JP2009127024A - Wholly aromatic polyester and polyester resin composition - Google Patents

Wholly aromatic polyester and polyester resin composition Download PDF

Info

Publication number
JP2009127024A
JP2009127024A JP2007306872A JP2007306872A JP2009127024A JP 2009127024 A JP2009127024 A JP 2009127024A JP 2007306872 A JP2007306872 A JP 2007306872A JP 2007306872 A JP2007306872 A JP 2007306872A JP 2009127024 A JP2009127024 A JP 2009127024A
Authority
JP
Japan
Prior art keywords
mol
wholly aromatic
polyester
aromatic polyester
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007306872A
Other languages
Japanese (ja)
Other versions
JP5032957B2 (en
JP2009127024A5 (en
Inventor
Toshiaki Yokota
俊明 横田
Toshinori Kawahara
俊紀 川原
Toshio Shiaku
俊雄 塩飽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2007306872A priority Critical patent/JP5032957B2/en
Publication of JP2009127024A publication Critical patent/JP2009127024A/en
Publication of JP2009127024A5 publication Critical patent/JP2009127024A5/ja
Application granted granted Critical
Publication of JP5032957B2 publication Critical patent/JP5032957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wholly aromatic polyester easily melt moldable at a low temperature while excellent in heat resistance and having less generation of gas such as phenol. <P>SOLUTION: This wholly aromatic polyester showing optical anisotropy on melting is provided by containing a constituting unit including (I) hydroxynaphthoic acid, (II) terephthalic acid, (III) dihydroxybiphenyl and (IV) naphthalene dicarboxylic acid and/or dihydroxybenzene as an essential constituting component, and also having a 35 to 75 mol% constituting unit (I), a 12.5 to 32.5 mol% constituting unit (II), a 12.5 to 32.5 mol% constituting unit (III) and a 1 to 8 mol% constituting unit (IV) based on the whole constituting units. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐熱性に優れ、通常の重合装置で製造可能で、且つ溶融成形の容易な全芳香族ポリエステルに関するものである。   The present invention relates to a wholly aromatic polyester that is excellent in heat resistance, can be produced by a normal polymerization apparatus, and is easily melt-molded.

全芳香族ポリエステルとして現在市販されているものは4−ヒドロキシ安息香酸が主成分である。しかし、4−ヒドロキシ安息香酸のホモポリマーは、融点が分解点よりも高くなってしまう為、種々の成分を共重合する事により、低融点化する必要がある。   What is currently marketed as a fully aromatic polyester is based on 4-hydroxybenzoic acid. However, since the homopolymer of 4-hydroxybenzoic acid has a melting point higher than the decomposition point, it is necessary to lower the melting point by copolymerizing various components.

共重合成分として1,4 −フェニレンジカルボン酸、1,4 −ジヒドロキシベンゼン、4,4'−ジヒドロキシビフェニル等を用いた全芳香族ポリエステルは、融点が350℃以上と高く、汎用の装置にて溶融加工を行うには高すぎる。又、このような高い融点のものを、汎用の溶融加工機器で加工できる温度まで融点を下げるために種々の方法が試みられているが、低融点化がある程度実現される一方で高温(融点下近傍)での機械的強度を保てないという問題がある。   Fully aromatic polyester using 1,4-phenylenedicarboxylic acid, 1,4-dihydroxybenzene, 4,4'-dihydroxybiphenyl, etc. as a copolymerization component has a high melting point of 350 ° C or higher and is melted in a general-purpose device. Too expensive for processing. In addition, various methods have been tried to lower the melting point of such a high melting point to a temperature that can be processed by a general-purpose melting processing machine. There is a problem that the mechanical strength in the vicinity) cannot be maintained.

この問題を解決するために、特許文献1では、6−ヒドロキシ−2−ナフトエ酸、ジオール成分、ジカルボン酸成分を組み合わせた共重合ポリエステルが提案されているが、このポリエステルは冷却時の固化速度が速く、重合釜の排出口でポリマーが固化し易いという問題があった。また特許文献2では、6−ヒドロキシ−2−ナフトエ酸、4−ヒドロキシ安息香酸、ジオール成分、ジカルボン酸成分を組み合わせた共重合ポリエステルが提案されているが、耐熱性、溶融加工性に難があった。   In order to solve this problem, Patent Document 1 proposes a copolyester in which 6-hydroxy-2-naphthoic acid, a diol component, and a dicarboxylic acid component are combined. This polyester has a solidification rate upon cooling. There was a problem that the polymer was easily solidified at the outlet of the polymerization kettle quickly. Patent Document 2 proposes a copolyester in which 6-hydroxy-2-naphthoic acid, 4-hydroxybenzoic acid, a diol component, and a dicarboxylic acid component are combined, but there are difficulties in heat resistance and melt processability. It was.

耐熱性と成形性(溶融加工性)は二律背反関係にあり、高耐熱性のポリマーほど高い成形加工温度を必要とするため、成形時のポリマーの分解劣化が激しく、ポリマー分解ガスによる成形品の膨れ(ブリスター変形)、成形品の色相悪化(縞模様の発生)、成形機が発生するガス成分により腐食しやすい等の問題があり、耐熱性と成形性という両性質を良好に併せ持つことは難しい。
この問題を解決するため、本発明者らは、4−ヒドロキシ安息香酸を少量導入した特定構造からなる全芳香族ポリエステルを提案した(特許文献3)。しかし、4−ヒドロキシ安息香酸はフェノールガスの発生原因となるため、4−ヒドロキシ安息香酸を含まない、耐熱性と成形性という両性質を良好に併せ持つ全芳香族ポリエステルが求められていた。
特開昭56−10526号公報 特開昭55−144024号公報 特開2002−179776号公報
There is a trade-off between heat resistance and moldability (melt processability). Higher heat resistant polymers require higher molding processing temperatures, so the degradation of the polymer during molding is severe and the molded product swells due to polymer decomposition gas. There are problems such as (blister deformation), deterioration of the hue of the molded product (generation of striped pattern), and easy corrosion due to the gas components generated by the molding machine, and it is difficult to have both heat resistance and moldability well.
In order to solve this problem, the present inventors have proposed a wholly aromatic polyester having a specific structure into which a small amount of 4-hydroxybenzoic acid is introduced (Patent Document 3). However, since 4-hydroxybenzoic acid causes generation of phenol gas, there has been a demand for wholly aromatic polyesters that do not contain 4-hydroxybenzoic acid and have both good properties of heat resistance and moldability.
JP-A-56-10526 Japanese Patent Laid-Open No. 55-144024 JP 2002-179776 A

本発明は、上記問題点を解決し、耐熱性に優れつつも、低温での溶融成形が容易であり、フェノール等のガス発生の少ない全芳香族ポリエステルの提供を目的とする。   An object of the present invention is to provide a wholly aromatic polyester that solves the above-described problems and that is excellent in heat resistance but is easy to be melt-molded at a low temperature and generates less gas such as phenol.

本発明者らは上記目的を達成するため鋭意研究した結果、6−ヒドロキシ−2−ナフトエ酸単位、ジオール成分単位、ジカルボン酸成分単位で構成されるポリマーにおいて、6−ヒドロキシ−2−ナフトエ酸と特定の芳香族ジカルボン酸単位及び/又は芳香族ジオール単位を特定の限定された比率で組み合わせることが上記目的達成のために有効であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that in a polymer composed of a 6-hydroxy-2-naphthoic acid unit, a diol component unit, and a dicarboxylic acid component unit, 6-hydroxy-2-naphthoic acid and It has been found that combining specific aromatic dicarboxylic acid units and / or aromatic diol units in a specific limited ratio is effective for achieving the above object, and the present invention has been completed.

即ち本発明は、必須の構成成分として下記一般式(I),(II),(III),(IV)で表される構成単位を含み、全構成単位に対して(I)の構成単位が35〜75モル%、(II)の構成単位が12.5〜32.5モル%、(III)の構成単位が12.5〜32.5モル%、(IV)の構成単位が1〜8モル%であることを特徴とする溶融時に光学的異方性を示す全芳香族ポリエステルである。   That is, the present invention includes structural units represented by the following general formulas (I), (II), (III), and (IV) as essential structural components, and the structural unit of (I) is included in all structural units. 35 to 75 mol%, the structural unit (II) is 12.5 to 32.5 mol%, the structural unit (III) is 12.5 to 32.5 mol%, and the structural unit (IV) is 1 to 8 mol%. It is a wholly aromatic polyester that exhibits optical anisotropy when melted.

Figure 2009127024
Figure 2009127024

本発明で得られる特定の構成単位よりなる溶融時に異方性を示す全芳香族ポリエステル及びその組成物は、溶融時の流動性が良好でなおかつ熱安定性に優れており、また成形可能温度があまり高くないために、特殊な構造を持った成形機を用いずとも射出成形や押出成形、圧縮成形が可能であり、種々の立体成形品、繊維、フィルム等に加工出来る。特に、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース又はOA機器の加熱定着ロール等の成形品に好適である。   The wholly aromatic polyester having anisotropy at the time of melting comprising the specific structural unit obtained in the present invention and the composition thereof have good fluidity at the time of melting and excellent thermal stability, and have a moldable temperature. Since it is not so high, injection molding, extrusion molding and compression molding are possible without using a molding machine having a special structure, and it can be processed into various three-dimensional molded products, fibers, films and the like. In particular, it is suitable for molded products such as relay switch parts, bobbins, actuators, noise reduction filter cases, and heat fixing rolls of OA equipment.

上記(I)〜(IV)の構成単位を具現化するには通常のエステル形成能を有する種々の化合物が使用される。以下に本発明を構成する全芳香族ポリエステルを形成するために必要な原料化合物について順を追って詳しく説明する。   In order to embody the structural units (I) to (IV), various compounds having ordinary ester forming ability are used. Hereinafter, the raw material compounds necessary for forming the wholly aromatic polyester constituting the present invention will be described in detail step by step.

構成単位(I)は、6−ヒドロキシ−2−ナフトエ酸から導入される。   The structural unit (I) is introduced from 6-hydroxy-2-naphthoic acid.

構成単位(II)は、ジカルボン酸単位であり、テレフタル酸から導入される。   The structural unit (II) is a dicarboxylic acid unit and is introduced from terephthalic acid.

構成単位(III) は、ジオール単位であり、4,4'−ジヒドロキシビフェニルから導入される。   The structural unit (III) is a diol unit and is introduced from 4,4′-dihydroxybiphenyl.

また、構成単位(IV)は、レゾルシノール及び/又はナフタレンジカルボン酸(好ましくは2,6−ナフタレンジカルボン酸)から導入される構成単位であり、それらの置換体およびその誘導体から導入されたものであってもよい。構成単位(IV)としては、レゾルシノール、2,6−ナフタレンジカルボン酸の何れかから導入されたものでもよく、双方から導入されたものでもよい。   The structural unit (IV) is a structural unit introduced from resorcinol and / or naphthalenedicarboxylic acid (preferably 2,6-naphthalenedicarboxylic acid), and is introduced from a substituted product or derivative thereof. May be. The structural unit (IV) may be introduced from either resorcinol or 2,6-naphthalenedicarboxylic acid, or may be introduced from both.

本発明では、上記構成単位(I)〜(IV)を含み、全構成単位に対して(I)の構成単位が35〜75モル%(好ましくは40〜70モル%、より好ましくは45〜65モル%)、(II)の構成単位が12.5〜32.5モル%(好ましくは15〜30モル%、より好ましくは17.5〜27.5モル%)、(III)の構成単位が12.5〜32.5モル%(好ましくは15〜30モル%、より好ましくは17.5〜27.5モル%)、(IV)の構成単位が1〜8モル%(好ましくは2〜6モル%、より好ましくは2〜5モル%)の範囲にあることが必要である。
(I)の構成単位が35モル%未満では、融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。また、75モル%より多くなると成形加工温度に対するポリマーの耐熱性が低くなるため好ましくない。
(II)の構成単位が12.5モル%未満では、成形加工温度に対するポリマーの耐熱性が低くなるため好ましくない。また、32.5モル%より多くなると融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。
(III)の構成単位が12.5モル%未満では、成形加工温度に対するポリマーの耐熱性が低くなるため好ましくない。また、32.5モル%より多くなると融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。
また、(IV)の構成単位が1モル%未満では、ポリマー冷却時の固化速度が速くなり、リアクターの排出口でポリマーが固化し易くなり、ポリマー排出が不安定になるため好ましくない。また、8モル%より多くなると成形加工温度に対するポリマーの耐熱性が低くなるため好ましくない。
In the present invention, the structural units (I) to (IV) are contained, and the structural unit (I) is 35 to 75 mol% (preferably 40 to 70 mol%, more preferably 45 to 65 mol%) with respect to all the structural units. Mol%) and (II) are 12.5 to 32.5 mol% (preferably 15 to 30 mol%, more preferably 17.5 to 27.5 mol%), and (III) is 12.5 to 32.5 mol% (preferably 15 to 30 mol%, more preferably 17.5 to 27.5 mol%), and the constituent unit of (IV) is in the range of 1 to 8 mol% (preferably 2 to 6 mol%, more preferably 2 to 5 mol%). It is necessary.
When the constituent unit of (I) is less than 35 mol%, the melting point is remarkably high, and in some cases, the polymer is solidified in the reactor at the time of production, which makes it impossible to produce a polymer having a desired molecular weight. On the other hand, if it exceeds 75 mol%, the heat resistance of the polymer with respect to the molding processing temperature is lowered, which is not preferable.
If the structural unit of (II) is less than 12.5 mol%, the heat resistance of the polymer with respect to the molding temperature is lowered, which is not preferable. On the other hand, if it exceeds 32.5 mol%, the melting point becomes remarkably high. In some cases, the polymer is solidified in the reactor at the time of production, which makes it impossible to produce a polymer having a desired molecular weight.
If the structural unit of (III) is less than 12.5 mol%, the heat resistance of the polymer with respect to the molding processing temperature is lowered, which is not preferable. On the other hand, if it exceeds 32.5 mol%, the melting point becomes remarkably high. In some cases, the polymer is solidified in the reactor at the time of production, which makes it impossible to produce a polymer having a desired molecular weight.
On the other hand, if the constituent unit of (IV) is less than 1 mol%, the solidification rate at the time of cooling the polymer is increased, the polymer is easily solidified at the outlet of the reactor, and the polymer discharge becomes unstable. Moreover, since it will become low in the heat resistance of the polymer with respect to a shaping | molding process temperature when it exceeds 8 mol%, it is unpreferable.

尚、本発明の全芳香族ポリエステルには、本発明の目的を阻害しない範囲で少量の公知の他の構成単位を導入することもできる。但し、ビスフェノールAのようなSP炭素が存在する空間自由度が高い化合物から導入される構成単位は、成形加工温度に対するポリマーの耐熱性が低くなるため、導入しないほうが好ましい。
特に、下記一般式(V)で表される構成単位を全構成単位に対して1〜6モル%導入することは製造性の点からも好ましい。ここで、(V)の構成単位は、(IV)の構成単位が比較的少量(1〜2モル%)の場合にそれを補完する意味で併用することが好ましく、(IV)の構成単位と(V)の構成単位の合計が全構成単位に対して8モル%以下であることが望ましい。
In addition, a small amount of other known structural units can be introduced into the wholly aromatic polyester of the present invention as long as the object of the present invention is not impaired. However, constitutional units space flexibility is introduced from a high compound SP 3 carbon is present, such as bisphenol A, since the heat resistance of the polymer to the molding processing temperature is lowered, preferably should not introduce.
In particular, it is preferable from the viewpoint of manufacturability to introduce 1 to 6 mol% of the structural unit represented by the following general formula (V) with respect to all the structural units. Here, the structural unit of (V) is preferably used in the sense of complementing the structural unit of (IV) when the structural unit of (IV) is a relatively small amount (1 to 2 mol%). The total of the structural units (V) is desirably 8 mol% or less with respect to all the structural units.

Figure 2009127024
Figure 2009127024

前述の通り、特開昭56−10526号公報には、構成単位(I)、(II)、(III) を夫々10〜90モル%、5〜45モル%、5〜45モル%の割合で含む共重合ポリエステルが提案されているが、このポリエステルは冷却時の固化速度が速く、重合釜の排出口でポリマーが固化し易いという問題があった。本発明では、この問題を解決し、冷却時の固化速度を遅くし、重合釜からのポリマーの排出を可能にするため、構成単位(IV)を1〜8モル%含ませ、構成単位(I)〜(III)の割合を上記範囲に制御したのである。   As described above, JP-A-56-10526 discloses the structural units (I), (II), and (III) in proportions of 10 to 90 mol%, 5 to 45 mol%, and 5 to 45 mol%, respectively. Copolymerized polyesters have been proposed, but this polyester has a problem that the solidification rate at the time of cooling is high and the polymer is easily solidified at the outlet of the polymerization kettle. In the present invention, in order to solve this problem, to slow down the solidification rate during cooling, and to allow the polymer to be discharged from the polymerization vessel, 1 to 8 mol% of the structural unit (IV) is contained, and the structural unit (I ) To (III) were controlled within the above range.

また、本発明では、冷却時の固化速度を適度に遅くし、重合釜からのポリマーの排出を可能にしつつ、且つ耐熱性を高めるために、ポリマーの結晶化状態を最適に制御すべく、構成単位(I)、(II)、(III)、(IV)の比率を前記範囲に保つことで、これまでの問題点を解決し、耐熱性、製造性、成形性の何れにも優れた全芳香族ポリエステルを得ることができたのである。   Further, in the present invention, in order to optimally control the crystallization state of the polymer in order to moderately slow the solidification rate during cooling, to allow the polymer to be discharged from the polymerization vessel, and to improve the heat resistance, By maintaining the ratio of units (I), (II), (III), and (IV) within the above range, all the problems that have been solved so far have been solved, and all of them have excellent heat resistance, manufacturability, and moldability. Aromatic polyester could be obtained.

本発明の全芳香族ポリエステルは、直接重合法やエステル交換法を用いて重合され、重合に際しては、溶融重合法、溶液重合法、スラリー重合法、固相重合法等が用いられる。
本発明では、重合に際し、重合モノマーに対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを使用できる。アシル化剤としては、無水酢酸等の酸無水物等が挙げられる。
これらの重合に際しては種々の触媒の使用が可能であり、代表的なものはジアルキル錫酸化物、ジアリール錫酸化物、二酸化チタン、アルコキシチタンけい酸塩類、チタンアルコラート類、カルボン酸のアルカリ及びアルカリ土類金属塩類、BF3 の如きルイス酸塩等が挙げられる。触媒の使用量は一般にはモノマーの全重量に基いて約0.001乃至1重量%、特に約0.003乃至0.2重量%が好ましい。
The wholly aromatic polyester of the present invention is polymerized using a direct polymerization method or a transesterification method, and a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method or the like is used for the polymerization.
In the present invention, at the time of polymerization, an acylating agent for the polymerization monomer or a monomer having terminal activated as an acid chloride derivative can be used. Examples of the acylating agent include acid anhydrides such as acetic anhydride.
In the polymerization, various catalysts can be used. Typical examples are dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkali and alkaline earth of carboxylic acid. Metal salts, Lewis acid salts such as BF 3 and the like. The amount of catalyst used is generally about 0.001 to 1% by weight, particularly about 0.003 to 0.2% by weight, based on the total weight of the monomers.

また、溶液重合又はスラリー重合を行う場合、溶媒としては流動パラフィン、高耐熱性合成油、不活性鉱物油等が用いられる。   Moreover, when performing solution polymerization or slurry polymerization, as a solvent, liquid paraffin, a high heat resistant synthetic oil, an inert mineral oil, etc. are used.

反応条件としては、反応温度200〜380℃、最終到達圧力0.1〜760Torr(即ち、13〜101,080Pa)である。特に溶融反応では、反応温度260〜380℃、好ましくは300〜360℃、最終到達圧力1〜100Torr(即ち、133〜13,300Pa)、好ましくは1〜50Torr(即ち、133〜6,670Pa)である。   The reaction conditions are a reaction temperature of 200 to 380 ° C. and a final ultimate pressure of 0.1 to 760 Torr (that is, 13 to 101,080 Pa). Particularly in the melt reaction, the reaction temperature is 260 to 380 ° C., preferably 300 to 360 ° C., and the final ultimate pressure is 1 to 100 Torr (ie 133 to 13,300 Pa), preferably 1 to 50 Torr (ie 133 to 6,670 Pa).

反応は、全原料モノマー、アシル化剤及び触媒を同一反応容器に仕込んで反応を開始させる(一段方式)こともできるし、原料モノマー(I)、(III)及び(IV)のヒドロキシル基をアシル化剤によりアシル化させた後、(II)のカルボキシル基と反応させる(二段方式)こともできる。   In the reaction, all the raw material monomers, the acylating agent and the catalyst can be charged in the same reaction vessel to start the reaction (one-step system), or the hydroxyl groups of the raw material monomers (I), (III) and (IV) are acylated. After acylating with an agent, it can also be reacted with the carboxyl group of (II) (two-stage system).

溶融重合は、反応系内が所定温度に達した後、減圧を開始して所定の減圧度にして行う。撹拌機のトルクが所定値に達した後、不活性ガスを導入し、減圧状態から常圧を経て、所定の加圧状態にして反応系からポリマーを排出する。   The melt polymerization is performed after the inside of the reaction system has reached a predetermined temperature, and the pressure reduction is started to a predetermined pressure reduction degree. After the torque of the stirrer reaches a predetermined value, an inert gas is introduced, and the polymer is discharged from the reaction system through a normal pressure from a reduced pressure state to a predetermined pressure state.

上記重合方法により製造されたポリマーは更に常圧又は減圧、不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。固相重合反応の好ましい条件は、反応温度230〜350℃、好ましくは260〜330℃、最終到達圧力10〜760Torr(即ち、1,330〜101,080Pa)である。   The polymer produced by the above-described polymerization method can be further increased in molecular weight by solid-phase polymerization which is heated at normal pressure or reduced pressure and in an inert gas. Preferred conditions for the solid state polymerization reaction are a reaction temperature of 230 to 350 ° C., preferably 260 to 330 ° C., and a final ultimate pressure of 10 to 760 Torr (ie, 1,330 to 10,080 Pa).

溶融時に光学的異方性を示す液晶性ポリマーであることは、本発明において熱安定性と易加工性を併せ持つ上で不可欠な要素である。上記構成単位(I)〜(IV)からなる全芳香族ポリエステルは、構成成分およびポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、本発明に係わるポリマーは溶融時に光学的異方性を示す全芳香族ポリエステルに限られる。   The liquid crystalline polymer exhibiting optical anisotropy when melted is an indispensable element in the present invention in order to have both thermal stability and easy processability. The wholly aromatic polyester composed of the structural units (I) to (IV) may not form an anisotropic melt phase depending on the constituent components and the sequence distribution in the polymer, but the polymer according to the present invention is melted. Limited to wholly aromatic polyesters that sometimes exhibit optical anisotropy.

溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。より具体的には溶融異方性の確認はオリンパス社製偏光顕微鏡を使用しリンカム社製ホットステージにのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより実施できる。上記ポリマーは光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光は透過する。   The property of melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the melting anisotropy can be confirmed by melting a sample placed on a hot stage manufactured by Linkham using an Olympus polarizing microscope and observing it at a magnification of 150 times in a nitrogen atmosphere. The polymer is optically anisotropic and transmits light when inserted between crossed polarizers. If the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.

本発明の加工性の指標としては液晶性及び融点(液晶性発現温度)が考えられる。液晶性を示すか否かは溶融時の流動性に深く係わり、本願のポリエステルは溶融状態で液晶性を示すことが不可欠である。   As an index of processability of the present invention, liquid crystallinity and melting point (liquid crystallinity expression temperature) can be considered. Whether or not it exhibits liquid crystallinity is deeply related to the fluidity at the time of melting, and it is essential that the polyester of the present application exhibits liquid crystallinity in the molten state.

ネマチックな液晶性ポリマーは融点以上で著しく粘性低下を生じるので、一般的に融点またはそれ以上の温度で液晶性を示すことが加工性の指標となる。融点(液晶性発現温度)は、出来得る限り高い方が耐熱性の観点からは好ましいが、ポリマーの溶融加工時の熱劣化や成形機の加熱能力等を考慮すると、380℃以下であることが望ましい目安となる。   Since a nematic liquid crystalline polymer causes a significant decrease in viscosity at a melting point or higher, generally exhibiting liquid crystallinity at a melting point or higher is an index of workability. The melting point (liquid crystallinity expression temperature) is preferably as high as possible from the viewpoint of heat resistance, but in consideration of thermal degradation during polymer melt processing, heating capability of the molding machine, etc., it may be 380 ° C. or lower. A good guide.

また、融点が300〜380℃で、融点と軟化温度との差が55℃以下であることで、比較的低い成形加工温度で高温まで軟化が起こりにくい、高度に成形性と耐熱性を両立した液晶性ポリマーを得ることができる。軟化温度が融点より55℃以上低い場合は、成形加工温度に比較し満足できる耐熱性が得られない。   In addition, since the melting point is 300 to 380 ° C. and the difference between the melting point and the softening temperature is 55 ° C. or less, softening hardly occurs to a high temperature at a relatively low molding temperature, and both high formability and heat resistance are achieved. A liquid crystalline polymer can be obtained. When the softening temperature is 55 ° C. or more lower than the melting point, satisfactory heat resistance cannot be obtained as compared with the molding temperature.

更に、融点より10〜40℃高い温度で、剪断速度1000sec-1における溶融粘度が1×105 Pa・s以下であることが好ましい。更に好ましくは5Pa・s以上で1×102 Pa・s以下である。これらの溶融粘度は液晶性を具備することで概ね実現される。 Furthermore, the melt viscosity at a shear rate of 1000 sec −1 at a temperature 10 to 40 ° C. higher than the melting point is preferably 1 × 10 5 Pa · s or less. More preferably, it is 5 Pa · s or more and 1 × 10 2 Pa · s or less. These melt viscosities are generally realized by having liquid crystallinity.

次に本発明のポリエステルは使用目的に応じて各種の繊維状、粉粒状、板状の無機及び有機の充填剤を配合することができる。   Next, the polyester of the present invention can be blended with various fibrous, powdery, and plate-like inorganic and organic fillers according to the purpose of use.

繊維状充填剤としてはガラス繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維、ウォラストナイトの如き珪酸塩の繊維、硫酸マグネシウム繊維、ホウ酸アルミニウム繊維、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物などの無機質繊維状物質が挙げられる。特に代表的な繊維状充填剤はガラス繊維である。尚、ポリアミド、フッ素樹脂、ポリエステル樹脂、アクリル樹脂などの高融点有機質繊維状物質も使用することが出来る。   Examples of fibrous fillers include glass fibers, asbestos fibers, silica fibers, silica / alumina fibers, alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, potassium titanate fibers, and silicates such as wollastonite. Examples thereof include inorganic fibrous materials such as fibers, magnesium sulfate fibers, aluminum borate fibers, and metal fibrous materials such as stainless steel, aluminum, titanium, copper, and brass. A particularly typical fibrous filler is glass fiber. High melting point organic fibrous materials such as polyamide, fluororesin, polyester resin, and acrylic resin can also be used.

一方、粉粒状充填剤としてはカーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ミルドガラスファイバー、ガラスバルーン、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、クレー、硅藻土、ウォラストナイトの如き硅酸塩、酸化鉄、酸化チタン、酸化亜鉛、三酸化アンチモン、アルミナの如き金属の酸化物、炭酸カルシウム、炭酸マグネシウムの如き金属の炭酸塩、硫酸カルシウム、硫酸バリウムの如き金属の硫酸塩、その他フェライト、炭化硅素、窒化硅素、窒化硼素、各種金属粉末等が挙げられる。   On the other hand, as the granular filler, carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, calcium oxalate, aluminum oxalate, kaolin, clay, diatomaceous earth, wollastonite Oxalates such as, iron oxide, titanium oxide, zinc oxide, antimony trioxide, metal oxides such as alumina, metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate Other examples include ferrite, silicon carbide, silicon nitride, boron nitride, and various metal powders.

又、板状充填剤としてはマイカ、ガラスフレーク、タルク、各種の金属箔等が挙げられる。   Examples of the plate-like filler include mica, glass flakes, talc and various metal foils.

有機充填剤の例を示せば芳香族ポリエステル繊維、液晶性ポリマー繊維、芳香族ポリアミド、ポリイミド繊維等の耐熱性高強度合成繊維等である。   Examples of organic fillers include heat-resistant high-strength synthetic fibers such as aromatic polyester fibers, liquid crystalline polymer fibers, aromatic polyamides, and polyimide fibers.

これらの無機及び有機充填剤は一種又は二種以上併用することが出来る。繊維状充填剤と粒状又は板状充填剤との併用は特に機械的強度と寸法精度、電気的性質等を兼備する上で好ましい組み合わせである。無機充填剤の配合量は、全芳香族ポリエステル100重量部に対し、120重量部以下、好ましくは20〜80重量部である。   These inorganic and organic fillers can be used alone or in combination of two or more. The combined use of the fibrous filler and the granular or plate-like filler is a preferable combination particularly in combination of mechanical strength, dimensional accuracy, electrical properties and the like. The blending amount of the inorganic filler is 120 parts by weight or less, preferably 20 to 80 parts by weight with respect to 100 parts by weight of the wholly aromatic polyester.

特に好ましくは、繊維状充填剤、特にガラス繊維であり、その配合量は、全芳香族ポリエステル100重量部に対し30〜80重量部である。また、その繊維長は、200μm以上であることが好ましい。このようなガラス繊維は上記配合量で含む組成物は、熱変形温度、機械的物性等の向上が特に顕著である。   Particularly preferred are fibrous fillers, particularly glass fibers, and the blending amount is 30 to 80 parts by weight with respect to 100 parts by weight of wholly aromatic polyester. Further, the fiber length is preferably 200 μm or more. A composition containing such a glass fiber in the above blending amount is particularly remarkable in improving the heat distortion temperature and mechanical properties.

これらの充填剤の使用にあたっては必要ならば収束剤又は表面処理剤を使用することができる。   In using these fillers, if necessary, a sizing agent or a surface treatment agent can be used.

更に本発明のポリエステルには、本発明の企図する目的を損なわない範囲で他の熱可塑性樹脂を補助的に添加してもよい。   Furthermore, other thermoplastic resins may be added to the polyester of the present invention as long as they do not impair the intended purpose of the present invention.

この場合に使用する熱可塑性樹脂の例を示すと、ポリエチレン、ポリプロピレン等のポリオレィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の芳香族ジカルボン酸とジオール等からなる芳香族ポリエステル、ポリアセタール(ホモ又はコポリマー)、ポリスチレン、ポリ塩化ビニル、ポリアミド、ポリカーボネート、ABS、ポリフェニレンオキシド、ポリフェニレンスルフィド、フッ素樹脂等を挙げることができる。またこれらの熱可塑性樹脂は2種以上混合して使用することができる。   Examples of the thermoplastic resin used in this case are: Polyolefins such as polyethylene and polypropylene, aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate, aromatic polyesters such as diols, polyacetals (homo or copolymers), polystyrene , Polyvinyl chloride, polyamide, polycarbonate, ABS, polyphenylene oxide, polyphenylene sulfide, fluororesin and the like. These thermoplastic resins can be used in combination of two or more.

以下に実施例をもって本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。尚、実施例中の物性測定の方法は以下の通りである。
[融点]
TAインスツルメント社製DSCにて測定した。
[軟化温度]
調製したポリエステルから、ホットプレスで厚さ1mmの円盤を成形し、この成形品に1.82MPaの一定荷重をかけながらホットプレート上で10℃/分で昇温し、荷重のかかった直径1mmの針が成形品厚みの5%に到達した時の温度を、軟化温度とした。
[熱変形温度]
ISO75/Aに準じて、測定圧力1.8MPaにて測定した。
[曲げ強度]
ISO178に準じて測定した。
[ポリマー排出性]
重合装置の撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て0.5kg/cm3の加圧状態にして、重合装置の下部からポリマーを排出する際の挙動を観察した。
[溶融粘度]
表1及び2に示す測定温度、剪断速度1000sec-1の条件で、内径1mm、長さ20mmのオリフィスを用いて東洋精機製キャピログラフで測定した。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In addition, the method of the physical property measurement in an Example is as follows.
[Melting point]
Measured with a DSC manufactured by TA Instruments.
[Softening temperature]
A 1mm thick disk is molded from the prepared polyester with a hot press, and heated at 10 ° C / min on a hot plate while applying a constant load of 1.82MPa to the molded product. The temperature when 5% of the thickness of the molded product reached 5% was defined as the softening temperature.
[Heat deformation temperature]
The measurement was performed at a measurement pressure of 1.8 MPa according to ISO75 / A.
[Bending strength]
It measured according to ISO178.
[Polymer discharge]
Behavior when the polymer is discharged from the lower part of the polymerization apparatus after the stirring torque of the polymerization apparatus reaches a predetermined value and nitrogen is introduced to form a pressurized state of 0.5 kg / cm 3 from normal pressure to normal pressure Was observed.
[Melt viscosity]
Measurement was performed with a capillograph manufactured by Toyo Seiki using an orifice having an inner diameter of 1 mm and a length of 20 mm under the conditions of the measurement temperature and the shear rate of 1000 sec −1 shown in Tables 1 and 2.

実施例1
攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)6−ヒドロキシ−2−ナフトエ酸165g(48モル%)(HNA)
(II)テレフタル酸73g(24モル%)(TA)
(III)4,4'−ジヒドロキシビフェニル88g(26モル%)(BP)
(IV)2,6−ナフタレンジカルボン酸4g(1モル%)(NDA)
(V)イソフタル酸3g(1モル%)(IA)
酢酸カリウム触媒45mg
無水酢酸194g
原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で2時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから20分かけて10Torr(即ち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出した。
Example 1
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
(I) 6-hydroxy-2-naphthoic acid 165 g (48 mol%) (HNA)
(II) Terephthalic acid 73g (24mol%) (TA)
(III) 4,4′-dihydroxybiphenyl 88 g (26 mol%) (BP)
(IV) 2,6-Naphthalenedicarboxylic acid 4 g (1 mol%) (NDA)
(V) 3 g (1 mol%) of isophthalic acid (IA)
Potassium acetate catalyst 45mg
Acetic anhydride 194g
After charging the raw materials, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 2 hours. Thereafter, the temperature is further raised to 360 ° C. over 5.5 hours, and then the pressure is reduced to 10 Torr (ie, 1330 Pa) over 20 minutes, and melt polymerization is performed while distilling off acetic acid, excess acetic anhydride, and other low-boiling components. went. After the stirring torque reached a predetermined value, nitrogen was introduced and the pressure was changed from a reduced pressure state to a normal pressure, and the polymer was discharged from the lower part of the polymerization vessel.

得られたポリマーの融点は352℃、軟化温度は315℃であり、融点と軟化温度の差は37℃と小さかった。また溶融粘度は13Pa・sであった。   The obtained polymer had a melting point of 352 ° C. and a softening temperature of 315 ° C., and the difference between the melting point and the softening temperature was as small as 37 ° C. The melt viscosity was 13 Pa · s.

実施例2〜11
原料モノマーの種類、仕込み量を表1に示す通りとした以外は、実施例1と同様にしてポリマーを得た。これら結果を表1に示す。使用した原料モノマーの略称は以下のものを示す。
RES:レゾルシノール
Bis−A:ビスフェノールA
HBA:4−ヒドロキシ安息香酸
Examples 2-11
A polymer was obtained in the same manner as in Example 1 except that the type and amount of raw material monomer were as shown in Table 1. These results are shown in Table 1. Abbreviations of raw material monomers used are as follows.
RES: Resorcinol Bis-A: Bisphenol A
HBA: 4-hydroxybenzoic acid

実施例12
攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)6−ヒドロキシ−2−ナフトエ酸1273g(50モル%)(HNA)
(II)テレフタル酸562g(25モル%)(TA)
(III)4,4'−ジヒドロキシビフェニル579g(23モル%)(BP)
(IV)レゾルシノール30g(2モル%)(RES)
酢酸カリウム触媒330mg
無水酢酸1436g
原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で2時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから40分かけて5Torr(即ち667Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。
Example 12
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
(I) 6-hydroxy-2-naphthoic acid 1273 g (50 mol%) (HNA)
(II) terephthalic acid 562g (25mol%) (TA)
(III) 4,4'-dihydroxybiphenyl 579 g (23 mol%) (BP)
(IV) Resorcinol 30 g (2 mol%) (RES)
Potassium acetate catalyst 330mg
Acetic anhydride 1436g
After charging the raw materials, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 2 hours. Thereafter, the temperature is further raised to 360 ° C. over 5.5 hours, and then the pressure is reduced to 5 Torr (ie, 667 Pa) over 40 minutes, and melt polymerization is performed while distilling off acetic acid, excess acetic anhydride, and other low-boiling components. went. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize.

得られたペレットについて、窒素気流下、300℃で6時間熱処理を行った。ペレットの融点は347℃、軟化温度は327℃であり、融点と軟化温度の差は20℃と小さかった。また溶融粘度は29Pa・sであった。   The obtained pellets were heat-treated at 300 ° C. for 6 hours under a nitrogen stream. The pellet had a melting point of 347 ° C and a softening temperature of 327 ° C, and the difference between the melting point and the softening temperature was as small as 20 ° C. The melt viscosity was 29 Pa · s.

また、このペレット100重量部に対しガラスファイバー(日本電気硝子(株)製GL−P)53.8重量部を二軸押出機により配合混練し、ペレット形状の全芳香族ポリエステル組成物を得た。この全芳香族ポリエステル組成物を140℃で3時間乾燥後、射出成形機を用いて、シリンダー温度380℃で射出成形したところ、成形性は良好であった。得られた試験片の熱変形温度は327℃、曲げ強度は243MPaであり、良好な耐熱性を示した。   Further, 53.8 parts by weight of glass fiber (GL-P manufactured by Nippon Electric Glass Co., Ltd.) was blended and kneaded by a twin screw extruder with respect to 100 parts by weight of the pellets to obtain a pellet-shaped wholly aromatic polyester composition. When this wholly aromatic polyester composition was dried at 140 ° C. for 3 hours and then injection molded at a cylinder temperature of 380 ° C. using an injection molding machine, the moldability was good. The obtained test piece had a heat distortion temperature of 327 ° C. and a bending strength of 243 MPa, and showed good heat resistance.

実施例13〜14
原料モノマーの種類、仕込み量を表1に示す通りとした以外は、実施例12と同様にしてポリマーを得た。これら結果を表1に示す。
また実施例12と同様にして、全芳香族ポリエステル組成物を調製し、射出成形したところ、成形性は良好であった。得られた試験片(実施例13)の熱変形温度は330℃、曲げ強度は214MPaであり、また試験片(実施例14)の熱変形温度は314℃、曲げ強度は243MPaであり、良好な耐熱性を示した。
Examples 13-14
A polymer was obtained in the same manner as in Example 12 except that the type and amount of raw material monomer were as shown in Table 1. These results are shown in Table 1.
Moreover, when the wholly aromatic polyester composition was prepared and injection-molded in the same manner as in Example 12, the moldability was good. The obtained test piece (Example 13) had a heat deformation temperature of 330 ° C. and a bending strength of 214 MPa, and the test piece (Example 14) had a heat deformation temperature of 314 ° C. and a bending strength of 243 MPa. It showed heat resistance.

比較例1〜9
原料モノマーの種類、仕込み量を表2に示す通りとした以外は、実施例1と同様にしてポリマーを得た。これら結果を表2に示す。尚、比較例1〜2については、リアクターの排出口でポリマーが固化し易く、ポリマー排出が困難であった。また、比較例3については、製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなかった。
Comparative Examples 1-9
A polymer was obtained in the same manner as in Example 1 except that the type and amount of raw material monomers were as shown in Table 2. These results are shown in Table 2. In Comparative Examples 1 and 2, the polymer was easily solidified at the outlet of the reactor, and it was difficult to discharge the polymer. Moreover, about the comparative example 3, the polymer solidified in the reactor at the time of manufacture, and the polymer of desired molecular weight was not able to be manufactured.

Figure 2009127024
Figure 2009127024

Figure 2009127024
Figure 2009127024

Claims (12)

必須の構成成分として下記一般式(I),(II),(III),(IV)で表される構成単位を含み、全構成単位に対して(I)の構成単位が35〜75モル%、(II)の構成単位が12.5〜32.5モル%、(III)の構成単位が12.5〜32.5モル%、(IV)の構成単位が1〜8モル%であることを特徴とする溶融時に光学的異方性を示す全芳香族ポリエステル。
Figure 2009127024
Including the structural units represented by the following general formulas (I), (II), (III), and (IV) as essential structural components, the structural unit of (I) is 35 to 75 mol% with respect to all the structural units. The structural unit of (II) is 12.5 to 32.5 mol%, the structural unit of (III) is 12.5 to 32.5 mol%, and the structural unit of (IV) is 1 to 8 mol%. A wholly aromatic polyester exhibiting anisotropy.
Figure 2009127024
更に下記一般式(V)で表される構成単位を全構成単位に対して1〜6モル%含み、且つ(IV)の構成単位と(V)の構成単位の合計が全構成単位に対して8モル%以下である請求項1記載の全芳香族ポリエステル。
Figure 2009127024
Further, the structural unit represented by the following general formula (V) is contained in an amount of 1 to 6 mol% based on the total structural units, and the total of the structural units (IV) and (V) is based on the total structural units. The wholly aromatic polyester according to claim 1, which is 8 mol% or less.
Figure 2009127024
全構成単位に対して(I)の構成単位が40〜70モル%、(II)の構成単位が15〜30モル%、(III)の構成単位が15〜30モル%、(IV)の構成単位が2〜6モル%である請求項1記載の全芳香族ポリエステル。 The constituent unit of (I) is 40 to 70 mol%, the constituent unit of (II) is 15 to 30 mol%, the constituent unit of (III) is 15 to 30 mol%, and the constituent of (IV) is based on all constituent units The wholly aromatic polyester according to claim 1, wherein the unit is 2 to 6 mol%. 全構成単位に対して(I)の構成単位が45〜65モル%、(II)の構成単位が17.5〜27.5モル%、(III)の構成単位が17.5〜27.5モル%、(IV)の構成単位が2〜5モル%である請求項1記載の全芳香族ポリエステル。 45 to 65 mol% of the structural unit of (I), 17.5 to 27.5 mol% of the structural unit of (II), 17.5 to 27.5 mol% of the structural unit of (III), and (IV) The wholly aromatic polyester according to claim 1, wherein the unit is 2 to 5 mol%. 全芳香族ポリエステルの融点より10〜40℃高い温度で、剪断速度1000sec-1における溶融粘度が1×105 Pa・s以下である請求項1〜4の何れか1項記載の全芳香族ポリエステル。 The wholly aromatic polyester according to any one of claims 1 to 4, wherein the melt viscosity at a shear rate of 1000 sec -1 is 1 x 10 5 Pa · s or less at a temperature 10 to 40 ° C higher than the melting point of the wholly aromatic polyester. . 融点が300〜380℃で、融点と軟化温度との差が55℃以下である請求項1〜5の何れか1項記載の全芳香族ポリエステル。 The wholly aromatic polyester according to any one of claims 1 to 5, wherein the melting point is 300 to 380 ° C, and the difference between the melting point and the softening temperature is 55 ° C or less. 請求項1〜6の何れか1項記載の全芳香族ポリエステル100重量部に対し無機又は有機充填剤を120重量部以下配合してなるポリエステル樹脂組成物。 A polyester resin composition comprising 120 parts by weight or less of an inorganic or organic filler based on 100 parts by weight of the wholly aromatic polyester according to claim 1. 無機充填剤が繊維状充填剤であり、その配合量が全芳香族ポリエステル100重量部に対し30〜80重量部である請求項7記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 7, wherein the inorganic filler is a fibrous filler, and the blending amount thereof is 30 to 80 parts by weight with respect to 100 parts by weight of the wholly aromatic polyester. 請求項1〜6の何れか1項記載の全芳香族ポリエステルもしくは請求項7又は8記載のポリエステル樹脂組成物を成形したポリエステル成形品。 A polyester molded article obtained by molding the wholly aromatic polyester according to any one of claims 1 to 6 or the polyester resin composition according to claim 7 or 8. 成形品が、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース又はOA機器の加熱定着ロールである請求項9記載のポリエステル成形品。 The polyester molded product according to claim 9, wherein the molded product is a relay switch part, a bobbin, an actuator, a noise reduction filter case, or a heat fixing roll of OA equipment. 成形品が、ポリエステル繊維である請求項9記載のポリエステル成形品。 The polyester molded article according to claim 9, wherein the molded article is a polyester fiber. 成形品が、ポリエステルフィルムである請求項9記載のポリエステル成形品。 The polyester molded article according to claim 9, wherein the molded article is a polyester film.
JP2007306872A 2007-11-28 2007-11-28 Totally aromatic polyester and polyester resin composition Active JP5032957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306872A JP5032957B2 (en) 2007-11-28 2007-11-28 Totally aromatic polyester and polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306872A JP5032957B2 (en) 2007-11-28 2007-11-28 Totally aromatic polyester and polyester resin composition

Publications (3)

Publication Number Publication Date
JP2009127024A true JP2009127024A (en) 2009-06-11
JP2009127024A5 JP2009127024A5 (en) 2010-12-16
JP5032957B2 JP5032957B2 (en) 2012-09-26

Family

ID=40818274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306872A Active JP5032957B2 (en) 2007-11-28 2007-11-28 Totally aromatic polyester and polyester resin composition

Country Status (1)

Country Link
JP (1) JP5032957B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157533A (en) * 2010-02-04 2011-08-18 Sumitomo Chemical Co Ltd Liquid crystalline polyester composition and film of the same
WO2014045941A1 (en) * 2012-09-21 2014-03-27 ポリプラスチックス株式会社 Wholly aromatic polyester, polyester resin composition, and a polyester molded article
WO2014045940A1 (en) * 2012-09-21 2014-03-27 ポリプラスチックス株式会社 Wholly aromatic polyester, polyester resin composition, and a polyester molded article
WO2014050370A1 (en) * 2012-09-27 2014-04-03 ポリプラスチックス株式会社 Composite resin composition and flat connector molded from same
WO2018008612A1 (en) * 2016-07-04 2018-01-11 Jxtgエネルギー株式会社 Wholly aromatic liquid crystal polyester resin, molded article, and electrical/electronic component
JP2019116586A (en) * 2017-12-27 2019-07-18 Jxtgエネルギー株式会社 Resin film and metal foil laminate
WO2022019294A1 (en) * 2020-07-21 2022-01-27 Eneos株式会社 Liquid-crystal polyester resin, moulded article, and electrical/electronic component
WO2022260082A1 (en) * 2021-06-09 2022-12-15 株式会社村田製作所 Porous liquid crystal polymer sheet, porous liquid crystal polymer sheet with metal layer, and electronic circuit board
WO2022260087A1 (en) * 2021-06-09 2022-12-15 株式会社村田製作所 Porous liquid crystal polymer sheet, porous liquid crystal polymer sheet with metal layer, and electronic circuit board
KR20230026442A (en) 2020-07-21 2023-02-24 에네오스 가부시키가이샤 Liquid crystal polyester resins, molded articles, and electrical and electronic components
WO2023163101A1 (en) * 2022-02-28 2023-08-31 富士フイルム株式会社 Laminate, wiring substate, and method for fabricating wiring substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225024A (en) * 1990-04-04 1992-08-14 Hoechst Celanese Corp Melt-processable polyester
JP2004196930A (en) * 2002-12-18 2004-07-15 Sumitomo Chem Co Ltd Aromatic liquid crystal polyester and its film
JP2005158085A (en) * 2003-11-20 2005-06-16 Polyplastics Co Component of signal reading device, and component of sensor
JP2005272810A (en) * 2003-11-05 2005-10-06 Sumitomo Chemical Co Ltd Aromatic liquid crystal polyester and its film, and their use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225024A (en) * 1990-04-04 1992-08-14 Hoechst Celanese Corp Melt-processable polyester
JP2004196930A (en) * 2002-12-18 2004-07-15 Sumitomo Chem Co Ltd Aromatic liquid crystal polyester and its film
JP2005272810A (en) * 2003-11-05 2005-10-06 Sumitomo Chemical Co Ltd Aromatic liquid crystal polyester and its film, and their use
JP2005158085A (en) * 2003-11-20 2005-06-16 Polyplastics Co Component of signal reading device, and component of sensor

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157533A (en) * 2010-02-04 2011-08-18 Sumitomo Chemical Co Ltd Liquid crystalline polyester composition and film of the same
WO2014045941A1 (en) * 2012-09-21 2014-03-27 ポリプラスチックス株式会社 Wholly aromatic polyester, polyester resin composition, and a polyester molded article
WO2014045940A1 (en) * 2012-09-21 2014-03-27 ポリプラスチックス株式会社 Wholly aromatic polyester, polyester resin composition, and a polyester molded article
JP2014062183A (en) * 2012-09-21 2014-04-10 Polyplastics Co Wholly aromatic polyester and polyester resin composition, and polyester molded article
JP2014062182A (en) * 2012-09-21 2014-04-10 Polyplastics Co Wholly aromatic polyester and polyester resin composition, and polyester molded article
KR20150059747A (en) * 2012-09-21 2015-06-02 포리프라스틱 가부시키가이샤 Wholly aromatic polyester, polyester resin composition, and a polyester moled article
KR20150060712A (en) * 2012-09-21 2015-06-03 포리프라스틱 가부시키가이샤 Wholly aromatic polyester, polyester resin composition, and a polyester molded article
KR101586760B1 (en) 2012-09-21 2016-01-19 포리프라스틱 가부시키가이샤 Wholly aromatic polyester, polyester resin composition, and a polyester molded article
KR101586762B1 (en) 2012-09-21 2016-01-19 포리프라스틱 가부시키가이샤 Wholly aromatic polyester, polyester resin composition, and a polyester moled article
WO2014050370A1 (en) * 2012-09-27 2014-04-03 ポリプラスチックス株式会社 Composite resin composition and flat connector molded from same
JP5826404B2 (en) * 2012-09-27 2015-12-02 ポリプラスチックス株式会社 Composite resin composition and planar connector molded from the composite resin composition
JPWO2014050370A1 (en) * 2012-09-27 2016-08-22 ポリプラスチックス株式会社 Composite resin composition and planar connector molded from the composite resin composition
KR20190028668A (en) * 2016-07-04 2019-03-19 제이엑스티지 에네루기 가부시키가이샤 All-aromatic liquid crystal polyester resin, molded product, and electric and electronic parts
KR102353665B1 (en) * 2016-07-04 2022-01-19 에네오스 가부시키가이샤 Whole aromatic liquid crystal polyester resins, molded articles, and electrical and electronic parts
WO2018008612A1 (en) * 2016-07-04 2018-01-11 Jxtgエネルギー株式会社 Wholly aromatic liquid crystal polyester resin, molded article, and electrical/electronic component
CN109563253A (en) * 2016-07-04 2019-04-02 Jxtg能源株式会社 All aromatic liquid crystal polyester resin, molded product and electrical and electronic parts
US20190202978A1 (en) * 2016-07-04 2019-07-04 Jxtg Nippon Oil & Energy Corporation Wholly aromatic liquid crystalline polyester resin, molded article, and electric and electronic components
JPWO2018008612A1 (en) * 2016-07-04 2018-09-13 Jxtgエネルギー株式会社 Totally aromatic liquid crystal polyester resin, molded products, and electrical and electronic parts
US10822453B2 (en) 2016-07-04 2020-11-03 Eneos Corporation Wholly aromatic liquid crystalline polyester resin, molded article, and electric and electronic components
TWI724196B (en) * 2016-07-04 2021-04-11 日商Jxtg能源股份有限公司 Fully aromatic liquid crystal polyester resin, molded products, and electrical and electronic parts
CN109563253B (en) * 2016-07-04 2021-08-17 Jxtg能源株式会社 Wholly aromatic liquid crystal polyester resin, molded article, and electrical/electronic component
JP2019116586A (en) * 2017-12-27 2019-07-18 Jxtgエネルギー株式会社 Resin film and metal foil laminate
WO2022019294A1 (en) * 2020-07-21 2022-01-27 Eneos株式会社 Liquid-crystal polyester resin, moulded article, and electrical/electronic component
KR20230026442A (en) 2020-07-21 2023-02-24 에네오스 가부시키가이샤 Liquid crystal polyester resins, molded articles, and electrical and electronic components
CN115916866A (en) * 2020-07-21 2023-04-04 引能仕株式会社 Liquid crystal polyester resin, molded article, and electric/electronic component
CN115916866B (en) * 2020-07-21 2024-09-17 引能仕株式会社 Liquid crystal polyester resin, molded article and electric/electronic parts
WO2022260082A1 (en) * 2021-06-09 2022-12-15 株式会社村田製作所 Porous liquid crystal polymer sheet, porous liquid crystal polymer sheet with metal layer, and electronic circuit board
WO2022260087A1 (en) * 2021-06-09 2022-12-15 株式会社村田製作所 Porous liquid crystal polymer sheet, porous liquid crystal polymer sheet with metal layer, and electronic circuit board
WO2023163101A1 (en) * 2022-02-28 2023-08-31 富士フイルム株式会社 Laminate, wiring substate, and method for fabricating wiring substrate

Also Published As

Publication number Publication date
JP5032957B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5032957B2 (en) Totally aromatic polyester and polyester resin composition
JP5546081B2 (en) Totally aromatic polyester and polyester resin composition
JP5155769B2 (en) Totally aromatic polyester and polyester resin composition
JP6157778B1 (en) Totally aromatic polyester and method for producing the same
CN113710724B (en) Wholly aromatic polyester and polyester resin composition
JP3730150B2 (en) Totally aromatic polyester and polyester resin composition
JP5753144B2 (en) Totally aromatic polyester and polyester resin composition, and polyester molded article
KR100773646B1 (en) Wholly aromatic polyester and polyester resin composition
JP5753143B2 (en) Totally aromatic polyester and polyester resin composition, and polyester molded article
WO2017068869A1 (en) Fully aromatic polyester amide, and production method therefor
JPWO2020204125A1 (en) Total aromatic polyester and polyester resin composition
JP5032958B2 (en) Totally aromatic polyester and polyester resin composition
JP6133000B1 (en) Totally aromatic polyester amide and method for producing the same
WO2018097011A1 (en) Fully aromatic polyesteramide and method for producing same
CN109312070B (en) Wholly aromatic polyester amide and method for producing same
JP6189750B2 (en) Totally aromatic polyester, polyester resin composition, and polyester molded article

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

R150 Certificate of patent or registration of utility model

Ref document number: 5032957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250