JP3737203B2 - Method and apparatus for detecting coating damage in buried pipeline - Google Patents

Method and apparatus for detecting coating damage in buried pipeline Download PDF

Info

Publication number
JP3737203B2
JP3737203B2 JP19375396A JP19375396A JP3737203B2 JP 3737203 B2 JP3737203 B2 JP 3737203B2 JP 19375396 A JP19375396 A JP 19375396A JP 19375396 A JP19375396 A JP 19375396A JP 3737203 B2 JP3737203 B2 JP 3737203B2
Authority
JP
Japan
Prior art keywords
signal
coating
damage
current
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19375396A
Other languages
Japanese (ja)
Other versions
JPH1038834A (en
Inventor
義通 木内
晋只 森本
論 福西
幹也 石井
悟 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP19375396A priority Critical patent/JP3737203B2/en
Publication of JPH1038834A publication Critical patent/JPH1038834A/en
Application granted granted Critical
Publication of JP3737203B2 publication Critical patent/JP3737203B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、長距離にわたって埋設される金属製パイプラインを腐食から保護するための塗覆装が、土木工事用の重機等によって受ける損傷発生を検知するための埋設パイプラインの塗覆装損傷検知方法および装置に関する。
【0002】
【従来の技術】
従来から、都市ガスなどを輸送するために地中に埋設される金属製のパイプラインには、腐食防止のための塗覆装が施されている。塗覆装は、電気絶縁性の合成樹脂から成り、金属製パイプラインを構成する導管の金属製の管本体を覆って、土壌中の水分による表面腐食を防止している。
【0003】
パイプラインが埋設された後は長期間にわたって使用されるけれども、埋設場所付近で地面の掘削工事が行われることがある。たとえばショベルカーのバックホーや掘削ドリルのオーガなどの掘削用重機が衝突すると、パイプラインの塗覆装は損傷を受けやすい。塗覆装が損傷を受けると、導管が腐食して都市ガスなどの漏れを引起こすので、塗覆装の損傷は緊急に修復させる必要がある。このため、埋設されているパイプラインの近傍で掘削工事が行われていないかを監視する車両を走行させて常時パトロールを行うなど、損傷探知のために多大な労力をかける必要がある。しかも、外見からは塗覆装が損傷を受けているか否かを判定することは非常に困難である。
【0004】
図7は、埋設パイプラインの導管の塗覆装の損傷を検知するための典型的な先行技術を示す。(a)は検知のための基本的構成を示し、(b)は検知状態の一例を示す。導管1には、信号発生装置2から損傷検出用の交流信号を供給するための接続端子3が設けられる。信号発生装置2は、接続端子3と周囲の土壌に対する接続のための接地電極4との間に交流信号を発生させる。導管1の金属製の管本体と周囲の土壌との間には電気絶縁性の塗覆装が介在され、交流信号が与えられると塗覆装がコンデンサとして作用し、塗覆装中に変位電流が流れる。掘削用重機が塗覆装を損傷させると、導管1の金属製の管本体と周囲の土壌との間の絶縁抵抗が低下して電流が流れやすくなり、図7(b)に示すように導管1の金属製本管の表面電位も変動する。したがって、金属製の管本体の表面電位の変動や金属製の管本体に流れる導管電流の変動を検出することによって、塗覆装の損傷を検知することができる。このような基本的な考え方を応用した先行技術は、たとえば本件出願人による特開平7−128189などでも開示されている。
【0005】
【発明が解決しようとする課題】
図7(a)に示すように、信号発生装置2の出力を直接導管1に接続すると、信号発生装置2の出力インピーダンスが小さいときには接続端子3の部分の導管1の管本体の表面電位である管電位は、図7(b)に示すようにほとんど変化しない。時刻t1に塗覆装に損傷が生じたとしても、信号発生装置2の僅かな出力インピーダンスや信号発生装置2から接続端子3への接続リード線のインピーダンスによって、僅かな電位の降下が観測されるのみである。
【0006】
地中に埋設されるパイプラインの導管1に流れる交流信号電流は、パイプラインの埋設箇所の近傍に電気鉄道や工場、変電所などが存在すると、そのような外部環境によって発生する雑音成分による擾乱を受け、塗覆装が損傷を受けていないのにも拘わらずに損傷発生と誤って判断したり、損傷が発生しているのに検出することができなくなるおそれがある。特に、信号発生装置2から遠距離で塗覆装に損傷が発生するような場合は、損傷の検知が非常に困難である。
【0007】
電流と電位とを組合わせて、抵抗値として比較する考え方も、たとえば特開平7−128272などで開示されているけれども、ノイズによる変動に対する誤検出の回避は困難である。
【0008】
本発明の目的は、簡単な構成で信号検出の感度を向上させ、ノイズによる誤検知の発生を防止することができる埋設パイプラインの塗覆装損傷検知方法および装置を提供することである。
【0009】
【課題を解決するための手段】
本発明は、地中に埋設される金属製パイプラインに交流信号を供給し、金属製パイプラインの表面電位の変化から塗覆装の損傷発生の有無を検知する方法であって、
金属製パイプラインへの交流信号の供給は、信号発生装置とパイプラインとの間にコイルを直列に接続する状態で行い、コイルのインダクタンス値を、交流信号の周波数および電圧の値に応じて選択することを特徴とする埋設パイプラインの塗覆装損傷検知方法である。
本発明に従えば、地中に埋設される金属製パイプラインに交流信号を供給する際に、直列にコイルを接続し、コイルのインダクタンス値を交流信号の周波数および電圧の値に応じて選択して行うので、金属製パイプラインの塗覆装の損傷時に生じる周囲の土壌との間でのインピーダンスの変化を検知する信号検出感度を上げて、金属製パイプラインの表面電位から容易に検知することができる。
【0010】
さらに本発明は、地中に埋設される金属製パイプラインに交流信号を供給し、金属製パイプラインの表面電位の変化から、塗覆装の損傷発生の有無を検知する装置であって、
交流信号の出力側から金属製パイプラインへの供給経路に直列に接続されるコイルを備えることを特徴とする埋設パイプラインの塗覆装損傷検知装置である。
本発明に従えば、出力側からコイルを介して金属製パイプラインに交流信号を供給するので、金属製パイプラインの塗覆装の損傷によるインピーダンス変化を、表面電位の変化から容易に検出することができる。金属製パイプラインの防食用に電気防食を行っているような場合であっても、防食電流に影響を与えずに信号検出感度を上げて損傷検知を効率的に行うことができる。
【0011】
さらに本発明は、前記金属製パイプラインに沿って間隔をあけて設定される複数箇所で、金属製パイプラインを流れる信号電流および表面電位を計測し、
全部の計測箇所で表面電位の変化が同時に発生し、金属製パイプラインに沿う一方側の計測箇所では信号電流が増加し、他方側の計測箇所では信号電流が減少するときに塗覆装の損傷発生を検知し、全部の計測箇所で信号電流が同方向に変化するときにノイズと判断することを特徴とする。
本発明に従えば、金属製パイプラインに沿って間隔をあけて複数箇所で金属製パイプラインを流れる信号電流および表面電位を計測すると、塗覆装の損傷発生時には、全計測箇所で表面電位が変化すると同時に、交流信号の供給地点から損傷発生箇所までの間では信号電流が増加し、損傷発生箇所から信号供給地点に関して遠去かる側では信号電流が減少する。ノイズによる変化は、信号電流に関して全ての計測箇所で同じように発生するので、信号電流の変化の方向が全部の計測箇所で同様であるか否かでノイズか塗覆装の損傷検知かを判別することができる。
【0012】
さらに本発明は、前記金属製パイプラインの端点で、交流信号の電流のみを選択的に吸収しながら、
塗覆装に対する損傷検知を行うことを特徴とする。
本発明に従えば、金属製パイプラインの端点で交流信号の電流のみを選択的に吸収するので、交流信号の供給位置から端点までの距離が長くなっても、充分な信号電流をパイプラインに沿って流すことができ、塗覆装の損傷に対する検知感度を向上させることができる。
【0013】
さらに本発明は、前記金属製パイプラインに沿って間隔をあけて設定される複数箇所で、金属製パイプラインを流れる信号電流および表面電位を、交流信号供給箇所からの距離に対応してそれぞれ周波数を選択して計測し、
計測結果に基づいて塗覆装の損傷発生の有無を検知することを特徴とする。
本発明に従えば、地中に埋設される金属製パイプラインには複数の周波数の交流信号を重畳して供給する。表面電位は交流信号の周波数が高いほど供給地点からの距離による減衰が大きいけれども、信号電流は逆に周波数が低いほど距離による減衰は小さくなる。したがって、検知地点で距離に応じて周波数を選択し、たとえば交流信号の供給地点から遠く離れた地点では表面電位は低周波、信号電流は高周波を選ぶことによって確実に損傷検知を行うことができる。
【0014】
【発明の実施の形態】
図1は、本発明の実施の一形態の概略的な構成を(a)で示し、(b)では損傷検知の状態を示し、(c)では損傷検知の対象となる導管の断面構成を示す。(a)に示すように、埋設パイプラインの導管11には、損傷検知用の交流信号を発生する信号発生装置12からの出力が接続端子13を介して供給される。信号発生装置12は、接続端子13と土壌に対する電気的接続を行うための接地電極14との間に交流信号を供給する。接続端子13における周囲の土壌を基準とした電位は、(b)に示す管電位として計測可能である。導管11は、(c)に示すような断面構成を有し、鋼などの金属製の管本体15の周囲を、電気絶縁性の合成樹脂による塗覆装16が覆って、管本体15の表面が腐食しないように保護している。管本体15と周囲の土壌との間に介在する塗覆装16は、コンデンサとして作用し、交流の信号電流に対応する変位電流が流れて、塗覆装16に損傷箇所があれば、図1(b)の時間t2に示すように、管電位が低下する。
【0015】
本実施形態では、管電位の低下をより確実に検出するため、信号発生装置12と接続端子13との間に、コイル17を直列に接続している。コイル17のインダクタンス値は、信号発生装置12から発生する信号の周波数および電圧の値に応じて適切に選択される。たとえば信号として与える交流の周波数は15Hzであり、インダクタンスは40mH程度である。このインダクタンス値は、周波数が15Hzでは4Ω程度のインピーダンスとなり、塗覆装16が損傷を受けたとき、損傷点と大地間のインピーダンスは重機の種類や損傷の程度によって異なり100〜200Ω程度となる
【0016】
図2は、地中に埋設される都市ガスの供給用の導管11によるパイプラインに沿って設けられる総合的な塗覆装損傷検知システムの全体的な構成を示す。導管11の長さは100km以上にもおよび、その中間付近に信号発生装置12からの交流信号を供給する。導管11の軸線方向で接続端子13の両側には、電流センサ18,19を設置する。電流センサ18,19は、たとえばCTと略称されるカレントトランスであり、導管11中を流れる信号電流を検出することができる。信号発生装置12が設けられている導管11の中間部分には、損傷検知装置20も設置される。損傷検知装置20は、接続端子13から導管11の表面電位を検出するための電位検出手段21と、各電流センサ18,19を介して導管11に流れる信号電流を検出する電流検出手段22,23を含む。電位検出手段21および電流検出手段22,23からの検出出力は、損傷判別手段24に与えられ、電位検出結果と電流検出結果とを総合して図1に示す塗覆装16に損傷が発生しているか否かを判別する。中央の損傷検知装置20には、さらに損傷が発生した区間を特定するための区間特定手段25と、後述するように他の損傷検知装置との間でデータ通信を行うための通信処理手段26が含まれる。
【0017】
パイプラインの導管11の軸線方向に沿って、間隔をあけて複数の損傷検知装置30,40が設置される。各損傷検知装置30,40には、それぞれ中央の損傷検知装置20の電位検出手段21および電流検出手段22,23と同様な電位検出手段31,41および電流検出手段32,42がそれぞれ含まれる。電位検出手段31,41は、導管11に設ける接続端子33,43に接続され、その部分での導管11の表面電位を検出する。各損傷検知装置30,40には、損傷検知装置20の損傷判別手段24および通信処理手段26と同様な損傷判別手段34,44および通信処理手段36,46も含まれる。電流検出手段31,41は、導管11に流れる信号電流を、電流センサ38,48を介してそれぞれ検出する。
【0018】
中央の損傷検知装置20と、導管11に沿って設けられる複数の損傷検知装置30,40との間は、通信回線51,52,53,54でデータ通信可能に接続される。中央の損傷検知装置20の区間特定手段25は、損傷判別手段24によって塗覆装に損傷が発生したことが検知されると、通信処理手段26,36,46を介して他の損傷検知装置30,40でも同様な電位変化を伴う損傷の検知が行われているかを調べる。各損傷検知装置20,30,40の電位検出手段21,31,41が同時に同じような電位変化を検出しているときには、複数の損傷検知装置20,30,40が検出する電流の変化が、特定の損傷検知装置20,30,40が設けられている位置から、導管11の軸線方向の一方側ではたとえば電流が増加し、他方側では電流が減少するような変化を生じているか否かに従って、塗覆装16の損傷が発生しているか否かを判断する。
【0019】
図3および図4は、塗覆装に対する損傷発生点から、信号発生装置12の接続地点に関して下流側および上流側に損傷検知装置30,40を設置した場合について、電位および電流の検出実験結果を上側および下側でそれぞれ示す。縦軸の目盛は、電位および電流の相対値を示す。この場合、塗覆装に対する損傷は▲1▼,▲2▼,▲3▼,▲3▼,▲4▼,▲5▼,▲6▼の時点で模擬的に与えている。図3および図4に示すように、電位に対する雑音の変動の影響は、電流の変動に対する雑音の影響よりも一般的に小さい。損傷の発生によって、損傷点の下流側でも上流側でも同様に電位が減少する。信号源である信号発生装置12から離れる下流側では、電流の検出値が小さくなるので、図3では電流の変化を図4の4倍で表示している。下流側では、損傷地点で土壌中に信号電流が多く流出してしまうので、信号電流は減少する。損傷地点の上流側では、損傷地点で土壌中に流出する電流が増加した分だけ多く流れる。▲1▼〜▲6▼以外の時点での変化に示すように、電位も雑音によって変化するけれども、雑音による電位の変化には電流の変化が伴わない。
【0020】
図5は、本発明の実施の他の形態として、導管11の長さが長くなるときに、信号電流および導管電流を増加させて、ノイズによる誤検知の発生を防止するための構成を示す。(a)が本実施形態の基本的構成を示し、(b)は比較のため図1および図2に示される実施形態の構成を示す。本実施形態の信号電流60aおよび導管電流61a,62aを、(b)に示す信号電流60bおよび導管電流61b,62bよりも増加させるためには、土壌中を流れる土壌電流63a,64aも土壌電流63b,64bより増加させる必要がある。このため導管11の両端付近に、信号電流吸収装置65,66を設け、信号発生装置12から発生する交流信号と周波数および位相を合わせて選択的に信号電流を吸収する。これによって遠方のパイプラインの端部でも雑音電流に打勝てるだけ充分な導管電流61a,62aを流すことができ、損傷の検知性能を向上させることができる。このように導管電流61a,62aを増加させることができると、雑音に対する検知のS/N比が向上し、塗覆装の損傷の誤検知による誤警報の発生や、損傷検知不能の事態を避けることができる。
【0021】
図6は、本発明の実施のさらに他の形態として、図1に示す信号発生装置12から複数の周波数で交流信号を導管11に供給し、電位計測と電流計測とを異なる周波数で同時に行うことによる損傷検知感度の向上効果を示す。たとえば3つの周波数f1,f2,f3は、15Hz,100Hz,200Hzである。(a)に示すように、電位計測によって計測される電位は、周波数が高いほど距離による減衰が大きいので、信号源からの距離が大きくなると周波数が低い方が小さい減衰の状態で計測することができる。一方(b)に示すように、電流の計測値は、周波数が高いほど距離による減衰が小さいので、信号源からの距離が増大したときに計測される電流値は大きくなる。このように周波数がf1<f2<f3の関係があるときには、信号源から遠い地点での計測には、周波数が低い信号の電流計測と周波数が高い信号の電流計測とを行うことによって、確実な損傷検知が可能となる。
【0022】
信号電流検出装置65,66は、たとえばLC共振回路やフィードバック制御による周波数同期機能を備える交流定電流回路などで実現することができる。信号電流の増加は、信号発生装置12が発生する交流信号の振幅を増加させても可能ではあるけれども、交流電圧の振幅が増大すると、正側のピークで導管11の表面の電位が土壌よりも正側になる可能性があり、導管11の表面電位を土壌よりも負に保っておく必要がある防食の観点から、振幅の増大には限度がある。
【0023】
【発明の効果】
以上のように本発明によれば、交流信号の周波数および電圧に対応するインダクタンスを有するコイルを交流信号の金属製パイプラインへの供給経路に直列に接続するだけで、ノイズによる誤検知のおそれが少なくなって金属製パイプラインの表面電位の変化をより確実に検出することができ、簡単な構成で塗覆装の損傷発生の有無を検知する信号検出の感度を向上させることができる。
【0024】
さらに本発明によれば、コイルを交流信号の出力側から金属製パイプラインへの供給経路に直列に接続するだけで、ノイズによる誤検知が少なくなり、金属製パイプラインの表面電位の変化から塗覆装の損傷発生の有無を検知するための信号検出感度を向上させることができる。
【0025】
さらに本発明によれば、複数の計測箇所での金属製パイプラインの表面電位の変化とその際の信号電流の変化の方向とから、容易に塗覆装の損傷かノイズかを判別することができ、ノイズが多い環境であっても、塗覆装の損傷検知を高感度で行うことができる。
【0026】
さらに本発明によれば、パイプライン中を流れる信号電流を効率的に増加させることができるので、パイプラインが遠距離にわたって埋設されていても、ノイズによる誤検知を防ぎ、塗覆装の損傷検知を感度よく行うことができる。
【0027】
さらに本発明によれば、複数の周波数を交流信号として重畳して埋設パイプラインに供給するので、信号供給地点と計測地点との距離に応じて周波数を選択し、ノイズによる誤検知を生じにくくして塗覆装の損傷検知の感度を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態による基本的な構成を示すブロック図と、検知結果の一例を示すタイムチャートと、検知対象となる導管11の構成を示す軸直角断面図である。
【図2】図1の実施形態を適用した総合的な塗覆装損傷検知システムの概略的な構成を示すブロック図である。
【図3】図2のシステムによる検知結果の一例を示すタイムチャートである。
【図4】図2のシステムによる検知結果の一例を示すタイムチャートである。
【図5】本発明の実施の他の形態の基本的な構成を示すブロック図である。
【図6】本発明の実施のさらに他の形態による電位および電流計測結果を示すグラフである。
【図7】典型的な先行技術による塗覆装損傷検知のための基本的構成を示すブロック図とその検知状態の一例を示すタイムチャートである。
【符号の説明】
11 導管
12 信号発生装置
13,33,43 接続端子
14 接地電極
15 管本体
16 塗覆装
17 コイル
18,19,38,48 電流センサ
20,30,40 損傷検知装置
21,31,41 電位検出手段
22,23,32,42 電流検出手段
24,34,44 損傷判別手段
25 区間特定手段
26,36,46 通信処理手段
51〜54 通信回線
65,66 信号電流吸収装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to coating damage detection for buried pipelines for detecting the occurrence of damage to coatings for protecting metal pipelines buried over long distances from corrosion by heavy machinery for civil engineering work, etc. It relates to a method and an apparatus.
[0002]
[Prior art]
Conventionally, metal pipelines buried in the ground for transporting city gas and the like have been coated to prevent corrosion. The coating is made of an electrically insulating synthetic resin and covers the metal tube main body of the conduit constituting the metal pipeline to prevent surface corrosion due to moisture in the soil.
[0003]
Although it is used for a long time after the pipeline is buried, ground excavation work may be performed near the buried site. For example, when heavy excavating machines such as excavator backhoes or excavator drill augers collide, the pipeline coating is susceptible to damage. If the coating is damaged, it will need to be repaired urgently as the conduit will corrode and cause leakage of city gas and the like. For this reason, it is necessary to apply a great deal of effort for damage detection, such as running a vehicle that monitors whether excavation work is being performed in the vicinity of the buried pipeline and constantly patroling it. Moreover, it is very difficult to determine whether the coating is damaged from the appearance.
[0004]
FIG. 7 shows a typical prior art for detecting damage to the coating of a conduit in a buried pipeline. (A) shows a basic configuration for detection, and (b) shows an example of a detection state. The conduit 1 is provided with a connection terminal 3 for supplying an AC signal for damage detection from the signal generator 2. The signal generator 2 generates an AC signal between the connection terminal 3 and the ground electrode 4 for connection to the surrounding soil. An electrically insulating coating is interposed between the metal pipe body of the conduit 1 and the surrounding soil. When an AC signal is applied, the coating acts as a capacitor, and a displacement current is applied during the coating. Flows. When the excavating heavy machine damages the coating, the insulation resistance between the metal tube main body of the conduit 1 and the surrounding soil is lowered, and the current flows easily. As shown in FIG. The surface potential of the 1 metal main tube also varies. Therefore, it is possible to detect damage to the coating by detecting fluctuations in the surface potential of the metal pipe body and fluctuations in the conduit current flowing in the metal pipe body. Prior art to which such a basic concept is applied is also disclosed in, for example, Japanese Patent Laid-Open No. 7-128189 by the present applicant.
[0005]
[Problems to be solved by the invention]
As shown in FIG. 7 (a), when the output of the signal generator 2 is directly connected to the conduit 1, when the output impedance of the signal generator 2 is small, the surface potential of the tube body of the conduit 1 at the connection terminal 3 portion is obtained. The tube potential hardly changes as shown in FIG. Even if the coating is damaged at time t1, a slight potential drop is observed due to the slight output impedance of the signal generator 2 and the impedance of the connection lead wire from the signal generator 2 to the connection terminal 3. Only.
[0006]
The AC signal current flowing in the pipeline 1 of the pipeline buried in the ground is disturbed by noise components generated by such an external environment when there are electric railways, factories, substations, etc. in the vicinity of the pipeline buried location. In spite of this, there is a possibility that the coating is not damaged, but it is erroneously determined that the damage has occurred, or cannot be detected even though the damage has occurred. In particular, when damage occurs in the coating at a long distance from the signal generator 2, it is very difficult to detect the damage.
[0007]
Although the idea of combining the current and potential and comparing them as resistance values is also disclosed in, for example, Japanese Patent Laid-Open No. 7-128272, it is difficult to avoid erroneous detection of fluctuations due to noise.
[0008]
An object of the present invention is to provide a coating pipeline damage detection method and apparatus that can improve the sensitivity of signal detection with a simple configuration and prevent false detection due to noise.
[0009]
[Means for Solving the Problems]
The present invention is a method for supplying an AC signal to a metal pipeline buried in the ground and detecting the presence or absence of damage to the coating from the change in surface potential of the metal pipeline,
Supply of AC signals to the metallic pipelines, are performed by the state of connecting the coil in series between the signal generator and the pipeline, the inductance value of the coil, depending on the value of the frequency and voltage of the AC signal A method for detecting a coating damage in an embedded pipeline, characterized by being selected .
According to the present invention, when supplying an AC signal to a metal pipeline buried in the ground, a coil is connected in series, and the inductance value of the coil is selected according to the frequency and voltage value of the AC signal. is performed by, raising the signal detection sensitivity for detecting the change in impedance between the soil around occurring during damage paint-covering metal pipeline, it is easily detected from the surface potential of the metal pipeline Can do.
[0010]
Furthermore, the present invention is an apparatus for supplying an alternating current signal to a metal pipeline buried in the ground, and detecting the occurrence of coating damage from the change in surface potential of the metal pipeline,
A coating damage detection apparatus for an embedded pipeline, comprising a coil connected in series to a supply path from an AC signal output side to a metal pipeline.
According to the present invention, since an AC signal is supplied from the output side to the metal pipeline via the coil, it is possible to easily detect an impedance change due to damage to the coating of the metal pipeline from a change in the surface potential. Can do. Even in the case of performing anticorrosion for preventing corrosion of a metal pipeline, it is possible to efficiently detect damage by increasing the signal detection sensitivity without affecting the anticorrosion current.
[0011]
The present invention is a plurality of positions which are set at intervals along the metal pipeline, measures the signal current and the surface potential through a metal pipe line,
Surface potential changes occur simultaneously at all measurement points, and the coating current is damaged when the signal current increases at one measurement point along the metal pipeline and the signal current decreases at the other measurement point. Generation | occurrence | production is detected and it judges that it is noise when a signal current changes to the same direction in all the measurement locations.
According to the present invention, when the signal current and the surface potential flowing through the metal pipeline are measured at a plurality of locations at intervals along the metal pipeline, the surface potential is measured at all measurement locations when the coating is damaged. At the same time, the signal current increases between the point where the AC signal is supplied and the point where the damage occurs, and the signal current decreases on the side away from the point where the signal is supplied. Since changes due to noise occur in the same way at all measurement locations with respect to signal current, it is determined whether noise or coating damage is detected based on whether the direction of change in signal current is the same at all measurement locations. can do.
[0012]
The present invention is a terminal point of the metal pipeline, while selectively absorb only the current of the AC signal,
It is characterized by detecting damage to the coating.
According to the present invention, only the current of the AC signal is selectively absorbed at the end point of the metal pipeline, so even if the distance from the AC signal supply position to the end point becomes long, a sufficient signal current is supplied to the pipeline. It can be made to flow along, and the detection sensitivity with respect to damage of a coating can be improved.
[0013]
The present invention is a plurality of positions which are set at intervals along the metal pipeline, a signal current and a surface potential through a metal pipe line, each frequency corresponding to the distance from the AC signal supply point Select and measure,
The present invention is characterized in that the presence or absence of occurrence of damage to the coating is detected based on the measurement result.
According to the present invention, AC signals having a plurality of frequencies are superimposed and supplied to a metal pipeline buried in the ground. The surface potential is more attenuated by the distance from the supply point as the frequency of the AC signal is higher, but the signal current is less attenuated by the distance as the frequency is lower. Therefore, it is possible to reliably detect damage by selecting a frequency according to the distance at the detection point and selecting a low frequency for the surface potential and a high frequency for the signal current at a point far from the supply point of the AC signal, for example.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration of an embodiment of the present invention in (a), (b) shows a state of damage detection, and (c) shows a cross-sectional configuration of a conduit as a target of damage detection. . As shown to (a), the output from the signal generator 12 which generate | occur | produces the alternating current signal for damage detection is supplied via the connection terminal 13 to the conduit | pipe 11 of a buried pipeline. The signal generator 12 supplies an AC signal between the connection terminal 13 and the ground electrode 14 for electrical connection to the soil. The potential based on the surrounding soil at the connection terminal 13 can be measured as the tube potential shown in FIG. The conduit 11 has a cross-sectional configuration as shown in (c), and the surface of the pipe body 15 is covered with a coating 16 made of an electrically insulating synthetic resin around the pipe body 15 made of metal such as steel. Protects against corrosion. The coating 16 interposed between the tube main body 15 and the surrounding soil acts as a capacitor, and a displacement current corresponding to an AC signal current flows. As shown at time t2 in (b), the tube potential decreases.
[0015]
In the present embodiment, a coil 17 is connected in series between the signal generator 12 and the connection terminal 13 in order to more reliably detect a decrease in tube potential. The inductance value of the coil 17 is appropriately selected according to the frequency and voltage values of the signal generated from the signal generator 12. For example, the frequency of alternating current given as a signal is 15 Hz, and the inductance is about 40 mH. This inductance value has an impedance of about 4Ω at a frequency of 15 Hz. When the coating device 16 is damaged, the impedance between the damaged point and the ground varies depending on the type of heavy equipment and the level of damage, and is about 100 to 200Ω .
[0016]
FIG. 2 shows an overall configuration of a comprehensive coating damage detection system provided along a pipeline by a conduit 11 for supplying city gas buried in the ground. The length of the conduit 11 is 100 km or more, and an AC signal from the signal generator 12 is supplied near the middle thereof. Current sensors 18 and 19 are installed on both sides of the connection terminal 13 in the axial direction of the conduit 11. The current sensors 18 and 19 are current transformers abbreviated as CT, for example, and can detect a signal current flowing in the conduit 11. A damage detection device 20 is also installed in an intermediate portion of the conduit 11 where the signal generation device 12 is provided. The damage detection device 20 includes a potential detection means 21 for detecting the surface potential of the conduit 11 from the connection terminal 13 and a current detection means 22 and 23 for detecting a signal current flowing through the conduit 11 via the current sensors 18 and 19. including. The detection outputs from the potential detection means 21 and the current detection means 22 and 23 are given to the damage determination means 24, and the coating 16 shown in FIG. 1 is damaged by combining the potential detection result and the current detection result. It is determined whether or not. The central damage detection device 20 further includes a section specifying means 25 for specifying a section where damage has occurred and a communication processing means 26 for performing data communication with other damage detection apparatuses as will be described later. included.
[0017]
A plurality of damage detection devices 30 and 40 are installed at intervals along the axial direction of the pipeline 11 of the pipeline. Each damage detection device 30, 40 includes potential detection means 31, 41 and current detection means 32, 42 similar to the potential detection means 21 and current detection means 22, 23 of the central damage detection device 20, respectively. The potential detection means 31 and 41 are connected to connection terminals 33 and 43 provided in the conduit 11, and detect the surface potential of the conduit 11 at that portion. Each damage detection device 30, 40 also includes damage determination means 34, 44 and communication processing means 36, 46 similar to the damage determination means 24 and communication processing means 26 of the damage detection device 20. The current detection means 31 and 41 detect the signal current flowing through the conduit 11 via the current sensors 38 and 48, respectively.
[0018]
The central damage detection device 20 and a plurality of damage detection devices 30, 40 provided along the conduit 11 are connected via communication lines 51, 52, 53, 54 so that data communication is possible. When the damage determination means 24 detects that the coating has been damaged, the section identification means 25 of the central damage detection apparatus 20 detects another damage detection apparatus 30 via the communication processing means 26, 36, 46. , 40, it is checked whether the same damage detection with potential change is performed. When the potential detection means 21, 31, 41 of each damage detection device 20, 30, 40 detects the same potential change at the same time, the change in current detected by the plurality of damage detection devices 20, 30, 40 is From the position where the specific damage detection device 20, 30, 40 is provided, according to whether or not there is a change in which, for example, current increases on one side of the conduit 11 in the axial direction and current decreases on the other side. Then, it is determined whether or not the coating coating 16 is damaged.
[0019]
3 and 4 show the results of potential and current detection experiments in the case where the damage detection devices 30 and 40 are installed on the downstream side and the upstream side with respect to the connection point of the signal generation device 12 from the damage occurrence point to the coating. Shown on the top and bottom, respectively. The scale on the vertical axis indicates the relative values of potential and current. In this case, damage to the coating is given in a simulated manner at time points (1), (2), (3), (3), (4), (5), and (6). As shown in FIGS. 3 and 4, the effect of noise fluctuations on the potential is generally smaller than the noise influence on current fluctuations. Due to the occurrence of damage, the potential decreases similarly on the downstream side and the upstream side of the damage point. On the downstream side away from the signal generator 12 that is the signal source, the detected current value is small, so in FIG. 3, the change in current is displayed four times that in FIG. On the downstream side, a large amount of signal current flows out into the soil at the damage point, so the signal current decreases. On the upstream side of the damaged point, a larger amount of current flows into the soil at the damaged point. As shown by changes at times other than (1) to (6), the potential also changes due to noise, but the change in potential due to noise is not accompanied by a change in current.
[0020]
FIG. 5 shows a configuration for preventing the occurrence of false detection due to noise by increasing the signal current and the conduit current when the length of the conduit 11 is increased as another embodiment of the present invention. (A) shows the basic configuration of the present embodiment, and (b) shows the configuration of the embodiment shown in FIGS. 1 and 2 for comparison. In order to increase the signal current 60a and the conduit currents 61a and 62a of the present embodiment more than the signal current 60b and the conduit currents 61b and 62b shown in (b), the soil currents 63a and 64a flowing in the soil are also the soil current 63b. , 64b. For this reason, signal current absorbers 65 and 66 are provided near both ends of the conduit 11 to selectively absorb the signal current by matching the frequency and phase with the AC signal generated from the signal generator 12. As a result, the conduit currents 61a and 62a sufficient to overcome the noise current can be passed even at the end of the remote pipeline, and the damage detection performance can be improved. If the conduit currents 61a and 62a can be increased in this way, the S / N ratio for detection against noise is improved, and the occurrence of false alarms due to false detection of coating damage and the situation where damage detection is impossible are avoided. be able to.
[0021]
FIG. 6 shows another embodiment of the present invention in which an AC signal is supplied to the conduit 11 from the signal generator 12 shown in FIG. 1 at a plurality of frequencies, and potential measurement and current measurement are simultaneously performed at different frequencies. This shows the effect of improving damage detection sensitivity. For example, the three frequencies f1, f2, and f3 are 15 Hz, 100 Hz, and 200 Hz. As shown in (a), the potential measured by the potential measurement is more attenuated by the distance as the frequency is higher. Therefore, when the distance from the signal source is increased, the lower the frequency, the smaller the potential can be measured. it can. On the other hand, as shown in (b), the measured current value has a smaller attenuation due to distance as the frequency is higher, so that the measured current value becomes larger as the distance from the signal source increases. Thus, when the frequency has a relationship of f1 <f2 <f3, the measurement at a point far from the signal source can be reliably performed by measuring the current of a signal having a low frequency and measuring the current of a signal having a high frequency. Damage detection is possible.
[0022]
The signal current detection devices 65 and 66 can be realized by, for example, an LC resonance circuit or an AC constant current circuit having a frequency synchronization function by feedback control. Although the increase in the signal current is possible even if the amplitude of the AC signal generated by the signal generator 12 is increased, when the amplitude of the AC voltage increases, the potential of the surface of the conduit 11 becomes higher than the soil at the positive peak. From the viewpoint of anticorrosion, which may be on the positive side and the surface potential of the conduit 11 needs to be kept more negative than the soil, the increase in amplitude is limited.
[0023]
【The invention's effect】
As described above, according to the present invention, there is a risk of erroneous detection due to noise simply by connecting a coil having an inductance corresponding to the frequency and voltage of the AC signal in series to the supply path to the metal pipeline of the AC signal. As a result, the change in the surface potential of the metal pipeline can be detected more reliably, and the sensitivity of signal detection for detecting the occurrence of damage to the coating can be improved with a simple configuration.
[0024]
Furthermore, according to the present invention, by simply connecting the coil in series with the supply path from the output side of the AC signal to the metal pipeline, false detection due to noise is reduced, and coating is performed from changes in the surface potential of the metal pipeline. It is possible to improve the signal detection sensitivity for detecting whether or not the covering is damaged.
[0025]
Furthermore, according to the present invention, it is possible to easily determine whether the coating is damaged or noise from the change in the surface potential of the metal pipeline at a plurality of measurement points and the direction of the change in the signal current. Even in a noisy environment, it is possible to detect damage to the coating with high sensitivity.
[0026]
Furthermore, according to the present invention, the signal current flowing through the pipeline can be increased efficiently, so that even if the pipeline is buried over a long distance, false detection due to noise is prevented and damage to the coating is detected. Can be performed with high sensitivity.
[0027]
Furthermore, according to the present invention, a plurality of frequencies are superimposed on an alternating current signal and supplied to the buried pipeline. Therefore, the frequency is selected according to the distance between the signal supply point and the measurement point, and erroneous detection due to noise is less likely to occur. Thus, the sensitivity of coating coating damage detection can be improved.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a basic configuration according to an embodiment of the present invention, a time chart showing an example of a detection result, and a cross-sectional view perpendicular to an axis showing a configuration of a conduit 11 to be detected.
FIG. 2 is a block diagram showing a schematic configuration of a comprehensive coating damage detection system to which the embodiment of FIG. 1 is applied.
FIG. 3 is a time chart showing an example of a detection result by the system of FIG. 2;
4 is a time chart showing an example of a detection result by the system of FIG.
FIG. 5 is a block diagram showing a basic configuration of another embodiment of the present invention.
FIG. 6 is a graph showing potential and current measurement results according to still another embodiment of the present invention.
FIG. 7 is a block diagram showing a basic configuration for detecting coating damage according to a typical prior art, and a time chart showing an example of a detection state thereof.
[Explanation of symbols]
11 Conduit 12 Signal generator 13, 33, 43 Connection terminal 14 Ground electrode 15 Tube body 16 Coating 17 Coil 18, 19, 38, 48 Current sensor 20, 30, 40 Damage detection device 21, 31, 41 Potential detection means 22, 23, 32, 42 Current detection means 24, 34, 44 Damage determination means 25 Section identification means 26, 36, 46 Communication processing means 51-54 Communication lines 65, 66 Signal current absorber

Claims (5)

地中に埋設される金属製パイプラインに交流信号を供給し、金属製パイプラインの表面電位の変化から塗覆装の損傷発生の有無を検知する方法であって、
金属製パイプラインへの交流信号の供給は、信号発生装置とパイプラインとの間にコイルを直列に接続する状態で行い、コイルのインダクタンス値を、交流信号の周波数および電圧の値に応じて選択することを特徴とする埋設パイプラインの塗覆装損傷検知方法。
An AC signal is supplied to a metal pipeline buried in the ground, and the presence or absence of damage to the coating is detected from a change in the surface potential of the metal pipeline,
Supply of AC signals to the metallic pipelines, are performed by the state of connecting the coil in series between the signal generator and the pipeline, the inductance value of the coil, depending on the value of the frequency and voltage of the AC signal A method for detecting a coating damage in an embedded pipeline, wherein the method is selected.
地中に埋設される金属製パイプラインに交流信号を供給し、金属製パイプラインの表面電位の変化から、塗覆装の損傷発生の有無を検知する装置であって、
交流信号の出力側から金属製パイプラインへの供給経路に直列に接続されるコイルを備えることを特徴とする埋設パイプラインの塗覆装損傷検知装置。
An apparatus for supplying an alternating current signal to a metal pipeline buried in the ground and detecting the occurrence of damage to the coating from the change in surface potential of the metal pipeline,
A coating damage detection apparatus for an embedded pipeline, comprising a coil connected in series to a supply path from an AC signal output side to a metal pipeline.
前記金属製パイプラインに沿って間隔をあけて設定される複数箇所で、金属製パイプラインを流れる信号電流および表面電位を計測し、
全部の計測箇所で表面電位の変化が同時に発生し、金属製パイプラインに沿う一方側の計測箇所では信号電流が増加し、他方側の計測箇所では信号電流が減少するときに塗覆装の損傷発生を検知し、全部の計測箇所で信号電流が同方向に変化するときにノイズと判断することを特徴とする請求項1記載の埋設パイプラインの塗覆装損傷検知方法。
At a plurality of positions which are set at intervals along the metal pipeline, it measures the signal current and the surface potential through a metal pipe line,
Surface potential changes occur simultaneously at all measurement points, and the coating current is damaged when the signal current increases at one measurement point along the metal pipeline and the signal current decreases at the other measurement point. 2. The method for detecting a coating damage in an embedded pipeline according to claim 1 , wherein occurrence is detected and it is determined that noise occurs when the signal current changes in the same direction at all measurement points.
前記金属製パイプラインの端点で、交流信号の電流のみを選択的に吸収しながら、
塗覆装に対する損傷検知を行うことを特徴とする請求項1記載の埋設パイプラインの塗覆装損傷検知方法。
At the end point of the metal pipeline, while selectively absorb only the current of the AC signal,
The damage detection method for an embedded pipeline according to claim 1, wherein damage detection for the coating is performed.
前記金属製パイプラインに沿って間隔をあけて設定される複数箇所で、金属製パイプラインを流れる信号電流および表面電位を、交流信号供給箇所からの距離に対応してそれぞれ周波数を選択して計測し、
計測結果に基づいて塗覆装の損傷発生の有無を検知することを特徴とする請求項1記載の埋設パイプラインの塗覆装損傷検知方法。
Measurement wherein at a plurality of points which are set at intervals along the metal pipeline, a signal current and a surface potential through a metal pipe line, to select each frequency corresponds to the distance from the AC signal supply point And
2. The coating damage detection method for an embedded pipeline according to claim 1 , wherein presence or absence of occurrence of damage to the coating is detected based on a measurement result.
JP19375396A 1996-07-23 1996-07-23 Method and apparatus for detecting coating damage in buried pipeline Expired - Fee Related JP3737203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19375396A JP3737203B2 (en) 1996-07-23 1996-07-23 Method and apparatus for detecting coating damage in buried pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19375396A JP3737203B2 (en) 1996-07-23 1996-07-23 Method and apparatus for detecting coating damage in buried pipeline

Publications (2)

Publication Number Publication Date
JPH1038834A JPH1038834A (en) 1998-02-13
JP3737203B2 true JP3737203B2 (en) 2006-01-18

Family

ID=16313247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19375396A Expired - Fee Related JP3737203B2 (en) 1996-07-23 1996-07-23 Method and apparatus for detecting coating damage in buried pipeline

Country Status (1)

Country Link
JP (1) JP3737203B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309523A (en) * 2007-06-12 2008-12-25 Kansai Electric Power Co Inc:The Measuring method for corrosion rate of reinforcing bar within concrete and its measuring instrument

Also Published As

Publication number Publication date
JPH1038834A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
US5828219A (en) Method of detecting faults in the insulation layer of an insulated concealed conductor
CN105695997A (en) Safety protection method for underground metal pipeline
CN114001208B (en) Alternating current and direct current interference resistant pipeline system
JP5192706B2 (en) Ground fault point search device and ground fault point search method using the same
JP3737203B2 (en) Method and apparatus for detecting coating damage in buried pipeline
JP4044303B2 (en) Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals
CN101446616A (en) Method for finding fault point of cable or pipeline and device thereof
JP4698318B2 (en) Anticorrosion state monitoring method and system
JP4050433B2 (en) Damage determination apparatus and damage determination method for coated buried metal conductor
JP3659450B2 (en) Judgment device for damage position and damage level of buried metal conductor
JP3670241B2 (en) Damage monitoring device and damage monitoring method for underground pipe
JP4005159B2 (en) How to identify damaged sections of a pipeline
JPH0555833B2 (en)
JPH0712950A (en) Method and device for detecting position of buried pipe and corrosion preventing current
JP2905834B2 (en) Monitoring method for damage to underground pipes
JPS60111949A (en) Method for detecting coating defect of coated embedded pipe
JP3965472B2 (en) Identification method of buried line covering damaged part
JP4867932B2 (en) Embedded pipe damage monitoring method and buried pipe damage monitoring apparatus
JP4029118B2 (en) Method for detecting metal touch part of buried metal pipe
JPH02203263A (en) Method for detecting damage of buried body having electric insulating coating layer
JPS6044858A (en) Damage position detector of coating film of buried piping
JPH11281750A (en) Detecting coil for electromagnetic induction pipe locator
JP2011117910A (en) Coating damage detection method of buried pipe, and coating damage detection system of the same
GB2625267A (en) A power cable health monitoring method
CN112881944A (en) Steel pipeline anticorrosive coating detection device and detection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees