JPH1164266A - Apparatus for detecting position and level of damage of coated buried metallic conductor - Google Patents

Apparatus for detecting position and level of damage of coated buried metallic conductor

Info

Publication number
JPH1164266A
JPH1164266A JP22829797A JP22829797A JPH1164266A JP H1164266 A JPH1164266 A JP H1164266A JP 22829797 A JP22829797 A JP 22829797A JP 22829797 A JP22829797 A JP 22829797A JP H1164266 A JPH1164266 A JP H1164266A
Authority
JP
Japan
Prior art keywords
damage
point
metal conductor
buried metal
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22829797A
Other languages
Japanese (ja)
Other versions
JP3659450B2 (en
Inventor
Yuji Hosokawa
裕司 細川
Mutsumi Shibata
睦 柴田
Takashi Ohira
尚 大平
Nobuhiro Sasaki
信博 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Tokyo Gas Co Ltd
Original Assignee
Nippon Steel Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Tokyo Gas Co Ltd filed Critical Nippon Steel Corp
Priority to JP22829797A priority Critical patent/JP3659450B2/en
Publication of JPH1164266A publication Critical patent/JPH1164266A/en
Application granted granted Critical
Publication of JP3659450B2 publication Critical patent/JP3659450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To always monitor occurrence of a damage to a coating of a buried metallic conductor and quantitatively judge a position and a degree of the damage. SOLUTION: A position and a degree of a damage of a buried metallic conductor (steel pipe) 2 to be monitored are immediately detected by a conduction point 3 set at one point of the coated buried metallic conductor, a conduction electrode 5 buried in the vicinity of the buried metallic conductor 2, a conduction power source apparatus 12 sending a.c. signals between the conduction point 3 and the conduction electrode 5, a potential measuring apparatus 13 measuring an amplitude and a phase of a signal frequency component of a potential between the buried metallic conductor 2 and a reference electrode 8 buried in the vicinity of the conductor, a current measuring apparatus 14 measuring an amplitude and a phase of a signal frequency component of a current running in a conductor in a monitor direction of the buried metallic conductor 2, an analyzing apparatus 15 detecting the position and degree of the damage in the monitoring direction, and an informing apparatus 16 informing a predetermined manager of a detected result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塗覆装された金属
導体で、土壌中などに埋設されたものの塗覆装損傷発生
を常時監視する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for constantly monitoring the occurrence of coating and coating damage on coated metal conductors buried in soil or the like.

【0002】[0002]

【従来の技術】従来からの埋設金属導体の塗覆装損傷発
生を監視する方法として、管理者が金属導体の埋設され
た箇所を路上よりパトロールするという方法がある。ま
た、延長の長い埋設金属導体の塗覆装損傷発生を常時監
視する方法として、特願平5−274286号に記載の
方法がある。これは、監視対象の埋設金属導体に一定の
信号電流を通電し、埋設金属導体の適当な間隔をおいた
複数の地点で測定される電位および電流の分布の変化か
ら損傷を検知でき、さらに、いずれの地点間で損傷を蒙
ったかを判定できるというものである。
2. Description of the Related Art As a conventional method for monitoring the occurrence of paint coating damage on a buried metal conductor, there is a method in which an administrator patrols a place where the metal conductor is buried from a road. Further, as a method of constantly monitoring the occurrence of coating and coating damage on a buried metal conductor having a long extension, there is a method described in Japanese Patent Application No. 5-274286. This allows a constant signal current to flow through the buried metal conductor to be monitored, damage can be detected from changes in the potential and current distribution measured at appropriately spaced points of the buried metal conductor, and furthermore, It is possible to determine which of the points has been damaged.

【0003】また、特開平2−203263号に記載の
方法がある。これは監視対象の埋設金属体に交流信号を
通電し、通電点における交流インピーダンスを監視する
ことにより、損傷を蒙った場合には交流インピーダンス
の絶対値が低下するため、損傷を検知できるというもの
である。さらに、交流インピーダンスの監視装置を移動
させることにより損傷位置を特定できるとしている。ま
た、特開平8−304321号に記載の方法は、監視対
象の埋設金属導体の特性インピーダンスと伝搬定数を予
め実測しておき、それらの値と通電点の電位あるいは電
流から損傷位置および損傷の程度の判定ができるという
ものである。
[0003] There is also a method described in JP-A-2-203263. This means that by applying an AC signal to the buried metal object to be monitored and monitoring the AC impedance at the current-carrying point, in the event of damage, the absolute value of the AC impedance decreases and damage can be detected. is there. Furthermore, the damage position can be specified by moving the monitoring device of the AC impedance. The method described in Japanese Patent Application Laid-Open No. 8-304321 measures the characteristic impedance and the propagation constant of the buried metal conductor to be monitored in advance, and determines the damage position and the degree of damage from the values and the potential or current at the energized point. Can be determined.

【0004】[0004]

【発明が解決しようとする課題】土壌中に埋設された金
属導体の鋼面は、塗覆装により土壌とは絶縁されてお
り、腐食の進行が防がれている。しかし、他の埋設物、
土壌中の石、工事重機などとの接触、あるいは自然劣化
などにより塗覆装に損傷が生じれば、埋設金属導体の鋼
面は土壌と接触することになり、腐食を蒙る可能性があ
る。さらに損傷の度合いが激しく金属導体にまで損傷が
及んだ場合には、金属導体の破損などにより内部流体の
漏洩といった重大な事故につながる。したがって、埋設
金属導体の塗覆装の損傷を常時監視することは、保安上
極めて重要なことである。
The steel surface of the metal conductor buried in the soil is insulated from the soil by coating and coating, thereby preventing the progress of corrosion. But other buried objects,
If the coating is damaged due to contact with stones in the soil, heavy construction equipment, or natural deterioration, the steel surface of the buried metal conductor comes into contact with the soil and may be corroded. Further, when the degree of damage is so severe that the metal conductor is damaged, a serious accident such as leakage of internal fluid due to breakage of the metal conductor or the like is caused. Therefore, it is extremely important for security to constantly monitor the coating of the buried metal conductor for damage.

【0005】また、埋設金属導体の延長が長い場合にお
いては、損傷を検知した際、損傷位置を詳細に特定し、
修復などの適切な処置を直ちに施せるようにすることが
重要である。金属導体の埋設された箇所を路上からパト
ロールする方法では、他埋設物や土壌中の石との接触は
検知できないという課題があった。また、夜間などの時
間帯も含めた常時監視は困難で要員維持やパトロール設
備といったコストがかかるという課題があった。
In the case where the length of the buried metal conductor is long, when the damage is detected, the position of the damage is specified in detail,
It is important to be able to take appropriate action immediately, such as restoration. The method of patroling a place where a metal conductor is buried from a road has a problem that contact with other buried objects and stones in soil cannot be detected. In addition, there is a problem that it is difficult to constantly monitor even during a time period such as nighttime, and costs for personnel maintenance and patrol facilities are required.

【0006】従来の維持管理で行われている、複数の地
点で測定される電位および電流の分布から、いずれの地
点間で損傷を蒙ったかを判定できる方法では、損傷位置
を詳細に特定することができないという課題があった。
また、特開平2−203263号にみられる通電点にお
ける交流インピーダンスの絶対値の低下から損傷を検知
するという方法では、損傷位置の特定はできないという
課題があった。
[0006] In a conventional method of maintaining and managing the distribution of potentials and currents measured at a plurality of points, it is possible to determine which of the points has suffered damage. There was a problem that can not be.
Further, the method of detecting damage from a decrease in the absolute value of the AC impedance at the energized point as disclosed in Japanese Patent Application Laid-Open No. 2-203263 has a problem that the position of the damage cannot be specified.

【0007】また、損傷検知センサーを管路上に沿って
移動させることにより損傷位置を特定する方法では、延
長の長い埋設金属導体に対しては時間やコストがかかる
上、常時監視という目的は達成されないという課題があ
った。また、特開平8−304321号にみられる埋設
金属導体の特性インピーダンスと伝搬定数を予め実測す
る方法では、延長の長い埋設金属導体についてこれらの
値を精度良く実測するには、熟練を要する技術が必要で
あるという課題があった。
Further, in the method of specifying the damage position by moving the damage detection sensor along the pipeline, it takes time and cost for the buried metal conductor having a long extension, and the purpose of constant monitoring cannot be achieved. There was a problem that. In the method of measuring the characteristic impedance and propagation constant of a buried metal conductor in advance as disclosed in Japanese Patent Application Laid-Open No. 8-304321, a technique that requires skill is required to accurately measure these values for a buried metal conductor having a long extension. There was a problem that it was necessary.

【0008】また、監視対象の埋設金属導体の延長が非
常に長く、単位長あたりのインピーダンスが高い場合
や、塗覆装の状態が余り良くない場合などには、信号の
減衰や劣化が著しくなるため、損傷位置や損傷の程度の
判定精度が低下する、また、監視可能な範囲が限定され
るという課題があった。また、埋設された金属導体は、
塗覆装を施すことに加えて、直流電源より直流を通電す
る外部電源法と呼ばれる電気防食法により防食している
ことがある。損傷監視用の信号を、この直流に重畳して
同一の電源から通電すると、既に確立された電気防食の
管理作業と損傷監視の管理作業を同時に行う必要がある
ため、管理作業が複雑化するという課題があった。ま
た、防食用直流の最適な通電点と損傷監視用信号の最適
な通電点が、一致する場合は少なく、同一の通電点から
防食用の直流と損傷監視用の信号を通電するのは、非効
率になるという課題があった。
In addition, when the buried metal conductor to be monitored is very long and the impedance per unit length is high, or when the state of the coating is not very good, signal attenuation or deterioration becomes remarkable. For this reason, there has been a problem that the accuracy of determining the damage position and the degree of damage is reduced, and the range that can be monitored is limited. The buried metal conductor is
In addition to applying a coating, there is a case where corrosion is prevented by an electrolytic protection method called an external power supply method in which a direct current is supplied from a direct current power supply. If a signal for damage monitoring is superimposed on this direct current and energized from the same power supply, the management work for the already established cathodic protection and the damage monitoring management work must be performed simultaneously, which complicates the management work. There were challenges. Also, it is rare that the optimal energization point of the anticorrosion DC and the optimal energization point of the damage monitoring signal coincide, and it is not possible to energize the anticorrosion DC and the damage monitoring signal from the same energization point. There was a problem of efficiency.

【0009】そこで、本発明においては、コストを抑え
た上で、熟練を必要とせず、埋設金属導体の塗覆装損傷
発生を常時監視することを目的とする。また、損傷を検
知した場合には、損傷位置と損傷の程度を定量的に判定
することを目的とする。また、監視対象の埋設金属導体
の延長が非常に長い場合でも、全監視対象範囲をカバー
し、損傷位置と損傷の程度を精度良く判定することを目
的とする。さらに、監視対象の埋設金属導体に電気防食
が施されている場合でも、管理作業を複雑化することな
く、効率的に、損傷監視を行うことを目的とする。
Accordingly, an object of the present invention is to constantly monitor the occurrence of coating and coating damage on a buried metal conductor without requiring any skill while keeping costs down. It is another object of the present invention to quantitatively determine a damage position and a degree of damage when damage is detected. It is another object of the present invention to cover the entire monitoring target range even when the length of the buried metal conductor to be monitored is very long, and to accurately determine the damage position and the degree of damage. Furthermore, even when the buried metal conductor to be monitored is subjected to cathodic protection, an object of the present invention is to efficiently monitor damage without complicating management work.

【0010】[0010]

【課題を解決するための手段】本発明による損傷監視装
置は、監視対象の塗覆装された埋設金属導体のある1点
に設けた通電点と、前記埋設金属導体の近傍に埋設した
通電極と、前記通電点と通電極間に交流信号を通電する
通電用電源装置と、前記埋設金属導体とその近傍に埋設
した照合電極との間の電位の信号周波数成分の振幅およ
び位相を測定する電位測定装置と、前記埋設金属導体の
監視対象方向の導体内を流れる電流の信号周波数成分の
振幅および位相を測定する電流測定装置と、測定された
電位および電流から埋設金属導体の監視対象方向の信号
周波数に対するインピーダンスを計算し、計算されたイ
ンピーダンスのガウス平面上における座標を、予め設定
してある損傷時のインピーダンスの座標のマップに参照
することにより、監視対象方向における損傷位置および
損傷の程度の判定を行う解析装置と、この判定結果を所
定の管理者に通報する通報装置から構成されることを手
段とする。
According to the present invention, there is provided a damage monitoring apparatus comprising: a current-carrying point provided at one point of a coated and covered buried metal conductor to be monitored; and a through-electrode buried near the buried metal conductor. A power supply device for supplying an AC signal between the conduction point and the conduction electrode; and a potential for measuring the amplitude and phase of a signal frequency component of a potential between the buried metal conductor and a reference electrode buried in the vicinity thereof. A measuring device, a current measuring device for measuring an amplitude and a phase of a signal frequency component of a current flowing through the conductor in a monitoring target direction of the buried metal conductor, and a signal in a monitoring target direction of the buried metal conductor from the measured potential and current. By calculating the impedance with respect to the frequency and referencing the coordinates of the calculated impedance on the Gaussian plane to a preset map of the coordinates of the impedance at the time of damage, An analysis device for determining the degree of damage location and damage in a subject view direction, and means that it is composed of a notifying device to notify the determination result to a predetermined administrator.

【0011】また本発明は、監視対象範囲内の通電点に
最も近い位置から最も遠い位置まで損傷位置が変化した
ときに、ガウス平面上において損傷時のインピーダンス
の座標が健全時の座標の周りを回転する角度が、360
°未満となる周波数の範囲を予め把握しておき、この範
囲内から通電する交流信号の周波数を選択することを手
段とする。また本発明は、前記の適用可能な周波数範囲
の中から、複数の周波数を信号周波数として選択して、
これらを重畳して通電し、高周波数信号に対するインピ
ーダンスの座標より損傷位置を判定し、低周波数信号に
対するインピーダンスの座標より損傷度を判定すること
を手段とする。
Further, according to the present invention, when the damage position changes from the position closest to the energized point to the position farthest from the energized point within the monitoring target range, the coordinates of the impedance at the time of damage on the Gaussian plane are around the coordinates of the healthy state. The rotation angle is 360
The means is to grasp in advance the range of frequencies that are less than ° and select the frequency of the AC signal to be energized from within this range. Also, the present invention selects a plurality of frequencies as signal frequencies from the applicable frequency range,
These are superimposed and energized to determine the damage position from the impedance coordinates for the high frequency signal, and determine the damage degree from the impedance coordinates for the low frequency signal.

【0012】また本発明は、監視対象の埋設金属導体を
いくつかの監視対象範囲に分割して、分割された各範囲
内の1点を通電点とし、他の分割範囲の通電点からの信
号とは異なる周波数の信号を各通電点から同時に通電
し、各通電点において各周波数に対する監視対象方向に
おけるインピーダンスを計算し、損傷の監視を行うこと
を手段とする。また本発明は、通電点とは異なる地点に
1つあるいは複数の測定点を設け、通電点および各測定
点においてインピーダンスを計算し、損傷の監視を行う
ことを手段とする。
Further, according to the present invention, the buried metal conductor to be monitored is divided into several monitoring target ranges, one point in each of the divided ranges is set as an energizing point, and signals from energizing points in other divided ranges are supplied. A signal of a frequency different from the above is simultaneously supplied from each conduction point, and at each conduction point, the impedance in the monitoring target direction for each frequency is calculated, and the damage is monitored. Further, the present invention is to provide one or a plurality of measurement points at a point different from the energization point, calculate impedance at the energization point and each measurement point, and monitor damage.

【0013】また本発明は、監視対象の埋設金属導体が
防食用直流電源により電気防食されている場合に、防食
用直流電源に並列に損傷監視用の通電用電源装置を接続
し、損傷監視用の交流信号と防食用の直流を同一の通電
点から同時に通電することにより、損傷監視と電気防食
を同時に行うことを手段とする。また本発明は、防食用
直流の最適な通電点と損傷監視用交流信号の最適な通電
点が異なる場合に、直流と交流をそれぞれの最適な通電
点から通電することにより、損傷監視と電気防食を同時
に行うことを手段とする。
The present invention also provides a method for connecting a power supply for damage monitoring in parallel with the anticorrosion DC power supply when the buried metal conductor to be monitored is electrically protected by the anticorrosion DC power supply. By simultaneously energizing the AC signal and the anti-corrosion direct current from the same energizing point, damage monitoring and cathodic protection are simultaneously performed. Also, the present invention provides damage monitoring and cathodic protection by energizing DC and AC from the respective optimal energizing points when the optimal energizing point of the anticorrosion DC and the optimal energizing point of the damage monitoring AC signal are different. Are performed simultaneously.

【0014】[0014]

【発明の実施の形態】本発明者らは、土壌に埋設された
塗覆装鋼管に模擬的に損傷を投入した時の通電点でのイ
ンピーダンス変化を測定する実験を行い、以下の新しい
知見を得た。 インピーダンスは損傷の位置、損傷の程度により図1
に示すようにガウス平面上の1点にプロットすることが
できる。 損傷の位置は、ガウス平面上では図1に示すように健
全時の座標と損傷時の座標を結んだ線が、任意に定めた
基準線となす角度θにより求めることが可能である。 損傷の程度は、ガウス平面上では図1に示すように健
全時の座標と損傷時の座標間の変位量により求めること
が可能である。 監視信号の周波数を変化させた場合、損傷時の座標と
健全時の座標を結んだ線が任意に定めた基準線となす角
度は、図2に示すように正の相関を持つ。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors conducted an experiment to measure a change in impedance at an energized point when simulated damage was applied to a coated steel pipe buried in soil, and obtained the following new findings. Obtained. The impedance depends on the location of the damage and the degree of the damage.
Can be plotted at one point on the Gaussian plane as shown in FIG. The position of the damage can be determined on the Gaussian plane by an angle θ formed by a line connecting the coordinates at the time of soundness and the coordinates at the time of damage as shown in FIG. 1 with an arbitrarily determined reference line. On the Gaussian plane, the degree of damage can be determined from the displacement between the coordinates when sound and the coordinates when damaged, as shown in FIG. When the frequency of the monitoring signal is changed, the angle formed by the arbitrarily determined reference line between the coordinate at the time of damage and the coordinate at the time of sound has a positive correlation as shown in FIG.

【0015】本発明は、以上の新しい知見によりなされ
たものである。本発明は、ガウス平面上における鋼管の
インピーダンス変化から損傷の発生を検知し、損傷の位
置および損傷の程度を明らかにする装置である。
The present invention has been made based on the above new findings. The present invention is an apparatus that detects occurrence of damage from a change in impedance of a steel pipe on a Gaussian plane, and clarifies a position and a degree of damage.

【0016】本発明の実施に必要な装置の基本構成を図
3に基づいて説明する。図3は、地点1を管端として土
壌中に埋設された塗覆装鋼管2と、本発明の実施のため
に地点0に設置する装置類を示したものである。地点0
において、塗覆装鋼管2のある1点を通電点3とし、図
中の右側方向を監視対象方向A、左側方向を監視対象方
向Bとしている。また、監視対象方向Aの監視対象範囲
は地点0から地点1としている。
The basic configuration of the device required for implementing the present invention will be described with reference to FIG. FIG. 3 shows a coated steel pipe 2 buried in soil with a point 1 as a pipe end, and devices installed at a point 0 for implementing the present invention. Point 0
In FIG. 1, one point of the coated steel pipe 2 is referred to as an energizing point 3, the right direction in the figure is a monitored direction A, and the left direction is a monitored direction B. The monitoring target range in the monitoring target direction A is from point 0 to point 1.

【0017】地点0において、交流信号を通電するため
に、通電点3に取り付けた通電用リード線4と、近傍に
設置した通電極5に取り付けた通電極用リード線6を地
表面上に立ち上げている。電位の測定のために、通電点
3の近傍の一点に取り付けた電位測定用リード線7と、
近傍に設置した照合電極8に取り付けた照合電極用リー
ド線9を地表面上に立ち上げている。ここで電位測定用
リード線7は、通電点3に取り付けても良い。
At a point 0, in order to apply an AC signal, the conducting lead 4 attached to the conducting point 3 and the conducting lead 6 attached to the conducting electrode 5 installed near the ground stand on the ground surface. Raising. A potential measuring lead wire 7 attached to one point near the conducting point 3 for measuring potential;
A reference electrode lead wire 9 attached to a reference electrode 8 installed in the vicinity is raised on the ground surface. Here, the potential measurement lead wire 7 may be attached to the conduction point 3.

【0018】A、Bそれぞれの監視対象方向の管内を流
れる電流の測定のために、それぞれの監視対象方向の一
点にCT(カレントトランスフォーマ−)10を取り付
け、電流測定用リード線11を地表面上に立ち上げてい
る。また、監視対象方向の埋設金属導体内を流れる電流
は、管対管電位差法によっても測定が可能である。
In order to measure the current flowing through the pipe in each of the monitoring target directions A and B, a CT (current transformer) 10 is attached to one point in each monitoring target direction, and a current measuring lead wire 11 is connected to the ground surface. Has been launched. The current flowing in the buried metal conductor in the monitoring target direction can also be measured by a tube-to-tube potential difference method.

【0019】通電用リード線4および通電極用リード線
6は、通電用電源装置12に接続している。また、電位
測定用リード線7および照合電極用リード線9は、電位
測定用同期検波装置13に接続している。また、電流測
定用リード線11は、電流測定用同期検波装置14に接
続している。
The energizing lead wire 4 and the conducting electrode lead wire 6 are connected to an energizing power supply device 12. The potential measuring lead 7 and the reference electrode lead 9 are connected to a potential measuring synchronous detector 13. The current measuring lead wire 11 is connected to a current measuring synchronous detector 14.

【0020】ここで、図2に示した周波数と回転角の関
係から、監視範囲の最遠点での損傷の座標と基準線との
なす角度が360度となる周波数を求めることができ、
これが実機で適用可能な最高周波数となる。そして、こ
れより低い周波数を信号周波数として適用することで、
実際の監視結果において、最遠点と最近点の損傷の示す
座標が、ガウス平面上の同一地点にオーバーラップして
プロットされることはなくなり、正確な損傷位置の判定
が可能となる。
Here, from the relationship between the frequency and the rotation angle shown in FIG. 2, the frequency at which the angle between the coordinate of the damage at the farthest point of the monitoring range and the reference line is 360 degrees can be obtained.
This is the highest frequency that can be applied in the actual machine. And by applying a lower frequency as the signal frequency,
In the actual monitoring result, the coordinates indicating the damage at the farthest point and the damage at the closest point are not plotted so as to overlap the same point on the Gaussian plane, and it is possible to accurately determine the damage position.

【0021】適用可能な範囲内にある周波数を監視信号
として通電用電源装置12から通電し、電位あるいは電
流の測定用同期検波装置で、電位Eおよび電流iA、i
Bの信号周波数成分の振幅|E|および|iA|、|i
B|と、位相差θE およびθiA、θiBを測定してい
る。交流信号は、電位測定用同期検波装置13の内部発
振器より発振された信号を、通電用電源装置12に入力
することにより、通電される。また位相の測定は、この
発振信号を参照信号として測定している。ここで信号の
発振は、電流測定用同期検波装置14あるいは他の発振
器を用意して行っても良い。
A frequency within an applicable range is supplied as a monitoring signal from the power supply 12 for monitoring, and a synchronous detector for measuring a potential or a current is used to detect a potential E and currents iA and iA.
| E | and | iA |, | i of the signal frequency component of B
B | and the phase differences θ E and θiA, θiB. The AC signal is energized by inputting a signal oscillated from the internal oscillator of the potential measuring synchronous detection device 13 to the energizing power supply device 12. The phase is measured using the oscillation signal as a reference signal. Here, the signal may be oscillated by preparing the current measuring synchronous detector 14 or another oscillator.

【0022】また、監視対象の埋設金属導体の電位とし
て、通電点3と通電極5の間の電圧、すなわち通電電圧
を代用してもよい。このとき、定電圧制御で通電を行
い、電位を一定としても良い。また、通電点3が管端で
ある場合には、通電電流は全て一方向に流れるので、こ
の場合は、監視対象方向の埋設金属導体中を流れる電流
として、通電点3と通電極5の間を流れる電流、すなわ
ち通電電流を代用してもよい。このとき、定電流制御で
通電を行い、電流を一定としても良い、
Further, as a potential of the buried metal conductor to be monitored, a voltage between the conduction point 3 and the conduction electrode 5, that is, a conduction voltage may be substituted. At this time, energization may be performed by constant voltage control to keep the potential constant. In addition, when the energizing point 3 is at the tube end, the energizing current flows all in one direction. In this case, the current flowing through the buried metal conductor in the monitoring target direction is defined as the current flowing between the energizing point 3 and the through electrode 5. , The current flowing therethrough may be used instead. At this time, energization may be performed by constant current control to keep the current constant.

【0023】測定した|E|、θE 、|iA|、θi
A、|iB|、θiBの値を、インピーダンス解析装置
15に取り込み、インピーダンスの計算を行っている。
監視対象方向AのインピーダンスZAおよび監視対象方
向BのインピーダンスZBはそれぞれ数1及び数2で表
される。ここで、j2 =−1である。
| E |, θ E , | iA |, θi
The values of A, | iB | and θiB are taken into the impedance analyzer 15, and the impedance is calculated.
The impedance ZA in the monitoring target direction A and the impedance ZB in the monitoring target direction B are expressed by Expressions 1 and 2, respectively. Here, j 2 = −1.

【0024】[0024]

【数1】ZA= E/iA = (|E|/|iA|)
expj(θE −θiA)
## EQU1 ## ZA = E / iA = (| E | / | iA |)
expj (θE-θiA)

【0025】[0025]

【数2】ZB= E/iB = (|E|/|iB|)
expj(θE −θiB)
## EQU2 ## ZB = E / iB = (| E | / | iB |)
expj (θE-θiB)

【0026】監視対象の塗覆装鋼管が損傷を蒙った場合
は、その時のインピーダンスの座標を図1を作成したの
と同様な測定により予め作成した損傷時のインピーダン
スのマップに参照することにより、損傷位置と損傷度を
定量的に判定することが可能である。さらに、同様のマ
ップをインピーダンスZBについても作成すれば、監視
対象方向Bの損傷位置および損傷度を定量的に判定する
ことができる。
When the coated steel pipe to be monitored is damaged, the coordinates of the impedance at that time are referred to the impedance map at the time of damage prepared in advance by the same measurement as that shown in FIG. It is possible to quantitatively determine the location and degree of damage. Further, if a similar map is created for the impedance ZB, the damage position and the damage degree in the monitoring target direction B can be quantitatively determined.

【0027】インピーダンスの解析装置15は、監視対
象のインピーダンスZA、ZBを常時監視しており、監
視対象方向Aの損傷はZAの座標の変化により、また、
監視対象方向Bの損傷はZBの座標の変化により、それ
ぞれ検知される。いずれかの監視対象方向で損傷を検知
した際には、それらを予め設定してある損傷時のインピ
ーダンスの座標のマップに照らし合わせることで、それ
ぞれの監視対象方向における損傷位置および損傷度の判
定を行う。インピーダンス解析装置15が損傷を検知し
た場合は、通報装置16より、所定の管理者まで電話回
線17により警報を発し、同時に損傷位置や損傷度の判
定結果を通報する。ここで、通報は電話回線のほかに、
無線などを用いても良い。
The impedance analyzer 15 constantly monitors the impedances ZA and ZB to be monitored. Damage in the direction A to be monitored is caused by a change in the coordinates of ZA.
Damage in the monitoring target direction B is detected by a change in the coordinates of ZB. When damage is detected in any of the monitoring target directions, it is compared with a preset map of impedance coordinates at the time of damage to determine the damage position and damage degree in each monitoring target direction. Do. When the impedance analysis device 15 detects the damage, the notification device 16 issues an alarm to a predetermined manager via the telephone line 17 and simultaneously notifies the judgment result of the damage position and the damage degree. Here, besides the telephone line,
Wireless or the like may be used.

【0028】損傷検知の精度を向上させる場合、複数の
周波数を重畳させ監視信号として使用しても良い。ただ
し、信号周波数はいずれも前記の適用可能な周波数範囲
内から選択する。この場合、損傷位置の判定精度が良い
高い周波数と、損傷の程度の判定精度が良い低い周波数
を組み合せて使用すると損傷位置、損傷の程度ともに判
定精度が向上する。
In order to improve the accuracy of damage detection, a plurality of frequencies may be superimposed and used as a monitoring signal. However, each of the signal frequencies is selected from within the applicable frequency range. In this case, if a combination of a high frequency with a high accuracy in determining the damage position and a low frequency with a high accuracy in the determination of the degree of damage is used, the accuracy of determination of both the damage position and the degree of damage is improved.

【0029】また、監視装置1台で監視対象全域がカバ
ーできない場合は、本発明における請求項4に従い監視
対象の埋設鋼管をいくつかの監視対象範囲に分割して、
各分割された範囲ごとに監視装置を設置して監視対象全
域をカバーしても良い。このとき各監視装置で使用する
信号周波数は相異なる周波数を使用すると監視信号の干
渉がなくなり良好な監視状態となる。また、検知精度を
向上させるために本発明における請求項5に従い監視対
象区域に複数の測定点を設け、通電点および各測定点に
おいてインピーダンスを計算し、損傷発生の監視を行っ
ても良い。
When the entire monitoring target cannot be covered by one monitoring device, the buried steel pipe to be monitored is divided into several monitoring target ranges according to claim 4 of the present invention.
A monitoring device may be installed for each of the divided areas to cover the entire area to be monitored. At this time, if different signal frequencies are used for the respective monitoring devices, interference of the monitoring signals is eliminated and a good monitoring state is achieved. Further, in order to improve the detection accuracy, a plurality of measurement points may be provided in the monitoring target area according to claim 5 of the present invention, and the impedance may be calculated at the energization points and at each measurement point to monitor the occurrence of damage.

【0030】監視対象の埋設金属導体に、すでに防食用
直流電源が設置されている場合は、請求項6に従い、防
食用直流電源に並列に損傷監視用の通電用電源装置を接
続し、損傷監視用の交流信号と防食用の直流を同一の通
電点から同時に通電することにより、損傷発生の監視を
行うことができる。さらに、防食用直流の最適な通電点
と損傷監視用交流信号の最適な通電点が、一致していな
い場合には、請求項7に従い別々の通電点から防食用直
流と損傷監視用交流信号を通電すれば良い。
In the case where an anticorrosion DC power supply is already installed on the buried metal conductor to be monitored, a power supply device for damage monitoring is connected in parallel with the anticorrosion DC power supply according to claim 6 to monitor the damage. The occurrence of damage can be monitored by energizing the AC signal for protection and the DC for corrosion protection simultaneously from the same conduction point. Furthermore, if the optimal energization point of the anticorrosion DC and the optimal energization point of the damage monitoring AC signal do not match, according to claim 7, the anticorrosion DC and the damage monitoring AC signal are output from different energization points. All you have to do is energize.

【0031】[0031]

【実施例1】本発明により、土壌中に埋設された口径3
00mm、総延長28.3kmの塗覆装鋼管の塗覆装損
傷の発生を監視した結果について説明する。監視装置は
図3に示したものであり、この詳細な内容については前
述の通りである。図4は監視対象の塗覆装鋼管の概要を
示したものであり、図中の地点0に監視装置が設置され
ている。監視対象方向は通電点からA方向およびB方向
の両側2方向である。監視対象範囲は通電点からそれぞ
れの方向における管端までであり、それぞれの範囲の距
離はA:14.2km、B:14.1kmである。
Embodiment 1 According to the present invention, a caliber 3 buried in soil
A result of monitoring the occurrence of coating damage on a coated steel pipe having a length of 00 mm and a total length of 28.3 km will be described. The monitoring device is as shown in FIG. 3, and its detailed contents are as described above. FIG. 4 shows an outline of a coated steel pipe to be monitored, and a monitoring device is installed at a point 0 in the figure. The monitoring target directions are two directions on both sides in the A direction and the B direction from the energization point. The monitoring target range is from the energization point to the pipe end in each direction, and the distances of the respective ranges are A: 14.2 km and B: 14.1 km.

【0032】監視対象範囲Aにおける適用可能な周波数
範囲を把握するため、通電点から管端まで損傷位置を変
えたときの、インピーダンスの座標の回転角を実測し
た。15、220、420、820Hzの4つの周波数
について測定を行った結果を、図5に○で示した。回転
角は周波数に対して直線的に増加し、図中の×で示した
ように、440Hzで360度回転することが予想され
た。よって、監視対象範囲Aについては、440Hzよ
り低い周波数が適用可能な周波数範囲である。本実施例
では、信号周波数を220Hzとした。
In order to grasp the applicable frequency range in the monitoring target range A, the rotation angle of the impedance coordinate when the damage position was changed from the energized point to the tube end was measured. The results of measurement at four frequencies of 15, 220, 420, and 820 Hz are indicated by circles in FIG. The rotation angle increased linearly with the frequency, and was expected to rotate 360 degrees at 440 Hz, as indicated by x in the figure. Therefore, for the monitoring target range A, a frequency lower than 440 Hz is an applicable frequency range. In this embodiment, the signal frequency is set to 220 Hz.

【0033】図6は、監視対象範囲Aにおいて、通電点
から4.2kmの位置に、程度が30Ωの損傷を模擬的
に与えたときのインピーダンスの座標を、予め設定して
あるマップ上に○でプロットしたものである。インピー
ダンスのマップより、損傷位置は通電点から約4.2k
m、損傷の程度は約30Ωと判定され、実際の値によく
一致しており、本発明の装置により、損傷位置および損
傷の程度を正しく、且つ定量的に判定できることが確認
された。
FIG. 6 shows the coordinates of the impedance when a damage of a degree of 30Ω is simulated at a position 4.2 km from the energization point in the monitoring target range A on a map set in advance. This is plotted with. From the impedance map, the damage position is about 4.2k from the energized point.
m, the degree of damage was determined to be about 30Ω, which was in good agreement with the actual value, and it was confirmed that the damage position and the degree of damage can be correctly and quantitatively determined by the apparatus of the present invention.

【0034】[0034]

【実施例2】図4に示した監視対象範囲Aにおいて、損
傷が生じたときのインピーダンスの座標の、健全時から
の変位量は図7のようになる。周波数が低い方が健全時
からの変位量は大きいため、損傷の程度の判定には低周
波数の方が有利である。また、図5に示したように周波
数が高い方が回転角が大きいため、損傷位置の判定には
高周波数のほうが有利である。そこで、低周波数として
15Hzを、高周波数として420Hzを選択してこれ
らを重畳して通電し、損傷位置および損傷度の判定を行
った場合の実施例を、図8に示す。このとき、通電用電
源装置12には信号重畳回路20を介して、周波数信号
を入力する。
Second Embodiment In the monitoring target range A shown in FIG. 4, the displacement amount of the impedance coordinate when the damage occurs from the normal state is as shown in FIG. Since the lower the frequency, the larger the displacement amount from the normal state, the lower frequency is more advantageous for determining the degree of damage. In addition, as shown in FIG. 5, the higher the frequency, the larger the rotation angle. Therefore, the higher frequency is more advantageous for determining the damage position. FIG. 8 shows an embodiment in which 15 Hz is selected as the low frequency and 420 Hz is selected as the high frequency, and these are superimposed and energized to determine the damage position and the degree of damage. At this time, a frequency signal is input to the power supply device 12 via the signal superposition circuit 20.

【0035】[0035]

【実施例3】監視対象の埋設金属導体をいくつかの監視
対象範囲に分割し、各通電点に設置した監視装置によ
り、損傷の発生を監視する場合の実施例を図9に示す。
このとき各通電用電源装置12から相異なる周波数の信
号を通電し、また、他の監視対象範囲の損傷監視に悪影
響を及ぼさないようにするために、その信号周波数のみ
を通過させるフィルターを介して金属導体に接続する。
信号周波数はいずれも前記で指定した範囲内より選択し
ている。また前述のように、各通電点で複数の周波数信
号を通電し、損傷監視の精度を向上することも可能であ
る。また、監視対象範囲は必ずしも完全に独立している
必要はなく、重複している箇所があっても良い。
Embodiment 3 FIG. 9 shows an embodiment in which a buried metal conductor to be monitored is divided into several ranges to be monitored and the occurrence of damage is monitored by a monitoring device installed at each energization point.
At this time, a signal of a different frequency is supplied from each power supply power supply device 12, and a filter that allows only the signal frequency to pass therethrough so as not to adversely affect damage monitoring of other monitoring target ranges. Connect to metal conductor.
The signal frequencies are all selected from the range specified above. Further, as described above, it is also possible to improve the accuracy of damage monitoring by supplying a plurality of frequency signals at each conduction point. Further, the monitoring target ranges do not necessarily have to be completely independent, and there may be overlapping portions.

【0036】[0036]

【実施例4】通電点以外の1つあるいは複数の地点を測
定点とした場合の実施例を図10に示す。図中の2つの
測定点には、通電点と同様の損傷監視装置が設置してあ
る。ここで、信号周波数はいずれも前記で指定した範囲
内より選択する。また前述のように、各通電点で複数の
周波数信号を通電しても良い。また、監視対象範囲は必
ずしも完全に独立している必要はなく、重複している箇
所があっても良い。また、複数の通電点に対して、複数
の測定点を設けても良い。
Embodiment 4 FIG. 10 shows an embodiment in which one or a plurality of points other than the energization point are set as measurement points. At the two measurement points in the figure, the same damage monitoring device as the energization point is installed. Here, each signal frequency is selected from the range specified above. As described above, a plurality of frequency signals may be applied at each energization point. Further, the monitoring target ranges do not necessarily have to be completely independent, and there may be overlapping portions. Also, a plurality of measurement points may be provided for a plurality of energization points.

【0037】[0037]

【実施例5】監視対象としたい埋設金属導体に、すでに
防食用直流電源23が設置されて、電気防食の管理作業
が確立されている場合の実施例を図11に示す。防食用
直流電源23に並列に損傷監視用の通電用電源装置12
を接続し、防食用の直流と損傷監視用の交流信号とを同
時に通電して、損傷監視を行っている。この場合、
(a)交流信号は定電流制御で通電する、(b)2つの
電源は、互いが互いの負荷とならないようにするため
に、防食用直流電源23はローパスフィルター21を、
損傷監視用の通電用電源装置12はハイパスフィルター
またはバンドパスフィルター22を介して接続する、な
ど互いに悪影響を及ぼさないように措置を施している。
Fifth Embodiment FIG. 11 shows an embodiment in which the anticorrosion DC power supply 23 is already installed on the buried metal conductor to be monitored and the control work of the cathodic protection is established. Power supply device 12 for monitoring the damage in parallel with DC power supply 23 for corrosion protection
Are connected, and a DC for corrosion prevention and an AC signal for damage monitoring are simultaneously energized to perform damage monitoring. in this case,
(A) The AC signal is energized by constant current control. (B) The two power supplies are connected to the low-pass filter 21 by the anticorrosion DC power supply 23 so that they do not load each other.
The damage monitoring power supply devices 12 are connected via a high-pass filter or a band-pass filter 22, for example, so as not to adversely affect each other.

【0038】[0038]

【実施例6】防食用直流と損傷監視用交流信号を、それ
ぞれの最適な通電点から通電した場合の実施例を図12
に示す。図中に示したように、防食用直流は通電点24
より、損傷監視用の信号は通電点3よりそれぞれ通電し
ている。この場合、(a)交流信号は定電流制御で通電
する、(b)防食用直流電源23はローパスフィルター
21を、また、損傷監視用の通電用電源装置12はハイ
パスフィルターまたはバンドパスフィルター22を介し
て接続する、など互いに悪影響を及ぼし合わないような
措置を施している。
Embodiment 6 FIG. 12 shows an embodiment in which the anticorrosion DC signal and the damage monitoring AC signal are supplied from the respective optimal conduction points.
Shown in As shown in FIG.
Therefore, the signals for damage monitoring are energized from the energizing point 3 respectively. In this case, (a) the AC signal is supplied with constant current control, (b) the anticorrosion DC power supply 23 is provided with a low-pass filter 21, and the damage monitoring power supply device 12 is provided with a high-pass filter or band-pass filter 22. Take measures to prevent adverse effects such as connecting to each other.

【0039】[0039]

【発明の効果】本発明の実施は、通電点に装置を設置す
るだけで可能であり、また、装置を移動したりする必要
もないためコストや手間がかからない。インピーダンス
の変化により損傷を検知した際には、予め設定してある
損傷時のインピーダンスのマップを参照することによ
り、熟練を必要とせずに、損傷位置や損傷度を定量的に
判定できる。また、本発明に従って、複数の通電点ある
いは測定点を設けることで、本発明による損傷監視技術
の適用は延長距離などの制限を受けなくなり、判定精度
が低下することはなくなる。また、複数の地点で監視を
行うため、判定の信頼性も向上する。
The present invention can be implemented only by installing the device at the current-carrying point, and there is no need to move the device, so that cost and labor are not required. When the damage is detected by the change in impedance, the damage position and the degree of damage can be quantitatively determined by referring to a preset impedance map at the time of damage without requiring skill. Further, by providing a plurality of energization points or measurement points according to the present invention, the application of the damage monitoring technique according to the present invention is not limited by the extension distance or the like, and the determination accuracy does not decrease. In addition, since monitoring is performed at a plurality of points, the reliability of determination is improved.

【0040】また、電気防食と損傷監視を同時に行うこ
とも、フィルターを挿入するなど互いに悪影響を及ぼさ
ないような措置を施すことにより極めて容易にできる。
防食用直流電源に損傷監視用交流電源を並列に接続し通
電を行う場合は、損傷監視と電気防食の管理をそれぞれ
別々に行うことができるため、すでに確立された電気防
食の管理作業を変更する必要はなく、また、損傷監視の
管理も容易になる。また、並列に接続しておけば、万が
一防食用の電源が故障した場合でも、損傷監視用の通電
用電源装置をバックアップとして使用できる。別の地点
から防食用直流と損傷監視用交流の通電を行う場合は、
互いに最も効率の良くなる地点を通電点として選択でき
る。
Simultaneously, the cathodic protection and the damage monitoring can be performed very easily by taking measures such as inserting a filter so as not to adversely affect each other.
If the damage monitoring AC power supply is connected in parallel to the anticorrosion DC power supply and energized, damage monitoring and cathodic protection management can be performed separately, so change the already established cathodic protection management work. There is no need, and the management of damage monitoring is easier. If the power supply for anticorrosion is broken by a parallel connection, the power supply for energization for damage monitoring can be used as a backup. When energizing anticorrosion DC and damage monitoring AC from different points,
The point at which the mutual efficiency is highest can be selected as the energizing point.

【0041】さらに、損傷を検知した場合には損傷位置
を所定の管理者に通報することにより、修理などの適切
な措置を素早く施すことができる。
Further, when damage is detected, the location of the damage is reported to a predetermined manager, so that appropriate measures such as repair can be quickly taken.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ガウス平面上における塗覆装鋼管のインピーダ
ンスの変化の説明図。
FIG. 1 is an explanatory diagram of a change in impedance of a coated steel pipe on a Gaussian plane.

【図2】周波数と回転角の関係を示す説明図。FIG. 2 is an explanatory diagram showing a relationship between a frequency and a rotation angle.

【図3】本発明の実施のための装置の基本構成の説明
図。
FIG. 3 is an explanatory diagram of a basic configuration of an apparatus for implementing the present invention.

【図4】監視対象の塗覆装鋼管の概要の説明図。FIG. 4 is an explanatory diagram of an outline of a coated steel pipe to be monitored.

【図5】各周波数におけるインピーダンスの回転角の説
明図。
FIG. 5 is an explanatory diagram of a rotation angle of impedance at each frequency.

【図6】インピーダンスの監視結果の説明図。FIG. 6 is an explanatory diagram of a monitoring result of impedance.

【図7】周波数と変位量の関係の説明図。FIG. 7 is an explanatory diagram of a relationship between a frequency and an amount of displacement.

【図8】複数の周波数による損傷監視の実施例の説明
図。
FIG. 8 is an explanatory diagram of an embodiment of damage monitoring using a plurality of frequencies.

【図9】複数の通電点において損傷を監視する場合の実
施例の説明図。
FIG. 9 is an explanatory diagram of an embodiment in the case where damage is monitored at a plurality of energized points.

【図10】複数の測定点において損傷を監視する場合の
実施例の説明図。
FIG. 10 is an explanatory diagram of an embodiment in the case where damage is monitored at a plurality of measurement points.

【図11】損傷監視用の交流電源を防食用の直流電源に
並列に接続する場合の実施例の説明図。
FIG. 11 is an explanatory diagram of an embodiment in which an AC power supply for damage monitoring is connected in parallel to a DC power supply for corrosion protection.

【図12】損傷監視用の交流電源を防食用の直流電源と
は別の通電点に接続する場合の実施例の説明図。
FIG. 12 is an explanatory diagram of an embodiment in a case where an AC power supply for damage monitoring is connected to a different conduction point from a DC power supply for anticorrosion.

【符号の説明】[Explanation of symbols]

2 塗覆装鋼管 3 通電点 4 通電用リード線 5 通電極 6 通電極用リード線 7 電位測定用リード線 8 照合電極 9 照合電極用リード線 10 CT 11 電流測定用リード線 12 通電用電源装置 13 電位測定用同期検波装置(周波数f1) 14 電流測定用同期検波装置(周波数f1) 15 インピーダンス解析装置 16 通報装置 17 電話回線 18 電位測定用同期検波装置(周波数f2) 19 電流測定用同期検波装置(周波数f2) 20 信号重畳回路 21 ローパスフィルター 22 ハイパスフィルターまたはバンドパスフィルター 23 防食用直流電源 24 防食用直流通電点 25 防食用リード線 26 防食用通電極 27 防食用通電極用リード線 2 coated steel pipe 3 energized point 4 energized lead wire 5 through electrode 6 through electrode lead wire 7 potential measurement lead 8 reference electrode 9 reference electrode lead 10 CT 11 current measurement lead 12 current supply power supply 13 Synchronous detector for potential measurement (frequency f1) 14 Synchronous detector for current measurement (frequency f1) 15 Impedance analyzer 16 Notification device 17 Telephone line 18 Synchronous detector for potential measurement (frequency f2) 19 Synchronous detector for current measurement (Frequency f2) 20 signal superposition circuit 21 low-pass filter 22 high-pass filter or band-pass filter 23 anti-corrosion DC power supply 24 anti-corrosion DC current point 25 anti-corrosion lead 26 anti-corrosion through electrode 27 anti-corrosion through electrode lead

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大平 尚 東京都千代田区大手町二丁目6番3号 新 日本製鐵株式会社内 (72)発明者 佐々木 信博 東京都千代田区大手町二丁目6番3号 新 日本製鐵株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Ohira 2-6-1, Otemachi, Chiyoda-ku, Tokyo Inside Nippon Steel Corporation (72) Inventor Nobuhiro Sasaki 2-6-, Otemachi, Chiyoda-ku, Tokyo No. 3 Inside Nippon Steel Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 塗覆装された埋設金属導体の塗覆装損傷
発生を常時監視する装置であって、監視対象の塗覆装さ
れた埋設金属導体のある1点に設けた通電点と、前記埋
設金属導体の近傍に埋設した通電極と、前記通電点と通
電極間に交流信号を通電する通電用電源装置と、前記埋
設金属導体とその近傍に埋設した照合電極との間の電位
の信号周波数成分の振幅および位相を測定する電位測定
装置と、前記埋設金属導体の監視対象方向の導体内を流
れる電流の信号周波数成分の振幅および位相を測定する
電流測定装置と、測定された電位および電流から埋設金
属導体の監視対象方向の信号周波数に対するインピーダ
ンスを計算し、計算されたインピーダンスのガウス平面
上における座標を、予め設定してある損傷時のインピー
ダンスの座標のマップに参照することにより、監視対象
方向における損傷位置および損傷の程度の判定を行う解
析装置と、この判定結果を所定の管理者に通報する通報
装置、とから構成されることを特徴とする塗覆装された
埋設金属導体の損傷位置と損傷度の判定装置。
1. An apparatus for constantly monitoring the occurrence of coating damage on a coated buried metal conductor, comprising: an energization point provided at one point of the coated buried metal conductor to be monitored; A through electrode buried in the vicinity of the buried metal conductor, an energizing power supply for supplying an alternating current signal between the conducting point and the through electrode, and a potential between the buried metal conductor and a reference electrode buried in the vicinity thereof. A potential measuring device for measuring the amplitude and phase of the signal frequency component, a current measuring device for measuring the amplitude and phase of the signal frequency component of the current flowing through the conductor in the monitoring target direction of the buried metal conductor, and the measured potential and The impedance of the buried metal conductor with respect to the signal frequency in the monitoring target direction is calculated from the current, and the coordinates of the calculated impedance on the Gaussian plane are mapped to the coordinates of the impedance coordinates at the time of damage set in advance. An analysis device for determining the damage position and the degree of damage in the monitoring target direction by referring to the monitoring information, and a notification device for notifying a predetermined manager of the determination result. A device for determining the location and degree of damage to a covered buried metal conductor.
【請求項2】 監視対象範囲内の通電点に最も近い位置
から最も遠い位置まで損傷位置が変化したときに、ガウ
ス平面上において損傷時のインピーダンスの座標が健全
時の座標の周りを回転する角度が、360°未満となる
周波数を信号周波数として選択することを特徴とした請
求項1に記載の塗覆装された埋設金属導体の損傷位置と
損傷度の判定装置。
2. The angle at which the coordinates of the impedance at the time of damage are rotated around the coordinates at the time of soundness on the Gaussian plane when the damage position changes from a position closest to the energized point in the monitoring target range to a position farthest from the point. The apparatus for determining a damage position and a degree of damage of a coated and buried buried metal conductor according to claim 1, wherein a frequency that is less than 360 ° is selected as a signal frequency.
【請求項3】 監視対象の塗覆装された埋設金属導体
に、請求項2で指定した範囲内にある信号周波数を複数
選択してこれらを重畳して通電し、各周波数に対する監
視対象方向のインピーダンスを監視することを特徴とし
た請求項1に記載の塗覆装された埋設金属導体の損傷位
置と損傷度の判定装置。
3. A plurality of signal frequencies within a range specified in claim 2 are selected, superimposed and energized on a coated and covered buried metal conductor to be monitored, and a current in a direction to be monitored for each frequency is selected. The apparatus for judging a damage position and a damage degree of a coated and covered buried metal conductor according to claim 1, wherein the impedance is monitored.
【請求項4】 監視対象の塗覆装された埋設金属導体を
いくつかの監視対象範囲に分割して、分割された各範囲
内の1点を通電点とし、他の分割範囲の通電点からの信
号周波数とは異なる周波数で、且つ、請求項2で指定し
た範囲内の1つあるいは複数の周波数信号を、各通電点
から重畳して通電し、各通電点において各周波数に対す
る監視対象方向のインピーダンスを監視することを特徴
とした請求項1に記載の塗覆装された埋設金属導体の損
傷位置と損傷度の判定装置。
4. A coated and covered buried metal conductor to be monitored is divided into several ranges to be monitored, and one point in each of the divided ranges is set as an energizing point, and the energizing points in the other divided ranges are set as the energizing points. One or a plurality of frequency signals having a frequency different from the signal frequency and within the range specified in claim 2 are superimposed and energized from each energizing point, and the monitoring target direction for each frequency is measured at each energizing point. The apparatus for judging a damage position and a damage degree of a coated and covered buried metal conductor according to claim 1, wherein the impedance is monitored.
【請求項5】 通電点以外の1つあるいは複数の地点
に、前記電位測定装置、前記電流測定装置、前記解析装
置および前記通報装置を設置して、各地点および通電点
において信号周波数に対するインピーダンスの計算を行
うことを特徴とした、請求項1〜請求項4に記載の塗覆
装された埋設金属導体の損傷位置と損傷度の判定装置。
5. The potential measuring device, the current measuring device, the analyzing device, and the notifying device are installed at one or a plurality of points other than an energized point, and impedance of the signal frequency at each point and the energized point is set. The apparatus for determining a damage position and a degree of damage of a coated and covered buried metal conductor according to claim 1, wherein the calculation is performed.
【請求項6】 前記通電用電源装置を、防食用の直流電
源に並列に接続し、損傷監視用の交流信号と防食用の直
流を、それぞれ同一の通電点から通電することを特徴と
した、請求項1〜請求項4に記載の塗覆装された埋設金
属導体の損傷位置と損傷度の判定装置。
6. The power supply device for energization is connected in parallel to a direct current power supply for anticorrosion, and an alternating current signal for damage monitoring and a direct current for anticorrosion are supplied from the same current supply point. An apparatus for determining a damage position and a degree of damage of a buried metal conductor coated and covered according to claim 1.
【請求項7】 前記通電用電源装置と防食用の直流電源
をそれぞれ別の通電点に接続し、損傷監視用の交流信号
と防食用の直流を、それぞれ別の通電点から通電するこ
とを特徴とした、請求項1〜請求項4に記載の塗覆装さ
れた埋設金属導体の損傷位置と損傷度の判定装置。
7. The power supply device for energization and the DC power supply for anticorrosion are respectively connected to different energization points, and an AC signal for damage monitoring and a DC for anticorrosion are energized from different energization points. The apparatus for determining a damage position and a degree of damage of a coated and buried metal conductor according to claim 1.
JP22829797A 1997-08-25 1997-08-25 Judgment device for damage position and damage level of buried metal conductor Expired - Fee Related JP3659450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22829797A JP3659450B2 (en) 1997-08-25 1997-08-25 Judgment device for damage position and damage level of buried metal conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22829797A JP3659450B2 (en) 1997-08-25 1997-08-25 Judgment device for damage position and damage level of buried metal conductor

Publications (2)

Publication Number Publication Date
JPH1164266A true JPH1164266A (en) 1999-03-05
JP3659450B2 JP3659450B2 (en) 2005-06-15

Family

ID=16874265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22829797A Expired - Fee Related JP3659450B2 (en) 1997-08-25 1997-08-25 Judgment device for damage position and damage level of buried metal conductor

Country Status (1)

Country Link
JP (1) JP3659450B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194340A (en) * 2000-01-11 2001-07-19 Osaka Gas Co Ltd Measuring instrument for state of cathodic protection
JP2009139095A (en) * 2007-12-03 2009-06-25 Jfe Engineering Corp Apparatus and method for monitoring coating damage on underground pipe
JP2009210328A (en) * 2008-03-03 2009-09-17 Jfe Engineering Corp Buried pipe monitoring device
JP2009244123A (en) * 2008-03-31 2009-10-22 Jfe Engineering Corp Method and apparatus for monitoring damage on coating of underground pipe
WO2022070875A1 (en) * 2020-10-02 2022-04-07 株式会社デンソー Gas sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194340A (en) * 2000-01-11 2001-07-19 Osaka Gas Co Ltd Measuring instrument for state of cathodic protection
JP2009139095A (en) * 2007-12-03 2009-06-25 Jfe Engineering Corp Apparatus and method for monitoring coating damage on underground pipe
JP2009210328A (en) * 2008-03-03 2009-09-17 Jfe Engineering Corp Buried pipe monitoring device
JP2009244123A (en) * 2008-03-31 2009-10-22 Jfe Engineering Corp Method and apparatus for monitoring damage on coating of underground pipe
WO2022070875A1 (en) * 2020-10-02 2022-04-07 株式会社デンソー Gas sensor
JP2022059970A (en) * 2020-10-02 2022-04-14 株式会社デンソー Gas sensor

Also Published As

Publication number Publication date
JP3659450B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
US8310251B2 (en) System for assessing pipeline condition
US5828219A (en) Method of detecting faults in the insulation layer of an insulated concealed conductor
US8228078B2 (en) Method and device for monitoring and detecting the coating defects of underground or underwater pipelines
CN105695997A (en) Safety protection method for underground metal pipeline
JP4857136B2 (en) Abnormally low ground contact point detection method and detection system for buried metal pipeline
JPH1164266A (en) Apparatus for detecting position and level of damage of coated buried metallic conductor
CN108663408A (en) A kind of steel oil-gas pipeline Directional Drilling erosion resistant coating breakage rate determines method
US4982163A (en) Method and a device for the determination of the condition of the insulation of an object coated with an electric insulation
JP4698318B2 (en) Anticorrosion state monitoring method and system
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JPS61111401A (en) Method for detecting corrosion of buried pipe or the like
JP3670241B2 (en) Damage monitoring device and damage monitoring method for underground pipe
CN107727970B (en) Detection method and system for alternating current drainage device of buried steel pipeline
JP3009144B1 (en) Electric power cable detecting device and method for determining dead line of electric power cable using the same
JP3169754B2 (en) Method and apparatus for monitoring damage degree of coated steel pipe
JP5711994B2 (en) Insulation judgment method and insulation judgment system
JP4050433B2 (en) Damage determination apparatus and damage determination method for coated buried metal conductor
JP3214777B2 (en) Method and apparatus for identifying damaged part of coating of buried coated metal pipe
JPS60111949A (en) Method for detecting coating defect of coated embedded pipe
JP3737203B2 (en) Method and apparatus for detecting coating damage in buried pipeline
KR101949768B1 (en) Detecting method of pore area in underground pipes
JPH02203263A (en) Method for detecting damage of buried body having electric insulating coating layer
JPH08145934A (en) Monitoring method and device for damage degree of clad steel pipe
SU998584A1 (en) Method for determining degree of protection of pipelines
JP5012573B2 (en) Buried pipe monitoring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees