金属管に交流信号電流を流して該埋設金属管の防食被覆
損傷位置に流出入する電流により磁界を発生させるとと
もに、上記金属管の管軸に沿った垂直面内で地表面に対
して45°傾斜させ且つ互いの軸を直交させて配置した
2つのコイルを上記管軸に沿って走査することにより各
々磁界強度を連続的に検出し、この2つのコイルの出力
間の相関をとり、その相関出力信号から磁界強度の変化
を計測することにより埋設金属管の防食被覆損傷位置を
探査することを特徴とする埋設金属管の防食被覆損傷位
置探査方法。
An anti-corrosion coating is applied to an outer surface of the metal pipe, and an AC signal current is applied to a metal pipe buried in the ground to generate a magnetic field by a current flowing into and out of the buried metal pipe at a position where the anti-corrosion coating is damaged. The magnetic field strength is continuously increased by scanning two coils, which are arranged at 45 ° with respect to the ground surface in a vertical plane along the tube axis and whose axes are orthogonal to each other, along the tube axis. Detecting and correlating the output of the two coils, and measuring the change in the magnetic field intensity from the correlation output signal to detect the position of the corrosion protection coating on the buried metal pipe; How to locate coating damage.
【請求項2】 地中に埋設した外面に防食被覆を施した
金属管と対極との間に交流信号電流を流す発信器と、該
発信器から上記埋設金属管の防食被覆損傷位置に流出入
する電流により発生する磁界強度を検出するための管軸
に沿った垂直面内に地表面に対して45°傾斜させ且つ
互いに直交させて配置した2つのコイルと、該コイルを
上記金属管の管軸に沿って走査することにより検出され
た出力信号からノイズを除去する回路と、ノイズを除去
した出力信号を移相させる回路と、移相された信号を相
関演算する回路と、相関出力信号から、埋設金属管の防
食被覆損傷位置を表示する表示装置とから構成されるこ
とを特徴とする埋設金属管の防食被覆損傷位置探査装
置。
2. A transmitter for passing an AC signal current between a counter electrode and a metal tube buried in the ground and having an outer surface provided with an anticorrosion coating, and flows from the transmitter to a position where the anticorrosion coating of the buried metal tube is damaged. Two coils arranged in a vertical plane along a tube axis for detecting a magnetic field intensity generated by a current flowing at an angle of 45 ° with respect to the ground surface and orthogonal to each other; A circuit that removes noise from the output signal detected by scanning along the axis, a circuit that shifts the phase of the output signal from which noise has been removed, a circuit that performs a correlation operation on the phase-shifted signal, and A display device for displaying the position of the anticorrosion coating of the buried metal pipe.
【請求項3】 上記表示装置は、相関出力信号の二乗和
を計算する回路と、その二乗和を表示する装置とから成
ることを特徴とする請求項2に記載の防食被覆損傷位置
探査装置。
3. The anticorrosion coating damage detecting device according to claim 2, wherein the display device comprises a circuit for calculating a sum of squares of the correlation output signal, and a device for displaying the sum of squares.
JP24772897A 1997-08-28 1997-08-28 Method and apparatus for locating corrosion protection coating on buried metal pipes Expired - Fee Related JP3167654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24772897A JP3167654B2 (en) 1997-08-28 1997-08-28 Method and apparatus for locating corrosion protection coating on buried metal pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24772897A JP3167654B2 (en) 1997-08-28 1997-08-28 Method and apparatus for locating corrosion protection coating on buried metal pipes

Publications (2)

Publication Number Publication Date
JPH1172480A JPH1172480A (en) 1999-03-16
JP3167654B2 true JP3167654B2 (en) 2001-05-21

Family

ID=17167798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24772897A Expired - Fee Related JP3167654B2 (en) 1997-08-28 1997-08-28 Method and apparatus for locating corrosion protection coating on buried metal pipes

Country Status (1)

Country Link
JP (1) JP3167654B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080232208A1 (en) * 2005-08-22 2008-09-25 Koninklijke Philips Electronics, N.V. High Frequency Central Aperture Tracking
JP6273095B2 (en) * 2013-03-29 2018-01-31 大阪瓦斯株式会社 Embedded pipe detector receiver
JP6359846B2 (en) * 2014-03-17 2018-07-18 大阪瓦斯株式会社 Method and apparatus for detecting buried metal

Also Published As

Publication number Publication date
JPH1172480A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
US10996285B2 (en) Method of detecting earth leaking point without interrupting a power supply
US5828219A (en) Method of detecting faults in the insulation layer of an insulated concealed conductor
US6549011B2 (en) Conductor tracing system
JPH10206390A (en) Method for detecting damage of covering of buried steel pipe
US20170082769A1 (en) Detection method and detection device of buried metal
US5686828A (en) Method for locating the joints and fracture points of underground jointed metallic pipes and cast-iron-gas-main-pipeline joint locator system
JPH01481A (en) Paint film damage detection method
JP3167654B2 (en) Method and apparatus for locating corrosion protection coating on buried metal pipes
JP4044303B2 (en) Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals
JP2001116850A (en) Method and device for detecting underground pipe
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JP2000249687A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
JPS61111401A (en) Method for detecting corrosion of buried pipe or the like
JP2000249685A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
JP2000249686A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
JP3932282B2 (en) Corrosion protection coating damage detection device for buried piping
JP4000208B2 (en) Buried object exploration equipment
JP4106202B2 (en) Corrosion protection damage detection method for buried metal pipes using integration means
JP3965472B2 (en) Identification method of buried line covering damaged part
JPH0752166B2 (en) Corrosion-proof coating damage detection method for buried metal pipes
US20220075006A1 (en) Mobile electric leakage detection device and method
JP4029118B2 (en) Method for detecting metal touch part of buried metal pipe
EP1217391A2 (en) Conductor tracing system
JP2002048875A (en) Burying position detection system and reception device for the same
RU2400779C1 (en) Method of searching for damages in underground pipe insulation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees