JPH09145658A - Noise suppressing method in damage monitoring system in burried pipe - Google Patents

Noise suppressing method in damage monitoring system in burried pipe

Info

Publication number
JPH09145658A
JPH09145658A JP29942195A JP29942195A JPH09145658A JP H09145658 A JPH09145658 A JP H09145658A JP 29942195 A JP29942195 A JP 29942195A JP 29942195 A JP29942195 A JP 29942195A JP H09145658 A JPH09145658 A JP H09145658A
Authority
JP
Japan
Prior art keywords
monitoring
signal
damage
frequency components
buried pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29942195A
Other languages
Japanese (ja)
Inventor
Kenji Suyama
憲次 須山
Takashi Imaoka
隆司 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP29942195A priority Critical patent/JPH09145658A/en
Publication of JPH09145658A publication Critical patent/JPH09145658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the damage of a burried pipe by the excavating blade of an excavator securely without the effect of noises. SOLUTION: In this system, a monitoring AC signal, which is applied on a burried pipe 2 at a transmitting part, is received by a receiving part 12 separated from the transmitting part 11, and the damage of the burried pipe is monitored by the change in received voltage. The monitoring AC signal has the constitution so as to include a plurality of frequency components. At the same time, the monitoring of the change in received voltage is performed for each frequency component. The damage of the burried pipe is detected by the decreases of all the received voltages of a plurality of the above described frequency components. The monitoring AC signal can be the signal including a plurality of the frequency components at the same timer can be the signal, wherein a plurality of the frequency components are arranged in a time series, or can be the signal, wherein these methods are combined. By the means described above, the decrease in received voltage caused by the damage of the burried pipe can be securely detected so as to distinguish the decrease from the voltage decrease caused by noises.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、埋設管の損傷監視
システムにおけるノイズ抑制方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a noise suppressing method in a damage monitoring system for a buried pipe.

【0002】[0002]

【従来の技術】掘削工事においては、掘削機械により埋
設管が損傷を受けることがあり、これを監視するための
各種システムが提案されている。このような埋設管の損
傷を監視するための従来のシステムの一つとして、監視
対象の埋設管に送信部から監視用交流信号を印加し、こ
の監視用交流信号を離れた受信部において受信して、そ
の受信電圧の低下から埋設管の損傷の発生を検出する監
視システムがある。
2. Description of the Related Art In excavation work, a buried pipe may be damaged by an excavating machine, and various systems have been proposed for monitoring this. As one of the conventional systems for monitoring such damage to the buried pipe, an AC signal for monitoring is applied from the transmitter to the buried pipe to be monitored, and the AC signal for monitoring is received by a remote receiver. Then, there is a monitoring system that detects the occurrence of damage to the buried pipe from the decrease in the received voltage.

【0003】この監視システムは例えば図5のような模
式図で示される。符号1は送信部であり、この送信部1
において埋設管2に監視用交流信号を印加する。監視用
交流信号は、例えば200〜2500Hzの範囲から、225H,525
Hz,2025Hz等の適宜の周波数を一つ選択し、そして電圧
は埋設管の設置環境に応じて、例えば1.0〜4.0Vの範囲
で適宜設定して印加する構成としている。
This monitoring system is shown, for example, in a schematic diagram as shown in FIG. Reference numeral 1 is a transmitter, and this transmitter 1
At, a monitoring AC signal is applied to the buried pipe 2. The monitoring AC signal is, for example, 225H, 525 from the range of 200 to 2500 Hz.
A suitable frequency such as Hz or 2025 Hz is selected, and the voltage is appropriately set and applied in the range of 1.0 to 4.0 V according to the installation environment of the buried pipe.

【0004】符号3は送信部1から適宜離れた位置、例
えば2〜3km離れた埋設管2の位置に設置した受信部であ
り、送信部1から送信した監視用交流信号を、この受信
部3において受信し、その受信電圧(実効値)の変動に
より監視を行う。
Reference numeral 3 denotes a receiver installed at a position appropriately separated from the transmitter 1, for example, a position of the buried pipe 2 separated by 2 to 3 km, and the monitoring AC signal transmitted from the transmitter 1 is received by the receiver 3. It is received at and is monitored by the fluctuation of the received voltage (effective value).

【0005】即ち、いま送信部1と受信部3の間で施工
されている掘削工事において、掘削機械4の、導電性を
有する掘削刃5が埋設管2の絶縁被覆を損傷すると、そ
の損傷個所は掘削刃5を介して接地されるので、この部
分のインピーダンスが低下して監視用交流信号が地中に
漏洩する。このため受信部3における監視用交流信号の
受信電圧が低下するので、この受信電圧の低下を監視す
ることにより埋設管2の損傷を検出することができる。
That is, in the excavation work currently being carried out between the transmitting section 1 and the receiving section 3, if the conductive excavating blade 5 of the excavating machine 4 damages the insulating coating of the buried pipe 2, the damaged portion will be damaged. Is grounded through the excavating blade 5, the impedance of this portion is lowered and the monitoring AC signal leaks into the ground. For this reason, the reception voltage of the monitoring AC signal in the receiving unit 3 decreases, so that the damage to the buried pipe 2 can be detected by monitoring the decrease in the reception voltage.

【0006】例えば図6は、送信部1から受信部3の間
において埋設管2の一点を適宜時間毎に導電体で接地さ
せることにより損傷の模擬信号を与えた場合の、受信部
3における監視用交流信号の電圧レベル(実効値)の測
定結果を示すものである。尚、この測定は、送信部1か
ら受信部3までの距離を2.7kmとした埋設管2におい
て、監視用交流信号の周波数を2025Hzとして行ったもの
である。
For example, FIG. 6 shows monitoring in the receiving unit 3 when a simulated signal of damage is given by grounding one point of the buried pipe 2 between the transmitting unit 1 and the receiving unit 3 with a conductor at appropriate intervals. It shows the measurement result of the voltage level (effective value) of the AC signal for use. In addition, this measurement was performed with the frequency of the monitoring AC signal being 2025 Hz in the buried pipe 2 in which the distance from the transmitter 1 to the receiver 3 was 2.7 km.

【0007】図6に示されるように埋設管に損傷の模擬
信号を与えると、受信部における受信電圧が通常の値V1
からV2へと低下するため、この電圧低下を適宜の手法を
用いて検出することにより埋設管の損傷を検出できるこ
とがわかる。例えば、特開平4-194742号公報には、受信
電圧を単位時間毎にサンプリングし、逐次、隣接したサ
ンプリング時点の電圧の差を設定値と比較して損傷の発
生を検出する手法が開示されている。例えばサンプリン
グ間隔は0.1秒程度である。
As shown in FIG. 6, when a simulated signal of damage is given to the buried pipe, the received voltage at the receiving section becomes a normal value V 1
From To decreases to V 2, it can be seen that can detect damage to the buried pipes by detected using the voltage drop appropriate method. For example, Japanese Patent Laid-Open No. 4-194742 discloses a method of detecting the occurrence of damage by sampling a reception voltage at every unit time and sequentially comparing the difference between voltages at adjacent sampling points with a set value. There is. For example, the sampling interval is about 0.1 seconds.

【0008】[0008]

【発明が解決しようとする課題】このような監視方法で
は、次のような課題がある。 監視用交流信号の伝送路としてみた場合、埋設管
は、流電陽極としてのマグネシウムの接続部や地中埋設
部等における信号の減衰が大きい。従って送信部と受信
部間の距離、即ち監視可能距離には限界がある。 埋設管を流れる監視用交流信号には、排流器、外
電、その他の電気的ノイズが混入してくるので、これら
により例えば図7に示すように受信電圧が大きく変動
し、これらのノイズによるパルス的な電圧低下も埋設管
の損傷の発生と誤認するおそれがある。 掘削機械、特にボーリングマシンでは、埋設管の絶
縁被覆を損傷した時点の接地抵抗値が大きい場合があ
り、この場合には損傷による受信部の電圧低下も小さく
なるので、この電圧低下がノイズによる電圧変動に埋も
れてしまって損傷の検出ができないおそれがある。 本発明は以上の点に鑑みてなされたもので、即ち、ノイ
ズに起因する電圧低下による損傷の誤検出を防止するこ
とを目的とするものである。
The above-mentioned monitoring method has the following problems. When viewed as a transmission line for a monitoring AC signal, the buried pipe has a large signal attenuation at a connection portion of magnesium as a galvanic anode, a buried portion in the ground, and the like. Therefore, the distance between the transmitter and the receiver, that is, the monitorable distance is limited. The AC signal for monitoring flowing through the buried pipe is mixed with a drainer, external power, and other electrical noises, so that the received voltage fluctuates greatly as shown in FIG. 7, and pulses due to these noises occur. There is a risk of mistakenly recognizing that a temporary voltage drop will cause damage to the buried pipe. In excavating machines, especially boring machines, the ground resistance value at the time of damaging the insulating coating of the buried pipe may be large.In this case, the voltage drop of the receiving part due to damage will also be small, so this voltage drop is due to noise There is a possibility that the damage cannot be detected because it is buried in the fluctuation. The present invention has been made in view of the above points, and it is an object of the present invention to prevent erroneous detection of damage due to a voltage drop caused by noise.

【0009】[0009]

【課題を解決するための手段】上述した課題を解決する
ために、本発明では、送信部において埋設管に印加した
監視用交流信号を、送信部から離れた受信部において受
信し、受信電圧の変化により埋設管の損傷を監視するシ
ステムにおいて、監視用交流信号は複数の周波数成分を
含む構成とすると共に、受信電圧の変化の監視を各周波
数成分について行い、上記複数の周波数成分の全てにつ
いての受信電圧の低下により埋設管の損傷を検出するこ
とを提案する。
In order to solve the above-mentioned problems, according to the present invention, the monitoring AC signal applied to the buried pipe in the transmitting unit is received by the receiving unit remote from the transmitting unit, and the received voltage In the system for monitoring the damage of the buried pipe due to the change, the monitoring AC signal is configured to include a plurality of frequency components, and the change of the reception voltage is monitored for each frequency component, and all of the plurality of frequency components are monitored. We propose to detect the damage of the buried pipe due to the decrease of the received voltage.

【0010】そして、本発明では、上記構成において、
監視用交流信号は、複数の周波数成分を同時に含む構成
としたり、複数の周波数成分を経時的に配置したり、又
は複数の周波数成分を同時に含む部分を、周波数成分を
異ならせて経時的に配置したりすることができる。
According to the present invention, in the above structure,
The monitoring AC signal is configured to include multiple frequency components at the same time, multiple frequency components are arranged over time, or a portion containing multiple frequency components is arranged over time with different frequency components. You can

【0011】そして本発明では、複数の周波数成分を経
時的に配置する場合、監視用交流信号は、予め設定した
複数の周波数に経時的に交互に切り替えて、周波数をス
テップ的に変化させる等により複数の周波数成分を経時
的に配置することができる。
According to the present invention, when a plurality of frequency components are arranged with time, the monitoring AC signal is alternately switched to a plurality of preset frequencies with time, and the frequency is changed stepwise. Multiple frequency components can be arranged over time.

【0012】[0012]

【発明の実施の形態】次に本発明の実施の形態を図を参
照して説明する。図1は本発明を適用した埋設管の損傷
監視システムを概念的に示す模式図であり、上述した図
5の構成要素と同様なものには同一の符号を付して重複
する説明を省略する。符号11は送信部であり、この送
信部11は、後に詳述するように複数の周波数成分を含
む監視用交流信号を埋設管2に印加するように構成して
いる。また符号12は、送信部11から適宜離れた位
置、例えば上述したように2〜3km離れた埋設管2の位置
に設置した受信部であり、この受信部12は、後に詳述
するように、複数の周波数成分を含む監視用交流信号を
受信して、それらの受信電圧(実効値)の変動により監
視を行う構成である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram conceptually showing a damage monitoring system for a buried pipe to which the present invention is applied. The same components as those in FIG. 5 described above are designated by the same reference numerals and duplicate description will be omitted. . Reference numeral 11 denotes a transmitter, and the transmitter 11 is configured to apply a monitoring AC signal including a plurality of frequency components to the buried pipe 2 as described in detail later. Further, reference numeral 12 is a receiver installed at a position appropriately separated from the transmitter 11, for example, a position of the buried pipe 2 separated by 2 to 3 km as described above, and the receiver 12 is, as described in detail later, This is a configuration in which a monitoring AC signal including a plurality of frequency components is received, and monitoring is performed by fluctuations in the received voltage (effective value) thereof.

【0013】第1の実施の形態では、送信部11は複数
の周波数成分を同時に含む交流信号を監視用交流信号と
して埋設管2に印加する構成とする。図1においては、
送信部11に複数(実施例では3つ)の交流信号源とし
ての発振器を並列に接続した表記により、複数の異なっ
た周波数f1,f2,f3の交流信号を同時に発生して埋
設管2に印加する構成を表している。これらの周波数
は、例えば上述した200〜2500Hzの範囲から、300Hz,52
0Hz,1025Hz等の組合せの様に、夫々の周波数を適宜離
して設定する。
In the first embodiment, the transmitter 11 is configured to apply an AC signal containing a plurality of frequency components simultaneously to the buried pipe 2 as a monitoring AC signal. In FIG.
By the notation that a plurality of (three in the embodiment) oscillators as AC signal sources are connected in parallel to the transmitting unit 11, a plurality of AC signals of different frequencies f 1 , f 2 and f 3 are generated at the same time and the buried pipe is used. 2 shows a configuration in which the voltage is applied to 2. These frequencies are, for example, 300 Hz, 52 Hz from the range of 200 to 2500 Hz described above.
Like the combination of 0Hz, 1025Hz, etc., set each frequency separately.

【0014】送信部11から埋設管2に印加する監視用
交流信号の周波数成分に対応して、受信部12には、こ
れらの周波数成分毎に受信電圧を測定可能に構成する。
図1においては、受信部12に複数(実施例では3つ)
の測定部V1,V2,V3を並列に接続した表記により、複数
の異なった周波数f1,f2,f3の交流信号の受信電圧
を測定する構成を表している。このような実施例の構成
では各測定部V1,V2,V3には、夫々に対応する周波数成
分のみを通過させるフィルタ手段を構成する。
Corresponding to the frequency components of the monitoring AC signal applied from the transmitter 11 to the buried pipe 2, the receiver 12 is configured to be able to measure the received voltage for each of these frequency components.
In FIG. 1, a plurality of receivers 12 (three in the embodiment) are provided.
The measurement units V 1 , V 2 and V 3 are connected in parallel to represent the configuration for measuring the reception voltage of the AC signals of a plurality of different frequencies f 1 , f 2 and f 3 . In the configuration of such an embodiment, each measuring unit V 1 , V 2 , V 3 is provided with a filter means for passing only the corresponding frequency component.

【0015】図2は、以上の実施の形態における動作例
を示すもので、送信部11から埋設管2に、3つの異な
った周波数f1,f2,f3の交流信号を同時に連続的に
埋設管2に印加して監視用交流信号としており、受信部
12では受信した監視用交流信号を、3つの異なった周
波数f1,f2,f3の交流信号の夫々に対応する測定部V
1,V2,V3により、夫々の周波数成分の受信電圧を測定
する。尚、受信部12においては、適所においてロック
イン計測処理等のアナログ前処理や、アナログ又はディ
ジタルフィルタ処理等の適宜の信号処理を必要に応じて
行うことは云うまでもないことである。また夫々の周波
数f1,f2,f3の交流信号の印加電圧は同一に設定す
る他、交流信号の伝送路としての埋設管2の周波数特性
等を考慮して予め異ならせることもできる。
FIG. 2 shows an operation example in the above-described embodiment, in which the transmitting section 11 simultaneously and continuously transmits alternating signals of three different frequencies f 1 , f 2 and f 3 to the buried pipe 2. A monitoring AC signal is applied to the buried pipe 2 and the receiving AC signal received by the receiving unit 12 is a measuring unit V corresponding to each of the AC signals of three different frequencies f 1 , f 2 , and f 3.
Measure the received voltage of each frequency component with 1 , V 2 and V 3 . Needless to say, the receiving unit 12 performs analog pre-processing such as lock-in measurement processing and appropriate signal processing such as analog or digital filter processing at appropriate places. Further, the applied voltage of the AC signals of the respective frequencies f 1 , f 2 , and f 3 may be set to be the same, or may be different in advance in consideration of the frequency characteristic of the buried pipe 2 as the transmission path of the AC signals.

【0016】図2に示すように、周波数f1の交流信号
では、時点t1,t2,t3において受信電圧が大きく低下
しているが、周波数f2の交流信号では、時点t1,t3
おいては受信電圧が大きく低下しているものの、時点t
2では受信電圧の大きな低下はみられない。また周波数
3の交流信号では、時点t1,t2のいずれの時点にも受
信電圧の大きな低下はみられず、時点t3においてのみ
受信電圧の大きな低下がみられる。
As shown in FIG. 2, in the AC signal of frequency f 1 , the received voltage is greatly reduced at the time points t 1 , t 2 , and t 3 , but in the AC signal of frequency f 2 , the time points t 1 , At t 3 , the reception voltage drops significantly, but at time t
No significant decrease in the received voltage is seen in 2. In AC signal of a frequency f 3 is greater reduction of reception voltage at the time of any point t 1, t 2 are not observed, a large reduction of only the reception voltage at time t 3 can be seen.

【0017】埋設管が掘削刃により損傷を受けて接地さ
れた場合には、監視用交流信号の受信電圧の低下は、周
波数の相違に関係なく全ての周波数成分につき現れるは
ずであるので、受信部12における損傷判定手段は、時
点t1,t2における受信電圧の低下はノイズによるもの
とし、全ての周波数f1,f2,f3の交流信号の受信電
圧がいずれも大きく低下する時点t3においてのみ損傷
の判定出力を発生する。このような判定を行うために、
受信部12における損傷判定手段としては、各測定部
V1,V2,V3の夫々において予め設定した適宜のしきい値
により検出する受信電圧の低下に対応する信号の論理積
手段を構成すれば良い。
When the buried pipe is damaged by the digging blade and is grounded, the drop in the received voltage of the monitoring AC signal should appear for all frequency components regardless of the difference in frequency, so the receiving unit. The damage determining means at 12 assumes that the decrease in the received voltage at the times t 1 and t 2 is due to noise, and the time t 3 at which the received voltages of the AC signals of all the frequencies f 1 , f 2 and f 3 greatly decrease. The damage judgment output is generated only at. In order to make such a determination,
As the damage determination means in the receiving unit 12, each measuring unit
It suffices to configure a logical product means of signals corresponding to the decrease of the received voltage detected by the appropriate threshold value set in advance for each of V 1 , V 2 and V 3 .

【0018】以上の実施の形態では、監視用交流信号の
周波数成分を構成する異なった周波数の交流信号の数は
3つであるが、4つ以上としたり、場合によっては周波
数の離れた2つとすることもできる。また受信部12に
おいて監視用交流信号の周波数成分毎に受信電圧を測定
可能とする構成は、以上の実施例のように夫々の周波数
成分に対応して複数の測定部V1,V2,V3を設ける構成で
はなく、受信した監視用交流信号にFFT等の処理を行
ってスペクトルを求め、スペクトルにより各周波数成分
の受信電圧を得る構成等を適用することもできる。また
送信部11において、複数の周波数成分を含む監視用交
流信号を発生させる方法は、上述したように複数の発振
器を用いる構成の他、例えば無安定マルチバイブレータ
等により多数の周波数成分を含む周期的パルスを発生さ
せ、この周期的パルスを監視用交流信号として使用する
ことができる。この場合、受信部12には、予め設定さ
れた周期的パルスの多数の周波数成分のうちの代表的な
複数の周波数成分に対しての、上述したような複数の測
定部V1,V2,V3,…を設けて、夫々に対応して設定した
しきい値により受信電圧の低下を検出するように構成し
たり、又は上述したように監視用交流信号のスペクトル
を求める手段を設けて、スペクトルにより代表的な複数
の周波数成分の受信電圧の低下を検出するように構成す
ることもできる。
In the above-described embodiment, the number of alternating-current signals having different frequencies constituting the frequency component of the monitoring alternating-current signal is three, but it may be four or more, or in some cases, two with different frequencies. You can also do it. Further, the configuration in which the reception voltage can be measured for each frequency component of the monitoring AC signal in the reception unit 12 has a plurality of measurement units V 1 , V 2 , V corresponding to each frequency component as in the above embodiment. Instead of the configuration in which 3 is provided, it is also possible to apply a configuration in which the received monitoring AC signal is subjected to processing such as FFT to obtain a spectrum and the reception voltage of each frequency component is obtained from the spectrum. In addition, in the method of generating the monitoring AC signal including a plurality of frequency components in the transmission unit 11, in addition to the configuration using a plurality of oscillators as described above, for example, an astable multivibrator or the like is used to periodically generate a plurality of frequency components. A pulse can be generated and this periodic pulse can be used as a monitoring AC signal. In this case, the receiving unit 12 includes a plurality of measuring units V 1 , V 2 , as described above, for a plurality of typical frequency components of a large number of frequency components of the preset periodic pulse. V 3 , ... Is provided and configured so as to detect the drop in the received voltage by the threshold value set corresponding to each, or by providing the means for obtaining the spectrum of the monitoring AC signal as described above, It is also possible to configure to detect a decrease in the received voltage of a plurality of typical frequency components based on the spectrum.

【0019】次に第2の実施の態様では、送信部11は
複数の周波数成分を経時的に配置した交流信号を監視用
交流信号として埋設管2に印加する構成とする。このよ
うな監視用交流信号は、例えば複数の周波数の設定可能
なプログラマブル発振器を用いて、予め設定した複数の
周波数に交互に経時的に切り替え、ステップ的に周波数
を変化させて発生させることができる。
Next, in the second embodiment, the transmitter 11 is configured to apply an AC signal having a plurality of frequency components arranged over time to the buried pipe 2 as a monitoring AC signal. Such a monitoring AC signal can be generated by alternately switching over time to a plurality of preset frequencies using a programmable oscillator with a plurality of frequencies that can be set, and changing the frequency stepwise. .

【0020】図3は、送信部11にプログラマブル発振
器を構成し、この発振器により、周波数が3つの異なっ
た周波数f1,f2,f3に継続時間t毎に順次切り替わ
る監視用交流信号を発生して埋設管2に印加した場合の
動作例を模式的に示すものである。この例では監視用交
流信号は、時間t毎に周波数f1,f2,f3が順次切り
替わる周期T(=3×t)の信号であり、埋設管2に印
加する電圧は周波数にかかわらず一定としている。しか
しながら、この他、交流信号の伝送路としての埋設管2
の周波数特性等を考慮して、夫々の周波数f1,f2,f
3の交流信号の印加電圧を予め異ならせることもでき
る。また夫々の周波数f1,f2,f3の交流信号の夫々
の間に休止時間を入れることもできる。
In FIG. 3, a programmable oscillator is configured in the transmitter 11, and this oscillator generates a monitoring AC signal whose frequency is sequentially switched to three different frequencies f 1 , f 2 and f 3 at each duration t. 2 schematically shows an operation example in the case where the voltage is applied to the buried pipe 2 after that. In this example, the monitoring AC signal is a signal of a cycle T (= 3 × t) in which the frequencies f 1 , f 2 , and f 3 are sequentially switched at each time t, and the voltage applied to the buried pipe 2 is irrespective of the frequency. It is constant. However, in addition to this, the buried pipe 2 as a transmission line for AC signals
Of the frequencies f 1 , f 2 , f
The applied voltage of the AC signal of 3 can be made different in advance. It is also possible to insert a pause time between the AC signals of the respective frequencies f 1 , f 2 and f 3 .

【0021】図3の実施の形態では監視用交流信号の受
信電圧は、通常時においては周波数f1,f2,f3が異
なるにもかかわらず略一定であるが、時点t4,t6,t
8,t10において大きく低下している。これらの時点に
おける受信電圧の低下を分析すると、まず時点t4にお
ける低下は周波数f1,f2に対応して2t時間経過した
時点t5に復帰しており、周波数f3の交流信号の受信電
圧は低下していない。また時点t6における低下は周波
数f2の継続時間t内の時点t7で復帰しており、周波数
1,f3の交流信号の受信電圧は低下していない。同様
に、時点t8における低下は周波数f3の継続時間tを経
過した時点t9で復帰しており、周波数f1,f2の交流
信号の受信電圧は低下していない。
In the embodiment shown in FIG. 3, the reception voltage of the monitoring AC signal is substantially constant in the normal state although the frequencies f 1 , f 2 and f 3 are different, but at times t 4 and t 6. , T
Are significantly reduced at 8, t 10. Analyzing the drop in the received voltage at these time points, first, the drop at time point t 4 returns to time point t 5 after 2t time has elapsed corresponding to frequencies f 1 and f 2 , and the reception of the AC signal at frequency f 3 is received. The voltage has not dropped. The reduction in the time t 6 is returned at time t 7 in the duration of the frequency f 2 t, receiving voltage of the AC signal of frequency f 1, f 3 is not decreased. Similarly, the decrease at the time point t 8 is restored at the time point t 9 when the duration t of the frequency f 3 has elapsed, and the reception voltage of the AC signals of the frequencies f 1 and f 2 has not decreased.

【0022】このように各時点t4,t6,t8において
発生した受信電圧の低下は、監視用交流信号の全ての周
波数f1,f2,f3について発生しているものではない
ので、受信部12における損傷判定手段は、これらの受
信電圧の低下はノイズによるものと判定する。
As described above, the drop in the received voltage generated at each of the times t 4 , t 6 and t 8 does not occur for all frequencies f 1 , f 2 and f 3 of the monitoring AC signal. The damage determination means in the receiver 12 determines that the decrease in the received voltage is due to noise.

【0023】一方、時点t10において発生した受信電圧
の低下は、監視用交流信号の上記周期Tを経過した時点
11においても継続しており、即ち、受信電圧の低下
は、全ての周波数f1,f2,f3について発生している
ので、受信部12における損傷判定手段は、受信電圧の
低下が周期Tを経過したことを検出できる最も早い時点
11又はこの検出の方法に応じてそれ以降の適宜の時点
において損傷の判定出力を発生する。
On the other hand, the decrease in the received voltage generated at the time point t 10 continues at the time point t 11 when the period T of the monitoring AC signal elapses, that is, the received voltage decreases at all frequencies f. Since the damage occurs at 1 , f 2 , and f 3 , the damage determining means in the receiving unit 12 detects the earliest time point t 11 at which it can detect that the decrease in the received voltage has passed the cycle T, or the detection method. A damage determination output is generated at an appropriate time thereafter.

【0024】このような判定出力を得るための損傷判定
手段の第1の例として、受信電圧の低下を検出した時点
からの経過時間を計時するタイマーと、このタイマーに
より計時した時間が上記周期Tを越えたか否かを判定す
る手段とから構成することができる。また第2の例とし
ては、受信電圧の低下を検出している際の周波数を上記
スペクトル解析等により求めて、各周波数毎のフラグを
1周期TだけONとし、全ての周波数に対応するフラグ
のON状態が揃ったことを論理積手段により判定する手
段とから構成することができる。
As a first example of the damage determining means for obtaining such a determination output, a timer that measures the elapsed time from the time when the decrease in the received voltage is detected, and the time measured by this timer is the cycle T And means for determining whether or not the value has exceeded. Further, as a second example, the frequency at the time of detecting the decrease in the received voltage is obtained by the spectrum analysis or the like, the flag for each frequency is turned on for one cycle T, and the flag corresponding to all frequencies is set. It can be configured by means for determining that the ON states have been completed by a logical product means.

【0025】監視用交流信号は、以上の第1、第2の実
施の形態において説明したように複数の周波数成分を含
ませる構成とする他、第3の実施の形態として、これら
を組合せて複数の周波数成分を同時に含む部分を、周波
数成分を異ならせて経時的に配置して構成することもで
きる。即ち、図4は、このような監視用交流信号の一例
を示すものであり、これは、多数の周波数成分を含む方
形波を用い、異なった周期T1,T2,T3の方形波を順
次経時的に配置して周期T(=T1+T2+T3)の監視
用交流信号を構成するものである。
The monitoring AC signal is configured to include a plurality of frequency components as described in the first and second embodiments above, and a plurality of frequency components are combined to form a plurality of frequency components in the third embodiment. It is also possible to arrange the portions that simultaneously include the frequency component of 1) with different frequency components and to arrange them over time. That is, FIG. 4 shows an example of such a monitoring AC signal, which uses a square wave containing a large number of frequency components and generates square waves of different periods T 1 , T 2 , T 3. The monitoring AC signals having the cycle T (= T 1 + T 2 + T 3 ) are arranged sequentially with time.

【0026】このような監視用交流信号を用いる場合に
は、上記第1、第2の実施の形態の監視用交流信号に対
して受信部12において適用した損傷判定の方法を適宜
組み合わせ、夫々の周期周期T1,T2,T3の方形波に
含まれる多数の周波数成分のうちの代表的な複数の周波
数成分に着目して、これらの周波数成分の全ての受信電
圧が低下した時点で損傷の判定出力を発生させることが
できる。
When such a monitoring AC signal is used, the damage determination methods applied in the receiving section 12 are appropriately combined with the monitoring AC signals of the first and second embodiments, respectively. Focusing on a plurality of typical frequency components among a large number of frequency components included in the square wave having the periods T 1 , T 2 , and T 3 , damage is caused at the time when all the received voltages of these frequency components are reduced. It is possible to generate the judgment output of.

【0027】以上説明したように、埋設管が掘削刃によ
り損傷を受けて接地された場合の監視用交流信号の受信
電圧の低下は、周波数の相違に関係なく全ての周波数成
分につき現れるが、ノイズによる受信電圧の低下が全て
の周波数成分について現れることは少ないという点に鑑
みて、本発明では、受信部において各周波数成分につい
て受信電圧の変化の監視を行い、全ての周波数成分につ
いて受信電圧が低下した場合には損傷の発生、受信電圧
が低下したとしても全ての周波数成分についてではない
場合にはノイズとして判定することができるのである。
As described above, the decrease in the received voltage of the monitoring AC signal when the buried pipe is damaged by the digging blade and grounded appears in all frequency components regardless of the difference in frequency, but noise is generated. In view of the fact that the decrease in the received voltage due to the above does not appear for all frequency components, the present invention monitors the change in the received voltage for each frequency component in the receiving unit, and decreases the received voltage for all frequency components. In that case, even if the damage occurs or the received voltage drops, if not all frequency components, it can be determined as noise.

【0028】[0028]

【発明の効果】本発明は以上の通り、送信部において埋
設管に印加した監視用交流信号を送信部から離れた受信
部において受信して、その受信電圧の低下により埋設管
の損傷を監視するシステムにおいて、監視用交流信号
は、複数の周波数成分を含ませて、これらの複数の周波
数成分の全ての受信電圧が低下した場合に損傷と判定す
るので、損傷による受信電圧の低下をノイズによるもの
と区別して、損傷の判定を確実に行えるという効果があ
る。
As described above, according to the present invention, the monitoring AC signal applied to the buried pipe in the transmitter is received by the receiver remote from the transmitter, and the damage of the buried pipe is monitored by the decrease of the received voltage. In the system, the monitoring AC signal contains multiple frequency components, and if all the received voltages of these multiple frequency components drop, it is determined to be damaged, so the drop in received voltage due to damage is caused by noise. There is an effect that the damage can be surely determined by distinguishing from the above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の方法を適用する埋設管損傷監視シス
テムの構成例を示す模式図である。
FIG. 1 is a schematic diagram showing a configuration example of a buried pipe damage monitoring system to which the method of the present invention is applied.

【図2】 監視用交流信号の第1実施例における損傷判
定動作を示す模式図である。
FIG. 2 is a schematic diagram showing a damage determination operation in the first embodiment of a monitoring AC signal.

【図3】 監視用交流信号の第2実施例における損傷判
定動作を示す模式図である。
FIG. 3 is a schematic diagram showing a damage determination operation in a second embodiment of a monitoring AC signal.

【図4】 監視用交流信号の第3実施例を示す模式図で
ある。
FIG. 4 is a schematic diagram showing a third embodiment of a monitoring AC signal.

【図5】 従来の埋設管損傷監視システムの構成例を示
す模式図である。
FIG. 5 is a schematic diagram showing a configuration example of a conventional buried pipe damage monitoring system.

【図6】 図5のシステムにおいて損傷の模擬信号を埋
設管に印加した場合の、受信部における監視用交流信号
の受信電圧レベルの変動の測定結果を示すものである。
FIG. 6 shows the measurement results of fluctuations in the received voltage level of the monitoring AC signal in the receiver when a damage simulation signal is applied to the buried pipe in the system of FIG.

【図7】 図5のシステムにおいて、昼間、電車が頻繁
に運行されていて排流器が頻繁に動作している場合の、
受信部における監視用交流信号の電圧レベルの測定結果
を示すものである。
FIG. 7 is a diagram showing a case where trains are frequently operated during the daytime and drainers are frequently operated in the system of FIG.
7 shows the measurement result of the voltage level of the monitoring AC signal in the receiving unit.

【符号の説明】[Explanation of symbols]

1,11 送信部 2 埋設管 3,12 受信部 4 掘削機械 5 掘削刃 6 排流器 1,11 transmitter 2 buried pipe 3,12 receiver 4 excavator 5 excavator 6 drainer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 送信部において埋設管に印加した監視用
交流信号を、送信部から離れた受信部において受信し、
受信電圧の変化により埋設管の損傷を監視するシステム
において、監視用交流信号は複数の周波数成分を含む構
成とすると共に、受信電圧の変化の監視を各周波数成分
について行い、上記複数の周波数成分の全てについての
受信電圧の低下により埋設管の損傷を検出することを特
徴とする埋設管の損傷監視システムにおけるノイズ抑制
方法
1. An AC signal for monitoring applied to a buried pipe in a transmitter is received by a receiver distant from the transmitter,
In the system for monitoring the damage of the buried pipe by the change of the reception voltage, the monitoring AC signal is configured to include a plurality of frequency components, the change of the reception voltage is monitored for each frequency component, A noise suppression method in a damage monitoring system for a buried pipe, characterized in that damage to the buried pipe is detected by a decrease in received voltage for all
【請求項2】 監視用交流信号は、複数の周波数成分を
同時に含むことを特徴とする請求項1記載の埋設管の損
傷監視システムにおけるノイズ抑制方法
2. The method for suppressing noise in a damage monitoring system for a buried pipe according to claim 1, wherein the monitoring AC signal includes a plurality of frequency components at the same time.
【請求項3】 監視用交流信号は、複数の周波数成分を
経時的に配置したことを特徴とする請求項1記載の埋設
管の損傷監視システムにおけるノイズ抑制方法
3. A noise suppression method in a damage monitoring system for a buried pipe according to claim 1, wherein a plurality of frequency components are arranged with time in the monitoring AC signal.
【請求項4】 監視用交流信号は、複数の周波数成分を
同時に含む部分を、周波数成分を異ならせて経時的に配
置したことを特徴とする請求項1記載の埋設管の損傷監
視システムにおけるノイズ抑制方法
4. The noise in the damage monitoring system for a buried pipe according to claim 1, wherein the monitoring AC signal is arranged such that a portion containing a plurality of frequency components at the same time has different frequency components and is arranged over time. Suppression method
【請求項5】 監視用交流信号は、予め設定した複数の
周波数に経時的に交互に切り替えて、周波数をステップ
的に変化させることにより複数の周波数成分を経時的に
配置することを特徴とする請求項3又は4記載の埋設管
の損傷監視システムにおけるノイズ抑制方法
5. The monitoring AC signal is characterized by alternately switching to a plurality of preset frequencies over time, and arranging a plurality of frequency components over time by changing the frequency stepwise. A noise suppressing method in the damage monitoring system for a buried pipe according to claim 3 or 4.
JP29942195A 1995-11-17 1995-11-17 Noise suppressing method in damage monitoring system in burried pipe Pending JPH09145658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29942195A JPH09145658A (en) 1995-11-17 1995-11-17 Noise suppressing method in damage monitoring system in burried pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29942195A JPH09145658A (en) 1995-11-17 1995-11-17 Noise suppressing method in damage monitoring system in burried pipe

Publications (1)

Publication Number Publication Date
JPH09145658A true JPH09145658A (en) 1997-06-06

Family

ID=17872352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29942195A Pending JPH09145658A (en) 1995-11-17 1995-11-17 Noise suppressing method in damage monitoring system in burried pipe

Country Status (1)

Country Link
JP (1) JPH09145658A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139095A (en) * 2007-12-03 2009-06-25 Jfe Engineering Corp Apparatus and method for monitoring coating damage on underground pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139095A (en) * 2007-12-03 2009-06-25 Jfe Engineering Corp Apparatus and method for monitoring coating damage on underground pipe

Similar Documents

Publication Publication Date Title
EP0078183B1 (en) Determining locations of faults in power transmission lines
CA1238110A (en) Method and arrangement for signal transmission in ultrasonic echo sounding systems
CA1277387C (en) Leak detector and locator utilizing time domain reflectometry and sampling techniques
WO2004088331A2 (en) Method of precisely determining the location of a fault on an electrical transmision system
EP1094324B1 (en) Method and arrangement for defining location of partial discharge sources
CN105021958A (en) Switch cabinet partial discharge data recording and analyzing method based on multi-sensor detection
CN101179283A (en) Method of detecting and suppressing pulse noise
US4731586A (en) Electrical noise detector for detecting power line gap defects
US20100001741A1 (en) Method for Locating Pipe Leaks
WO2006025870A2 (en) Method of precisely determining the location, and validity of a fault on an electrical transmission system
JP2002090412A (en) Partial-discharge measuring apparatus
JPH09145658A (en) Noise suppressing method in damage monitoring system in burried pipe
JPH03269387A (en) Underwater position detector
EP0019398A1 (en) Monitoring apparatus for rotating machinery
JPH09274023A (en) Prediction system for landslide
JP3172626B2 (en) Partial discharge detection method for high voltage equipment
JP2019120548A (en) Insulation deterioration diagnostic device and insulation-deteriorated position orienting device
JPH0763720A (en) Noise suppression method for damage monitoring system of buried pipe
JP3063878B2 (en) Buried pipe damage monitoring device
JPH0933474A (en) Noise restriction method in system for monitoring damage of buried pipe
RU2192657C1 (en) Procedure testing change of stressed-deformed state of rock mass
KR101031666B1 (en) Apparatus for detecting partial discharge signal and method for detecting thereof
JP3102537B2 (en) Noise suppression method for damage monitoring system of buried pipe
Puletti et al. Localization of partial discharge sources along HV and MV cable routes
EP1012997A2 (en) Method of and device for measuring echo parameters on telephone lines