WO2014045940A1 - Wholly aromatic polyester, polyester resin composition, and a polyester molded article - Google Patents

Wholly aromatic polyester, polyester resin composition, and a polyester molded article Download PDF

Info

Publication number
WO2014045940A1
WO2014045940A1 PCT/JP2013/074382 JP2013074382W WO2014045940A1 WO 2014045940 A1 WO2014045940 A1 WO 2014045940A1 JP 2013074382 W JP2013074382 W JP 2013074382W WO 2014045940 A1 WO2014045940 A1 WO 2014045940A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
mol
wholly aromatic
molded product
aromatic polyester
Prior art date
Application number
PCT/JP2013/074382
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 横田
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN201380049255.0A priority Critical patent/CN104662064B/en
Priority to KR1020157007213A priority patent/KR101586760B1/en
Publication of WO2014045940A1 publication Critical patent/WO2014045940A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters

Definitions

  • the present invention relates to a wholly aromatic polyester and a polyester resin composition which are excellent in heat resistance and toughness and can be produced with a normal polymerization apparatus, and a polyester molded product formed by molding them.
  • the wholly aromatic polyester using terephthalic acid, hydroquinone, 4,4'-dihydroxybiphenyl, etc. as a copolymerization component has a high melting point of 350 ° C. or higher and is too high to be melt-processed with a general-purpose apparatus.
  • various methods have been tried to lower the melting point of such a high melting point to a temperature that can be processed by a general-purpose melt processing machine. There is a problem that heat resistance represented by mechanical strength in the vicinity) cannot be maintained.
  • Patent Documents 1 to 3 propose copolymer polyesters in which 4-hydroxybenzoic acid is combined with 6-hydroxy-2-naphthoic acid, a diol component, and a dicarboxylic acid component. .
  • copolyesters proposed in Patent Documents 1 to 3 have low toughness and cause cracks in the molded product during molding, or have high toughness but insufficient heat resistance.
  • a wholly aromatic polyester as described above what shows optical anisotropy at the time of melting is called a liquid crystalline polymer, and is excellent in dimensional accuracy, vibration damping, fluidity, and less burrs are generated at the time of molding. It is useful as a material for various electronic components.
  • a flat connector having a lattice structure inside an outer frame typified by a CPU socket the tendency of high heat resistance, high density, and miniaturization is remarkable, and a liquid crystalline polymer composition reinforced with glass fiber Is often adopted.
  • the pitch interval between the lattice portions which is required in recent years, is 2 mm or less, and the width of the resin portion of the lattice portion holding the terminals is 0.5 mm or less.
  • the performance was insufficient for use as a very thin planar connector. That is, in such a planar connector having a very thin grid portion, filling the lattice portion with resin increases the filling pressure due to insufficient fluidity, resulting in the resulting planar connector. There is a problem that the amount of warp deformation increases. In order to solve this problem, it is conceivable to use a liquid crystalline polymer composition having good fluidity with a small amount of glass fiber added. However, such a composition is insufficient in strength and deforms due to reflow during mounting. The problem arises.
  • Patent Document 4 a planar connector composed of a specific composite resin composition in which the weight average length of the fibrous filler to be blended and the blending amount have a certain relationship.
  • Patent Document 4 a thin flat connector having excellent properties such as moldability, flatness, warp deformation, and heat resistance can be obtained.
  • the invention described in Patent Document 4 addresses this. It has been found that there are cases where it cannot be completed.
  • Patent Document 5 a planar connector composed of a specific composite resin composition in which a specific filler is combined with a specific liquid crystalline polymer.
  • Patent Document 5 a thin planar connector having excellent properties such as moldability, flatness, warpage deformation, heat resistance, and the like, and further, the integration rate in recent planar connectors is obtained. It is possible to cope with a change in shape accompanying an increase in the thickness, particularly an increase in the number of connector pins and a further reduction in the width of the lattice portion.
  • the object of the present invention is to provide a wholly aromatic polyester that solves the above-mentioned problems and has excellent heat resistance and toughness and exhibits optical anisotropy when melted, and a composition thereof.
  • the present invention has a good moldability and is excellent in performances such as heat resistance and crack resistance.
  • An object of the present invention is to provide a polyester molded article with less warpage deformation and excellent flatness.
  • the present inventors have found that in a polymer composed of 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, terephthalic acid, resorcinol, and 4,4′-dihydroxybiphenyl, It has been found that combining 6-hydroxy-2-naphthoic acid and resorcinol in a specific limited amount is effective for achieving the above object, and the present invention has been completed.
  • constituent units represented by the following general formulas (I), (II), (III), (IV) and (V) as essential constituent components, and the constituent of (I) with respect to all constituent units 35 to 75 mol% of units, 2 to 8 mol% of structural units of (II), 8.5 to 31.5 mol% of structural units of (III), 2 to 8 mol% of structural units of (IV) And (V) the structural unit is 0.5 to 29.5 mol%, and the structural unit (II) + (IV) is 4 to 10 mol%.
  • a polyester resin composition comprising 120 parts by mass or less of an inorganic or organic filler based on 100 parts by mass of the wholly aromatic polyester according to any one of (1) to (3).
  • the inorganic filler is one or more selected from glass fiber, mica and talc, and the blending amount is 20 to 80 parts by mass with respect to 100 parts by mass of the wholly aromatic polyester (4) The polyester resin composition as described in 2.
  • a polyester molded article obtained by molding the wholly aromatic polyester according to any one of (1) to (3) or the polyester resin composition according to (4) or (5).
  • the wholly aromatic polyester which is excellent in heat resistance and toughness, and shows optical anisotropy at the time of fusion
  • the above-mentioned excellent performance is obtained when the molded product has good moldability and is excellent in performance such as heat resistance and crack resistance, particularly in the shape of plate or film.
  • the molding temperature is not so high, injection molding, extrusion molding, and compression molding are possible without using a molding machine with a special structure, and it can be processed into various three-dimensional molded products, fibers, films, etc. can do.
  • a molded product such as a connector, a CPU socket, a relay switch component, a bobbin, an actuator, a noise reduction filter case, or a heat fixing roll of OA equipment.
  • the above-mentioned various performances can provide a planar connector that has good moldability, little warping deformation, and excellent performance such as flatness, heat resistance, and crack resistance.
  • the wholly aromatic polyester of the present invention is a wholly aromatic polyester that exhibits optical anisotropy when melted, and has the following general formulas (I), (II), (III), (IV) and (IV) as essential constituent components.
  • V) the structural unit of (I) is 35 to 75 mol%, the structural unit of (II) is 2 to 8 mol%, and the structural unit of (III) is 8.5 to 31.5 mol%, (IV) constituent unit is 2 to 8 mol%, (V) constituent unit is 0.5 to 29.5 mol%, (II) + (IV) constituent unit Is 4 to 10 mol%.
  • Structural unit (I) is introduced from 4-hydroxybenzoic acid.
  • the structural unit (II) is introduced from 6-hydroxy-2-naphthoic acid.
  • the structural unit (III) is introduced from terephthalic acid.
  • the structural unit (IV) is introduced from resorcinol.
  • the structural unit (V) is introduced from 4,4'-dihydroxybiphenyl.
  • the present invention includes the structural units (I) to (V), wherein the structural unit of (I) is 35 to 75 mol% (preferably 40 to 65 mol%) and (II) based on the total structural units.
  • the unit is 2 to 8 mol% (preferably 3 to 7 mol%)
  • the structural unit (III) is 8.5 to 31.5 mol% (preferably 14 to 29 mol%)
  • the structural unit (IV) is 2 to 8 mol% (preferably 3 to 7 mol%)
  • (V) is 0.5 to 29.5 mol% (preferably 10 to 22 mol%)
  • the unit needs to be in the range of 4 to 10 mol% (preferably 6 to 10 mol%).
  • the constituent unit of (I) When the constituent unit of (I) is less than 35 mol% and more than 75 mol%, the melting point becomes remarkably high, and in some cases, the polymer solidifies in the reactor during production, making it impossible to produce a polymer having a desired molecular weight. Therefore, it is not preferable. If the structural unit (II) is less than 2 mol%, the toughness is low and this is not preferred. Moreover, since it will become low in the heat resistance of a polymer when it exceeds 8 mol%, it is unpreferable.
  • the structural unit of (III) When the structural unit of (III) is less than 8.5 mol% and more than 31.5 mol%, the melting point becomes remarkably high, and in some cases, the polymer solidifies in the reactor during production, and a polymer having a desired molecular weight can be produced. Since it becomes impossible, it is not preferable.
  • the constituent unit of (IV) is less than 2 mol%, the toughness is low and not preferable. Moreover, since it will become low in the heat resistance of a polymer when it exceeds 8 mol%, it is unpreferable.
  • the constituent unit of (V) when the constituent unit of (V) is less than 0.5 mol% and more than 29.5 mol%, the melting point becomes remarkably high, and in some cases, the polymer is solidified in the reactor during production to produce a polymer having a desired molecular weight. This is not preferable because it cannot be performed.
  • the structural unit of (II) + (IV) when the structural unit of (II) + (IV) is less than 4 mol%, the heat of crystallization of the polymer determined by differential calorimetry showing the crystallization state of the polymer is 2.0 J / g or more, and the toughness is preferably reduced. Absent.
  • a preferable value of the heat of crystallization is 1.8 J / g or less, and more preferably 1.6 J / g or less.
  • the heat resistance of the polymer is lowered, which is not preferable.
  • the heat of crystallization is a differential calorimetry. After observing the endothermic peak temperature (Tm1) observed when the polymer is measured from room temperature to 20 ° C / min, the temperature is maintained at Tm1 + 40 ° C for 2 minutes. Then, the calorific value of the exothermic peak obtained from the peak of the exothermic peak temperature observed when the temperature is measured at 20 ° C./min.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 59-43021
  • Patent Document 2 Japanese Patent Application Laid-Open No. 59-62630
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11-506145
  • 4-hydroxybenzoic acid is used.
  • a liquid crystal polymer in which 6-hydroxy-2-naphthoic acid, a diol component, and a dicarboxylic acid component are combined with an acid has been proposed.
  • Example 22 of JP-A-59-62630 Patent Document 2
  • a liquid crystal polymer composed of 57 mol% of structural unit (I), 3 mol% of (II), 20 mol% of (III) and 20 mol% of (V) has been proposed.
  • the structural unit (I) is 20 mol%
  • (II) is 30 mol%
  • (III) is 25 mol%
  • (IV) Has been proposed, but this liquid crystal polymer has high toughness but insufficient heat resistance.
  • the wholly aromatic polyester of the present invention is polymerized using a direct polymerization method or a transesterification method, and a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method or the like is used for the polymerization.
  • an acylating agent for the polymerization monomer or a monomer having terminal activated as an acid chloride derivative can be used.
  • the acylating agent include acid anhydrides such as acetic anhydride.
  • catalysts can be used for these polymerizations, and typical ones include dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkali and alkaline earth of carboxylic acids. Metal salts, Lewis acid salts such as BF 3 and the like.
  • the amount of the catalyst used is generally about 0.001 to 1% by mass, particularly about 0.003 to 0.2% by mass, based on the total weight of the monomers.
  • liquid paraffin high heat resistant synthetic oil, inert mineral oil, or the like is used as a solvent.
  • the reaction conditions are a reaction temperature of 200 to 380 ° C. and a final ultimate pressure of 0.1 to 760 Torr (that is, 13 to 101,080 Pa). Particularly in the melt reaction, the reaction temperature is 260 to 380 ° C., preferably 300 to 360 ° C., and the final ultimate pressure is 1 to 100 Torr (ie, 133 to 13,300 Pa), preferably 1 to 50 Torr (ie, 133 to 6,670 Pa). is there.
  • all the raw material monomers, the acylating agent and the catalyst can be charged in the same reaction vessel to start the reaction (one-stage system), or the raw material monomers (I), (II), (IV) and (V)
  • the hydroxyl group can be acylated with an acylating agent and then reacted with the carboxyl group of (III) (two-stage system).
  • the melt polymerization is performed after the inside of the reaction system has reached a predetermined temperature, and the pressure reduction is started to a predetermined degree of pressure reduction. After the torque of the stirrer reaches a predetermined value, an inert gas is introduced, and the polymer is discharged from the reaction system through a normal pressure from a reduced pressure state to a predetermined pressure state.
  • the polymer produced by the above polymerization method can be further increased in molecular weight by solid-phase polymerization that is heated at normal pressure or reduced pressure in an inert gas.
  • Preferred conditions for the solid phase polymerization reaction are a reaction temperature of 230 to 350 ° C., preferably 260 to 330 ° C., and a final ultimate pressure of 10 to 760 Torr (ie 1,330 to 101,080 Pa).
  • the liquid crystalline polymer exhibiting optical anisotropy when melted is an indispensable element in the present invention in order to have both thermal stability and easy processability.
  • the wholly aromatic polyesters comprising the structural units (I) to (V) may not form an anisotropic melt phase depending on the constituent components and the sequence distribution in the polymer, but the polymer according to the present invention is melted. Limited to wholly aromatic polyesters that sometimes exhibit optical anisotropy.
  • melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the melting anisotropy can be confirmed by melting a sample placed on a hot stage manufactured by Linkham using an Olympus polarizing microscope and observing it at a magnification of 150 times in a nitrogen atmosphere.
  • the polymer is optically anisotropic and transmits light when inserted between crossed polarizers. If the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.
  • liquid crystallinity and melting point can be considered as an index of processability. Whether or not it exhibits liquid crystallinity is deeply related to the fluidity during melting, and it is essential that the wholly aromatic polyester of the present invention exhibits liquid crystallinity in a molten state.
  • the melting point (liquid crystallinity expression temperature) is preferably as high as possible from the viewpoint of heat resistance, but it is 280 to 390 ° C in consideration of thermal degradation during polymer melt processing and heating capability of the molding machine. Is a preferred guideline. In addition, More preferably, it is 380 degrees C or less.
  • melt viscosity at a shear rate of 1000 sec ⁇ 1 at a temperature 10 to 40 ° C. higher than the melting point is preferably 1 ⁇ 10 5 Pa ⁇ s or less. More preferably, it is 5 Pa ⁇ s or more and 1 ⁇ 10 2 Pa ⁇ s or less. These melt viscosities are generally realized by having liquid crystallinity.
  • the polyester resin composition of the present invention is characterized by blending 120 parts by mass or less of an inorganic or organic filler with respect to 100 parts by mass of the wholly aromatic polyester of the present invention described above.
  • inorganic and organic fillers include fibrous, granular, and plate-like ones.
  • Fiber fillers include glass fibers, asbestos fibers, silica fibers, silica / alumina fibers, alumina fibers, zirconia fibers, silicon nitride fibers, silicon nitride fibers, boron fibers, potassium titanate fibers, silicates such as wollastonite.
  • Inorganic fibrous materials such as fibers, magnesium sulfate fibers, aluminum borate fibers, and metal fibrous materials such as stainless steel, aluminum, titanium, copper, and brass.
  • a particularly typical fibrous filler is glass fiber.
  • High melting point organic fibrous materials such as polyamide, fluorine resin, polyester resin, and acrylic resin can also be used.
  • silicates such as carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, calcium silicate, aluminum silicate, kaolin, clay, diatomaceous earth, and wollastonite , Iron oxide, titanium oxide, zinc oxide, antimony trioxide, metal oxides such as alumina, metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate, other ferrites, carbonization Examples thereof include silicon, silicon nitride, silicon nitride, and various metal powders.
  • examples of the plate-like filler include mica, glass flakes, talc, and various metal foils.
  • organic fillers include heat-resistant high-strength synthetic fibers such as aromatic polyester fibers, liquid crystalline polymer fibers, aromatic polyamides, and polyimide fibers.
  • inorganic and organic fillers can be used alone or in combination of two or more.
  • the combined use of the fibrous filler and the granular or plate-like filler is a preferable combination particularly in combination of mechanical strength, dimensional accuracy, electrical properties and the like.
  • the blending amount of the inorganic filler is 120 parts by mass or less, preferably 20 to 80 parts by mass with respect to 100 parts by mass of the wholly aromatic polyester.
  • the fibrous filler is glass fiber
  • the platy filler is mica and talc.
  • the blending amount is 30 to 80 parts by mass with respect to 100 parts by mass of the total aromatic polyester.
  • the fiber length of glass fiber is 200 micrometers or more. A composition containing such a glass fiber in the above blending amount is particularly remarkable in improving the heat distortion temperature and mechanical properties.
  • a sizing agent or a surface treatment agent can be used if necessary.
  • thermoplastic resin may be supplementarily added to the wholly aromatic polyester of the present invention as long as the purpose intended by the present invention is not impaired.
  • thermoplastic resin used in this case examples include polyolefins such as polyethylene and polypropylene, aromatic polyesters composed of aromatic dicarboxylic acids such as polyethylene terephthalate and polybutylene terephthalate, and diols, polyacetals (homo or copolymers), Examples thereof include polystyrene, polyvinyl chloride, polyamide, polycarbonate, ABS, polyphenylene oxide, polyphenylene sulfide, and fluororesin. These thermoplastic resins can be used in combination of two or more.
  • the polyester molded product of the present invention is formed by molding the wholly aromatic polyester of the present invention described above or the polyester resin composition of the present invention.
  • Specific examples of the polyester molded product of the present invention include a connector, a CPU socket, a relay switch component, a bobbin, an actuator, a noise reduction filter case, and a heat fixing roll of OA equipment.
  • Other examples include polyester fibers and polyester films. These can be molded by a known resin molding method using the wholly aromatic polyester of the present invention or the polyester resin composition of the present invention.
  • a planar connector characterized by a structure having a lattice structure inside the outer frame and a pitch interval of the lattice portion of 1.5 mm or less.
  • the planar connector will be described in detail.
  • planar connectors By molding the wholly aromatic polyester of the present invention or the polyester resin composition of the present invention, various planar connectors can be obtained, but conventionally, industrially practical ones have not been provided, Especially effective for very thin planar connectors where the pitch of the grid is 1.5 mm or less, the width of the resin part of the grid holding the terminal is 0.5 mm or less, and the overall height of the product is 5.0 mm or less. is there. If explaining such a planar connector in more detail, it is a connector as shown in FIG. 1 formed in the embodiment, and an outer frame portion having a thickness of 4.0 mm or less and a lattice portion having a thickness of 4.0 mm or less.
  • the lattice portion has a number of pin holes of several hundreds in a product of about 40 mm ⁇ 40 mm ⁇ 1 mm. As shown in FIG. 1, injection molding is very difficult, with the pitch interval of the lattice portions being 1.5 mm or less and the width of the resin portion holding the terminals being 0.5 mm or less.
  • the planar connector referred to in the present invention includes one having an opening of an appropriate size in the lattice portion.
  • the pitch interval of the lattice portion is 1.5 mm or less (1.2 mm), and the width of the resin portion of the lattice portion that holds the terminal It is possible to form a flat connector having a very thin resin portion width of the lattice portion of 0.5 mm or less (0.18 mm) with good moldability and excellent flatness. If this flatness is specified numerically, the flatness before the IR reflow process for surface mounting at a peak temperature of 230 to 280 ° C is 0.05 mm or less, and the difference in flatness before and after reflow is Those having a thickness of 0.10 mm or less can be said to have excellent flatness in practical use.
  • the molding method for obtaining a connector having such excellent flatness is not particularly limited, but an economical injection molding method is preferably used.
  • the cylinder temperature of the molding machine is preferably a temperature equal to or higher than the melting point T ° C of the wholly aromatic polyester, and if the cylinder temperature is too high, the resin is decomposed. Since problems such as nasal sagging from the cylinder nozzle occur due to the above, the cylinder temperature is T ° C.
  • the mold temperature is preferably 70 to 100 ° C. When the mold temperature is low, the filled resin composition is unfavorably caused by flow failure, and when the mold temperature is too high, problems such as generation of burrs are not preferable.
  • the injection speed is preferably 150 mm / sec or more. If the injection speed is low, only unfilled molded products can be obtained, or even if a completely filled molded product is obtained, the molded product has a high filling pressure and a large residual internal stress, and only a connector with poor flatness can be obtained. May not be possible
  • melt viscosity The total aromatic polyester and polyester resin composition was measured with a Toyo Seiki Capillograph using an orifice with an inner diameter of 1 mm and a length of 20 mm at a temperature 10 to 20 ° C. higher than the melting point, and the melt viscosity at a shear rate of 1000 sec ⁇ 1 was measured. Calculated (ISO 11443 compliant).
  • Softening temperature A disk with a thickness of 1mm is formed from wholly aromatic polyester using a hot press, and the temperature is raised at 20 ° C / min on a hot plate while applying a constant load of 12.7MPa to the molded product. The temperature at which the needle reached 5% of the thickness of the molded product was defined as the softening temperature.
  • each polyester resin composition containing an inorganic filler was injection molded and measured in accordance with ISO75-1,2.
  • Molding machine Sumitomo Heavy Industries SE100DU Cylinder temperature; (Nozzle) 370 ° C-375 ° C-360 ° C-350 ° C (Examples 4-6) 340 ° C-340 ° C-330 ° C-320 ° C (Comparative Example 8) 370 °C -375 °C -360 °C -350 °C (Comparative Example 9) 350 ° C-350 ° C-340 ° C-330 ° C (Comparative Example 10) Mold temperature: 80 °C Injection speed: 2m / min Holding pressure: 50MPa Holding pressure time: 2 sec Cooling time: 10 sec Screw rotation speed: 120rpm Screw back pressure: 1.2MPa
  • FIG. 2 [Crack resistance] From the polyester resin composition containing the inorganic filler, an evaluation molded product as shown in FIG. 2 was injection molded under the following molding conditions.
  • the evaluation injection-molded product shown in FIG. 2 has an outer diameter of 23.6 mm, 31 holes of ⁇ 3.2 mm inside, and a minimum wall thickness of 0.16 mm.
  • a three-point gate indicated by an arrow in FIG. Use a stereomicroscope to observe cracks in the molded product, and observe the occurrence of cracks around the hole at a magnification of 5 times. If the molded product is cracked, “X”; if not, “ ⁇ ”. It was judged.
  • Example 1 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
  • the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 3 hours. Thereafter, the temperature is further raised to 360 ° C. over 5.5 hours, and then the pressure is reduced to 10 Torr (ie, 1330 Pa) over 20 minutes, and melt polymerization is performed while distilling off acetic acid, excess acetic anhydride, and other low-boiling components. went. After the stirring torque reached a predetermined value, nitrogen was introduced and the pressure was changed from a reduced pressure state to an ordinary pressure, and the polymer was discharged from the lower part of the polymerization vessel.
  • 10 Torr ie, 1330 Pa
  • the obtained polymer had a melting point of 357 ° C., a crystallization temperature of 298 ° C., a heat of crystallization of 1.2 J / g, a softening temperature of 246 ° C., and a melt viscosity of 16 Pa ⁇ s.
  • Table 1 shows the raw material monomer composition of Example 1 and the results of measurement of physical properties of the obtained polymer. In Table 1, each raw material monomer is indicated by using abbreviations shown in parentheses such as HBA and HNA.
  • Examples 2 to 3 Polymerization was carried out in the same manner as in Example 1 except that the types of raw material monomers and the charging ratio were as shown in Table 1, and the polymer was discharged from the lower part of the polymerization vessel. The results of measuring the physical properties of the obtained polymer are shown in Table 1.
  • Table 1 shows that the wholly aromatic polyesters of Examples 1 to 3 have a high softening temperature and a heat of crystallization of 1.8 J / g or less, and are excellent in heat resistance and toughness.
  • Comparative Examples 6 and 7 in which the feed ratio of raw material monomers (particularly HBA) was outside the scope of the present invention could not even produce a polymer.
  • Example 4 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
  • the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 3 hours. Thereafter, the temperature is further raised to 360 ° C. over 5.5 hours, and then the pressure is reduced to 5 Torr (ie, 667 Pa) over 20 minutes, and melt polymerization is carried out while distilling off acetic acid, excess acetic anhydride, and other low-boiling components. went.
  • nitrogen was introduced to change the pressure from a reduced pressure state to a normal pressure state, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize.
  • the obtained polymer had a melting point of 355 ° C., a crystallization temperature of 298 ° C., a heat of crystallization of 1.2 J / g, and a melt viscosity of 10 Pa ⁇ s.
  • Example 5 A polymer was obtained in the same manner as in Example 4 except that the raw material monomer type and charging ratio were as shown in Table 2. Next, pelletization was performed in the same manner as in Example 4. The obtained polymer had a melting point of 355 ° C., a crystallization temperature of 298 ° C., a heat of crystallization of 1.2 J / g, and a melt viscosity of 10 Pa ⁇ s.
  • talc manufactured by Matsumura Sangyo Co., Ltd., crown talc PP, average particle size 12.8 ⁇ m
  • glass fiber ECS03T-786H, fiber by mass with 100 parts by mass of the above pellets
  • 30.8 parts by mass of a chopped strand having a diameter of 10 ⁇ m and a length of 3 mm was compounded and kneaded by a twin screw extruder to obtain a pellet-shaped wholly aromatic polyester resin composition.
  • Various tests such as physical property measurement and “measurement of connector flatness” were performed on the obtained resin composition. The results are shown in Table 2.
  • Example 6 A polymer was obtained in the same manner as in Example 4 except that the raw material monomer type and charging ratio were as shown in Table 2. Next, pelletization was performed in the same manner as in Example 4. The obtained polymer had a melting point of 355 ° C., a crystallization temperature of 298 ° C., a heat of crystallization of 1.2 J / g, and a melt viscosity of 10 Pa ⁇ s. Further, 66.7 parts by mass of glass fiber was blended and kneaded with 100 parts by mass of the pellets using a twin-screw extruder to obtain a pellet-shaped wholly aromatic polyester resin composition. Various tests such as physical property measurement and “measurement of connector flatness” were performed on the obtained resin composition. The results are shown in Table 2.
  • Comparative Examples 8 to 10 Polymers were obtained in the same manner as in Example 4 except that the types of raw material monomers and the charging ratios were as shown in Table 2. Next, pelletization was performed in the same manner as in Example 4.
  • the polymer obtained in Comparative Example 8 had a melting point of 323 ° C., a crystallization temperature of 276 ° C., a heat of crystallization of 2.0 J / g, and a melt viscosity of 12 Pa ⁇ s.
  • the polymer obtained in Comparative Example 9 had a melting point of 357 ° C., a crystallization temperature of 305 ° C., a crystallization heat amount of 2.1 J / g, and a melt viscosity of 10 Pa ⁇ s. Further, the polymer obtained in Comparative Example 10 had a melting point of 335 ° C., a crystallization temperature of 291 ° C., a crystallization heat amount of 3.1 J / g, and a melt viscosity of 20 Pa ⁇ s.
  • the compounding amounts as shown in Table 2 were respectively compounded and kneaded by a twin screw extruder to obtain a pellet-shaped wholly aromatic polyester resin composition.
  • Various tests such as physical property measurement and “measurement of connector flatness” were performed on the obtained resin composition. The results are shown in Table 2.
  • Table 2 shows that all of the planar connectors of Examples 4 to 6 have good moldability, little warpage deformation, and excellent flatness, heat resistance, and crack resistance. On the other hand, in Comparative Examples 8 to 10, all the evaluations could not be made good at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

A wholly aromatic polyester having excellent heat resistance and toughness, and showing optical anisotropy when molten, and a composition thereof are provided. This wholly aromatic polyester showing optical anisotropy when molten is characterized by containing, as essential constituent components, the constituent units represented by general formulae (I), (II), (III), (IV) and (V), and in that, in relation to the total constituent units, constituent units (I) are 35-75 mol%, constituent units (II) are 2-8 mol%, constituent units (III) are 8.5-31.5 mol%, constituent units (IV) are 2-8 mol%, constituent units (V) are 0.5-29.5 mol%, and constituent units (II)+(IV) are 4-10 mol%. This polyester resin composition is formed by mixing 120 parts by mass or less of an inorganic or organic filler per 100 parts by mass of said wholly aromatic polyester.

Description

全芳香族ポリエステル及びポリエステル樹脂組成物、並びにポリエステル成形品Totally aromatic polyester and polyester resin composition, and polyester molded article
 本発明は、耐熱性および靭性に優れ、通常の重合装置で製造可能な全芳香族ポリエステル及びポリエステル樹脂組成物、並びにそれらを成形してなるポリエステル成形品に関する。 The present invention relates to a wholly aromatic polyester and a polyester resin composition which are excellent in heat resistance and toughness and can be produced with a normal polymerization apparatus, and a polyester molded product formed by molding them.
 全芳香族ポリエステルとして現在市販されているものは、4-ヒドロキシ安息香酸が主成分である。しかし、4-ヒドロキシ安息香酸のホモポリマーは、融点が分解点よりも高くなってしまうため、種々の成分を共重合することにより低融点化する必要がある。 What is currently marketed as a wholly aromatic polyester is mainly composed of 4-hydroxybenzoic acid. However, the homopolymer of 4-hydroxybenzoic acid has a melting point higher than the decomposition point, so it is necessary to lower the melting point by copolymerizing various components.
 共重合成分として、テレフタル酸、ヒドロキノン、4,4’-ジヒドロキシビフェニル等を用いた全芳香族ポリエステルは、融点が350℃以上と高く、汎用の装置にて溶融加工を行うには高すぎる。また、このような高い融点のものを、汎用の溶融加工機器で加工できる温度まで融点を下げるために種々の方法が試みられているが、低融点化がある程度実現される一方で高温(融点下近傍)での機械的強度に代表される耐熱性を保てないという問題がある。 The wholly aromatic polyester using terephthalic acid, hydroquinone, 4,4'-dihydroxybiphenyl, etc. as a copolymerization component has a high melting point of 350 ° C. or higher and is too high to be melt-processed with a general-purpose apparatus. In addition, various methods have been tried to lower the melting point of such a high melting point to a temperature that can be processed by a general-purpose melt processing machine. There is a problem that heat resistance represented by mechanical strength in the vicinity) cannot be maintained.
 これらの問題を解決するために、特許文献1~3には、4-ヒドロキシ安息香酸に、6-ヒドロキシ-2-ナフトエ酸、ジオール成分、ジカルボン酸成分を組み合わせた共重合ポリエステルが提案されている。 In order to solve these problems, Patent Documents 1 to 3 propose copolymer polyesters in which 4-hydroxybenzoic acid is combined with 6-hydroxy-2-naphthoic acid, a diol component, and a dicarboxylic acid component. .
 しかしながら、特許文献1~3で提案されている共重合ポリエステルは靭性が低く、成形時に成形品に割れが発生する、もしくは、靭性は高いが、耐熱性が十分ではないという問題点がある。 However, the copolyesters proposed in Patent Documents 1 to 3 have low toughness and cause cracks in the molded product during molding, or have high toughness but insufficient heat resistance.
 一方、上記のような全芳香族ポリエステルとして、溶融時に光学異方性を示すものは液晶性ポリマーと呼ばれ、寸法精度、制振性、流動性に優れ、成形時にバリ発生が少ないことから、各種電子部品の材料として有用である。そして、CPUソケットに代表される外枠内部に格子構造を有する平面状コネクターにおいては、高耐熱化、高密度化、小型化の傾向が顕著であり、ガラス繊維で強化された液晶性ポリマー組成物が多く採用されている。しかし、ある程度流動性の良いガラス繊維強化液晶性ポリマー組成物であっても、近年要求されている格子部のピッチ間隔が2mm以下、端子を保持する格子部の樹脂部分の幅が0.5mm以下という非常に薄肉の平面状コネクターとして使用するには性能が不十分であった。即ち、このような格子部の非常に幅が薄肉の平面状コネクターにおいては、格子部へ樹脂を充填しようとすると、流動性が十分でないために充填圧が高くなり、結果として得られる平面状コネクターのそり変形量が多くなるという問題がある。この問題を解決するには、ガラス繊維の添加量を少なくした流動性の良好な液晶性ポリマー組成物の使用が考えられるが、このような組成物では強度不足となり、実装時のリフローにより変形するという問題が生じる。 On the other hand, as a wholly aromatic polyester as described above, what shows optical anisotropy at the time of melting is called a liquid crystalline polymer, and is excellent in dimensional accuracy, vibration damping, fluidity, and less burrs are generated at the time of molding. It is useful as a material for various electronic components. In a flat connector having a lattice structure inside an outer frame typified by a CPU socket, the tendency of high heat resistance, high density, and miniaturization is remarkable, and a liquid crystalline polymer composition reinforced with glass fiber Is often adopted. However, even with a glass fiber reinforced liquid crystalline polymer composition having a certain degree of fluidity, the pitch interval between the lattice portions, which is required in recent years, is 2 mm or less, and the width of the resin portion of the lattice portion holding the terminals is 0.5 mm or less. The performance was insufficient for use as a very thin planar connector. That is, in such a planar connector having a very thin grid portion, filling the lattice portion with resin increases the filling pressure due to insufficient fluidity, resulting in the resulting planar connector. There is a problem that the amount of warp deformation increases. In order to solve this problem, it is conceivable to use a liquid crystalline polymer composition having good fluidity with a small amount of glass fiber added. However, such a composition is insufficient in strength and deforms due to reflow during mounting. The problem arises.
 そこで、本発明者らは、配合する繊維状充填剤の重量平均長さと配合量が一定の関係にある特定の複合樹脂組成物から構成される平面状コネクターを提案した(特許文献4参照。)。特許文献4に記載の発明によれば、薄肉の平面状コネクターについても、成形性、平面度、そり変形、耐熱性等の性能において優れたものが得られる。
 しかしながら、最近の平面状コネクターにおける集積率の増加等に伴う形状変化、特にコネクターピン数の増加、格子部の幅の更なる薄肉化等の要因により、上記特許文献4に記載の発明では対処しきれない場合があることが判明した。
Therefore, the present inventors have proposed a planar connector composed of a specific composite resin composition in which the weight average length of the fibrous filler to be blended and the blending amount have a certain relationship (see Patent Document 4). . According to the invention described in Patent Document 4, a thin flat connector having excellent properties such as moldability, flatness, warp deformation, and heat resistance can be obtained.
However, due to factors such as shape changes accompanying an increase in the integration rate in recent planar connectors, particularly an increase in the number of connector pins and a further thinning of the width of the lattice portion, the invention described in Patent Document 4 addresses this. It has been found that there are cases where it cannot be completed.
 そこで、更に本発明者らは、特定の液晶性ポリマーに対し板状充填剤と繊維状充填剤とを併用配合した特定の複合樹脂組成物から構成される平面状コネクターを提案した(特許文献5参照。)。特許文献5に記載の発明によれば、薄肉の平面状コネクターについても、成形性、平面度、そり変形、耐熱性等の性能において優れたものが得られ、更に最近の平面状コネクターにおける集積率の増加等に伴う形状変化、特にコネクターピン数の増加、格子部の幅の更なる薄肉化等に対しても対処し得るものが得られる。
 しかしながら、特許文献5に記載の発明では、ポリマーの製造バラツキ、成形条件等の微細な製造条件の変化によって、格子部に成形後クラック(割れ)を生じることがあり、耐クラック性において十分な性能を得ることができなかった。
 一方、上記のような問題は平面状コネクターのみならず、各種コネクター、CPUソケット、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース、又はOA機器の加熱定着ロールなど、種々の成形品にも生じることがある。
Therefore, the present inventors have further proposed a planar connector composed of a specific composite resin composition in which a specific filler is combined with a specific liquid crystalline polymer (Patent Document 5). reference.). According to the invention described in Patent Document 5, a thin planar connector having excellent properties such as moldability, flatness, warpage deformation, heat resistance, and the like, and further, the integration rate in recent planar connectors is obtained. It is possible to cope with a change in shape accompanying an increase in the thickness, particularly an increase in the number of connector pins and a further reduction in the width of the lattice portion.
However, in the invention described in Patent Document 5, cracks after the molding may occur in the lattice part due to fine changes in the manufacturing conditions such as polymer manufacturing variations and molding conditions, and sufficient performance in crack resistance. Could not get.
On the other hand, the above problems occur not only in flat connectors, but also in various molded products such as various connectors, CPU sockets, relay switch parts, bobbins, actuators, noise reduction filter cases, and heat fixing rolls for office automation equipment. Sometimes.
特開昭59-43021号公報JP 59-43021 A 特開昭59-62630号公報JP 59-62630 A 特開平11-506145号公報Japanese Patent Laid-Open No. 11-506145 特開2005-276758号公報JP 2005-276758 A 特開2010-3661号公報JP 2010-3661
 本発明は、上記問題点を解決し、耐熱性および靭性に優れた、溶融時に光学的異方性を示す全芳香族ポリエステル、及びその組成物を提供することを目的とする。
 また、本発明は、成形性が良好で、耐熱性、耐クラック性等の性能に優れたポリエステル成形品、特に板状又はフィルム状などの形状に成形した場合に、上記の優れた性能に加え、そり変形が少なく、平面度が優れたポリエステル成形品を提供することを目的とする。
The object of the present invention is to provide a wholly aromatic polyester that solves the above-mentioned problems and has excellent heat resistance and toughness and exhibits optical anisotropy when melted, and a composition thereof.
In addition, the present invention has a good moldability and is excellent in performances such as heat resistance and crack resistance. In particular, when molded into a shape such as a plate shape or a film shape, in addition to the above excellent performance. An object of the present invention is to provide a polyester molded article with less warpage deformation and excellent flatness.
 本発明者らは上記目的を達成するため鋭意研究した結果、4-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、テレフタル酸、レゾルシノール、4,4’-ジヒドロキシビフェニルで構成されるポリマーにおいて、6-ヒドロキシ-2-ナフトエ酸およびレゾルシノールを特定の限定された量で組み合わせることが上記目的達成のために有効であることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that in a polymer composed of 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, terephthalic acid, resorcinol, and 4,4′-dihydroxybiphenyl, It has been found that combining 6-hydroxy-2-naphthoic acid and resorcinol in a specific limited amount is effective for achieving the above object, and the present invention has been completed.
(1)必須の構成成分として下記一般式(I)、(II)、(III)、(IV)及び(V)で表される構成単位を含み、全構成単位に対して(I)の構成単位が35~75モル%、(II)の構成単位が2~8モル%、(III)の構成単位が8.5~31.5モル%、(IV)の構成単位が2~8モル%、(V)の構成単位が0.5~29.5モル%、(II)+(IV)の構成単位が4~10モル%であることを特徴とする溶融時に光学的異方性を示す全芳香族ポリエステル。 (1) Including constituent units represented by the following general formulas (I), (II), (III), (IV) and (V) as essential constituent components, and the constituent of (I) with respect to all constituent units 35 to 75 mol% of units, 2 to 8 mol% of structural units of (II), 8.5 to 31.5 mol% of structural units of (III), 2 to 8 mol% of structural units of (IV) And (V) the structural unit is 0.5 to 29.5 mol%, and the structural unit (II) + (IV) is 4 to 10 mol%. Totally aromatic polyester.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(2)全芳香族ポリエステルの融点より10~40℃高い温度で、剪断速度1000sec-1における溶融粘度が1×10Pa・s以下である前記(1)に記載の全芳香族ポリエステル。 (2) The wholly aromatic polyester according to (1), wherein the melt viscosity is 1 × 10 5 Pa · s or less at a shear rate of 1000 sec −1 at a temperature 10 to 40 ° C. higher than the melting point of the wholly aromatic polyester.
(3)融点が280~390℃である前記(1)又は(2)に記載の全芳香族ポリエステル。 (3) The wholly aromatic polyester according to (1) or (2), which has a melting point of 280 to 390 ° C.
(4)前記(1)~(3)のいずれかに記載の全芳香族ポリエステル100質量部に対し無機又は有機充填剤を120質量部以下配合してなるポリエステル樹脂組成物。 (4) A polyester resin composition comprising 120 parts by mass or less of an inorganic or organic filler based on 100 parts by mass of the wholly aromatic polyester according to any one of (1) to (3).
(5)無機充填剤がガラス繊維、マイカ及びタルクから選ばれた1種又は2種以上であり、その配合量が全芳香族ポリエステル100質量部に対し20~80質量部である前記(4)に記載のポリエステル樹脂組成物。 (5) The inorganic filler is one or more selected from glass fiber, mica and talc, and the blending amount is 20 to 80 parts by mass with respect to 100 parts by mass of the wholly aromatic polyester (4) The polyester resin composition as described in 2.
(6)前記(1)~(3)のいずれかに記載の全芳香族ポリエステル、又は前記(4)若しくは(5)に記載のポリエステル樹脂組成物を成形したポリエステル成形品。 (6) A polyester molded article obtained by molding the wholly aromatic polyester according to any one of (1) to (3) or the polyester resin composition according to (4) or (5).
(7)成形品が、コネクター、CPUソケット、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース、又はOA機器の加熱定着ロールである前記(6)に記載のポリエステル成形品。 (7) The polyester molded product according to (6), wherein the molded product is a connector, a CPU socket, a relay switch component, a bobbin, an actuator, a noise reduction filter case, or a heat fixing roll of an OA device.
(8)成形品が、外枠の内部に格子構造を有し、格子部のピッチ間隔が1.5mm以下の構造に特徴がある平面状コネクターである前記(6)に記載のポリエステル成形品。 (8) The polyester molded product according to (6), wherein the molded product is a planar connector characterized by a structure having a lattice structure inside the outer frame and a pitch interval of the lattice portion of 1.5 mm or less.
(9)成形品が、ポリエステル繊維である前記(6)に記載のポリエステル成形品。 (9) The polyester molded product according to (6), wherein the molded product is a polyester fiber.
(10)成形品が、ポリエステルフィルムである前記(6)に記載のポリエステル成形品。 (10) The polyester molded product according to (6), wherein the molded product is a polyester film.
 本発明によれば、耐熱性および靭性に優れた、溶融時に光学的異方性を示す全芳香族ポリエステル、及びその組成物、を提供することができる。
 また、本発明によれば、成形性が良好で、耐熱性、耐クラック性等の性能に優れたポリエステル成形品、特に板状又はフィルム状などの形状に成形した場合に、上記の優れた性能に加え、そり変形が少なく、平面度が優れたポリエステル成形品を提供することができる。
 すなわち、本発明で得られる特定の構成単位よりなる溶融時に異方性を示す全芳香族ポリエステル及びその組成物は、溶融時の流動性及び成形品の耐熱性が良好で、なおかつ靭性に優れており、また成形加工温度があまり高くないために、特殊な構造を持った成形機を用いずとも射出成形や押出成形、圧縮成形が可能であり、種々の立体成形品、繊維、フィルム等に加工することができる。特に、コネクター、CPUソケット、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース又はOA機器の加熱定着ロール等の成形品に好適である。さらには、上記の諸性能により、成形性が良好で、そり変形が少なく、平面度、耐熱性、耐クラック性等の性能に優れた平面状コネクターを得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the wholly aromatic polyester which is excellent in heat resistance and toughness, and shows optical anisotropy at the time of fusion | melting, and its composition can be provided.
Further, according to the present invention, the above-mentioned excellent performance is obtained when the molded product has good moldability and is excellent in performance such as heat resistance and crack resistance, particularly in the shape of plate or film. In addition, it is possible to provide a polyester molded article with less warpage deformation and excellent flatness.
That is, the wholly aromatic polyester that exhibits anisotropy at the time of melting comprising the specific structural unit obtained in the present invention and the composition thereof have good fluidity at the time of melting and heat resistance of the molded article, and are excellent in toughness. In addition, because the molding temperature is not so high, injection molding, extrusion molding, and compression molding are possible without using a molding machine with a special structure, and it can be processed into various three-dimensional molded products, fibers, films, etc. can do. Particularly, it is suitable for a molded product such as a connector, a CPU socket, a relay switch component, a bobbin, an actuator, a noise reduction filter case, or a heat fixing roll of OA equipment. Furthermore, the above-mentioned various performances can provide a planar connector that has good moldability, little warping deformation, and excellent performance such as flatness, heat resistance, and crack resistance.
実施例で成形した平面状コネクターを示す図であり、(a)は平面図、(b)はA部の詳細図である。尚、図中の数値の単位はmmである。It is a figure which shows the planar connector shape | molded in the Example, (a) is a top view, (b) is a detail drawing of the A section. The unit of numerical values in the figure is mm. 実施例で成形品の耐クラック性評価に用いた成形品を示す図であり、(a)はその平面図、(b)はその寸法を示す図である。尚、図中の数値の単位はmmである。It is a figure which shows the molded article used for the crack-proof evaluation of a molded article in an Example, (a) is the top view, (b) is a figure which shows the dimension. The unit of numerical values in the figure is mm.
<全芳香族ポリエステル>
 本発明の全芳香族ポリエステルは、溶融時に光学的異方性を示す全芳香族ポリエステルであり、必須の構成成分として下記一般式(I)、(II)、(III)、(IV)及び(V)で表される構成単位を含み、全構成単位に対して(I)の構成単位が35~75モル%、(II)の構成単位が2~8モル%、(III)の構成単位が8.5~31.5モル%、(IV)の構成単位が2~8モル%、(V)の構成単位が0.5~29.5モル%、(II)+(IV)の構成単位が4~10モル%であることを特徴としている。
<Totally aromatic polyester>
The wholly aromatic polyester of the present invention is a wholly aromatic polyester that exhibits optical anisotropy when melted, and has the following general formulas (I), (II), (III), (IV) and (IV) as essential constituent components. V), the structural unit of (I) is 35 to 75 mol%, the structural unit of (II) is 2 to 8 mol%, and the structural unit of (III) is 8.5 to 31.5 mol%, (IV) constituent unit is 2 to 8 mol%, (V) constituent unit is 0.5 to 29.5 mol%, (II) + (IV) constituent unit Is 4 to 10 mol%.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(I)~(V)の構成単位を具現化するには通常のエステル形成能を有する種々の化合物が使用される。以下に本発明を構成する全芳香族ポリエステルを形成するために必要な原料化合物について順を追って詳しく説明する。 In order to embody the structural units of the above general formulas (I) to (V), various compounds having ordinary ester forming ability are used. Hereinafter, the raw material compounds necessary for forming the wholly aromatic polyester constituting the present invention will be described in detail step by step.
 構成単位(I)は、4-ヒドロキシ安息香酸から導入される。 Structural unit (I) is introduced from 4-hydroxybenzoic acid.
 構成単位(II)は、6-ヒドロキシ-2-ナフトエ酸から導入される。 The structural unit (II) is introduced from 6-hydroxy-2-naphthoic acid.
 構成単位(III)は、テレフタル酸から導入される。 The structural unit (III) is introduced from terephthalic acid.
 構成単位(IV)は、レゾルシノールから導入される。 The structural unit (IV) is introduced from resorcinol.
 また、構成単位(V)は、4,4’-ジヒドロキシビフェニルから導入される。 The structural unit (V) is introduced from 4,4'-dihydroxybiphenyl.
 本発明では、上記構成単位(I)~(V)を含み、全構成単位に対して(I)の構成単位が35~75モル%(好ましくは40~65モル%)、(II)の構成単位が2~8モル%(好ましくは3~7モル%)、(III)の構成単位が8.5~31.5モル%(好ましくは14~29モル%)、(IV)の構成単位が2~8モル%(好ましくは3~7モル%)、(V)の構成単位が0.5~29.5モル%(好ましくは10~22モル%)、(II)+(IV)の構成単位が4~10モル%(好ましくは6~10モル%)の範囲にあることが必要である。 The present invention includes the structural units (I) to (V), wherein the structural unit of (I) is 35 to 75 mol% (preferably 40 to 65 mol%) and (II) based on the total structural units. The unit is 2 to 8 mol% (preferably 3 to 7 mol%), the structural unit (III) is 8.5 to 31.5 mol% (preferably 14 to 29 mol%), and the structural unit (IV) is 2 to 8 mol% (preferably 3 to 7 mol%), (V) is 0.5 to 29.5 mol% (preferably 10 to 22 mol%), (II) + (IV) The unit needs to be in the range of 4 to 10 mol% (preferably 6 to 10 mol%).
 (I)の構成単位が35モル%未満および75モル%より多くなると、融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。
 (II)の構成単位が2モル%未満では、靱性が低く好ましくない。また、8モル%より多くなるとポリマーの耐熱性が低くなるため好ましくない。
 (III)の構成単位が8.5モル%未満および31.5モル%より多くなると、融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。
 (IV)の構成単位が2モル%未満では、靱性が低く好ましくない。また、8モル%より多くなるとポリマーの耐熱性が低くなるため好ましくない。
 また、(V)の構成単位が0.5モル%未満および29.5モル%より多くなると、融点が著しく高くなり、場合によっては製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなくなるため好ましくない。
 また、(II)+(IV)の構成単位が4モル%未満では、ポリマーの結晶化状態を示す示差熱量測定により求められるポリマーの結晶化熱量が2.0J/g以上となり、靱性が低くなり好ましくない。結晶化熱量の好ましい値は、1.8J/g以下であり、より好ましくは1.6J/g以下である。また、10モル%より多くなるとポリマーの耐熱性が低くなるため好ましくない。
 なお、結晶化熱量とは示差熱量測定において、ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+40℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度のピークより求められる発熱ピークの熱量を指す。
When the constituent unit of (I) is less than 35 mol% and more than 75 mol%, the melting point becomes remarkably high, and in some cases, the polymer solidifies in the reactor during production, making it impossible to produce a polymer having a desired molecular weight. Therefore, it is not preferable.
If the structural unit (II) is less than 2 mol%, the toughness is low and this is not preferred. Moreover, since it will become low in the heat resistance of a polymer when it exceeds 8 mol%, it is unpreferable.
When the structural unit of (III) is less than 8.5 mol% and more than 31.5 mol%, the melting point becomes remarkably high, and in some cases, the polymer solidifies in the reactor during production, and a polymer having a desired molecular weight can be produced. Since it becomes impossible, it is not preferable.
When the constituent unit of (IV) is less than 2 mol%, the toughness is low and not preferable. Moreover, since it will become low in the heat resistance of a polymer when it exceeds 8 mol%, it is unpreferable.
In addition, when the constituent unit of (V) is less than 0.5 mol% and more than 29.5 mol%, the melting point becomes remarkably high, and in some cases, the polymer is solidified in the reactor during production to produce a polymer having a desired molecular weight. This is not preferable because it cannot be performed.
In addition, when the structural unit of (II) + (IV) is less than 4 mol%, the heat of crystallization of the polymer determined by differential calorimetry showing the crystallization state of the polymer is 2.0 J / g or more, and the toughness is preferably reduced. Absent. A preferable value of the heat of crystallization is 1.8 J / g or less, and more preferably 1.6 J / g or less. On the other hand, if it exceeds 10 mol%, the heat resistance of the polymer is lowered, which is not preferable.
Note that the heat of crystallization is a differential calorimetry. After observing the endothermic peak temperature (Tm1) observed when the polymer is measured from room temperature to 20 ° C / min, the temperature is maintained at Tm1 + 40 ° C for 2 minutes. Then, the calorific value of the exothermic peak obtained from the peak of the exothermic peak temperature observed when the temperature is measured at 20 ° C./min.
 尚、本発明の全芳香族ポリエステルには、本発明の効果を阻害しない範囲で少量の公知の、上記(I)~(V)以外の他の構成単位を導入することもできる。 Incidentally, in the wholly aromatic polyester of the present invention, a small amount of other structural units other than the above-mentioned (I) to (V) can be introduced within a range not inhibiting the effects of the present invention.
 前述の通り、特開昭59-43021号公報(特許文献1)、特開昭59-62630号公報(特許文献2)、特開平11-506145号公報(特許文献3)では、4-ヒドロキシ安息香酸に、6-ヒドロキシ-2-ナフトエ酸、ジオール成分、ジカルボン酸成分を組み合わせた液晶ポリマーが提案されており、たとえば、特開昭59-62630号公報(特許文献2)の実施例22には、構成単位(I)を57モル%、(II)を3モル%、(III)を20モル%、(V)を20モル%からなる液晶ポリマーが提案されているが、この液晶ポリマーは、靭性が低いという問題点があった。また、特開平11-506145号公報(特許文献3)の実施例14には、構成単位(I)を20モル%、(II)を30モル%、(III)を25モル%、(IV)を5モル%、(V)を20モル%からなる液晶ポリマーが提案されているが、この液晶ポリマーは、靭性は高いが、耐熱性が十分ではないという問題点があった。 As described above, in Japanese Patent Application Laid-Open No. 59-43021 (Patent Document 1), Japanese Patent Application Laid-Open No. 59-62630 (Patent Document 2), and Japanese Patent Application Laid-Open No. 11-506145 (Patent Document 3), 4-hydroxybenzoic acid is used. A liquid crystal polymer in which 6-hydroxy-2-naphthoic acid, a diol component, and a dicarboxylic acid component are combined with an acid has been proposed. For example, in Example 22 of JP-A-59-62630 (Patent Document 2), A liquid crystal polymer composed of 57 mol% of structural unit (I), 3 mol% of (II), 20 mol% of (III) and 20 mol% of (V) has been proposed. There was a problem of low toughness. In Example 14 of JP-A-11-506145 (Patent Document 3), the structural unit (I) is 20 mol%, (II) is 30 mol%, (III) is 25 mol%, and (IV). Has been proposed, but this liquid crystal polymer has high toughness but insufficient heat resistance.
 これに対し、本発明では、構成単位(I)~(V)の量、並びに構成単位(II)+(IV)の量を上記範囲に規制することにより、耐熱性、易加工性、製造性、靭性の何れにも優れた全芳香族ポリエステルを得ることができたものである。 On the other hand, in the present invention, by controlling the amount of the structural units (I) to (V) and the amount of the structural units (II) + (IV) to the above ranges, heat resistance, easy processability, manufacturability Thus, a wholly aromatic polyester excellent in both toughness could be obtained.
 本発明の全芳香族ポリエステルは、直接重合法やエステル交換法を用いて重合され、重合に際しては、溶融重合法、溶液重合法、スラリー重合法、固相重合法等が用いられる。
 本発明では、重合に際し、重合モノマーに対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを使用できる。アシル化剤としては、無水酢酸等の酸無水物等が挙げられる。
 これらの重合に際しては種々の触媒の使用が可能であり、代表的なものはジアルキル錫酸化物、ジアリール錫酸化物、二酸化チタン、アルコキシチタンけい酸塩類、チタンアルコラート類、カルボン酸のアルカリ及びアルカリ土類金属塩類、BFの如きルイス酸塩等が挙げられる。触媒の使用量は一般にはモノマーの全重量に基いて約0.001~1質量%、特に約0.003~0.2質量%が好ましい。
The wholly aromatic polyester of the present invention is polymerized using a direct polymerization method or a transesterification method, and a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method or the like is used for the polymerization.
In the present invention, at the time of polymerization, an acylating agent for the polymerization monomer or a monomer having terminal activated as an acid chloride derivative can be used. Examples of the acylating agent include acid anhydrides such as acetic anhydride.
Various catalysts can be used for these polymerizations, and typical ones include dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkali and alkaline earth of carboxylic acids. Metal salts, Lewis acid salts such as BF 3 and the like. The amount of the catalyst used is generally about 0.001 to 1% by mass, particularly about 0.003 to 0.2% by mass, based on the total weight of the monomers.
 また、溶液重合又はスラリー重合を行う場合、溶媒としては流動パラフィン、高耐熱性合成油、不活性鉱物油等が用いられる。 Also, when performing solution polymerization or slurry polymerization, liquid paraffin, high heat resistant synthetic oil, inert mineral oil, or the like is used as a solvent.
 反応条件としては、反応温度200~380℃、最終到達圧力0.1~760Torr(即ち、13~101,080Pa)である。特に溶融反応では、反応温度260~380℃、好ましくは300~360℃、最終到達圧力1~100Torr(即ち、133~13,300Pa)、好ましくは1~50Torr(即ち、133~6,670Pa)である。 The reaction conditions are a reaction temperature of 200 to 380 ° C. and a final ultimate pressure of 0.1 to 760 Torr (that is, 13 to 101,080 Pa). Particularly in the melt reaction, the reaction temperature is 260 to 380 ° C., preferably 300 to 360 ° C., and the final ultimate pressure is 1 to 100 Torr (ie, 133 to 13,300 Pa), preferably 1 to 50 Torr (ie, 133 to 6,670 Pa). is there.
 反応は、全原料モノマー、アシル化剤及び触媒を同一反応容器に仕込んで反応を開始させる(一段方式)こともできるし、原料モノマー(I)、(II)、(IV)及び(V)のヒドロキシル基をアシル化剤によりアシル化させた後、(III)のカルボキシル基と反応させる(二段方式)こともできる。 In the reaction, all the raw material monomers, the acylating agent and the catalyst can be charged in the same reaction vessel to start the reaction (one-stage system), or the raw material monomers (I), (II), (IV) and (V) The hydroxyl group can be acylated with an acylating agent and then reacted with the carboxyl group of (III) (two-stage system).
 溶融重合は、反応系内が所定温度に達した後、減圧を開始して所定の減圧度にして行う。攪拌機のトルクが所定値に達した後、不活性ガスを導入し、減圧状態から常圧を経て、所定の加圧状態にして反応系からポリマーを排出する。 The melt polymerization is performed after the inside of the reaction system has reached a predetermined temperature, and the pressure reduction is started to a predetermined degree of pressure reduction. After the torque of the stirrer reaches a predetermined value, an inert gas is introduced, and the polymer is discharged from the reaction system through a normal pressure from a reduced pressure state to a predetermined pressure state.
 上記重合方法により製造されたポリマーは更に常圧又は減圧、不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。固相重合反応の好ましい条件は、反応温度230~350℃、好ましくは260~330℃、最終到達圧力10~760Torr(即ち、1,330~101,080Pa)である。 The polymer produced by the above polymerization method can be further increased in molecular weight by solid-phase polymerization that is heated at normal pressure or reduced pressure in an inert gas. Preferred conditions for the solid phase polymerization reaction are a reaction temperature of 230 to 350 ° C., preferably 260 to 330 ° C., and a final ultimate pressure of 10 to 760 Torr (ie 1,330 to 101,080 Pa).
 溶融時に光学的異方性を示す液晶性ポリマーであることは、本発明において熱安定性と易加工性を併せ持つ上で不可欠な要素である。上記構成単位(I)~(V)からなる全芳香族ポリエステルは、構成成分およびポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、本発明に係わるポリマーは溶融時に光学的異方性を示す全芳香族ポリエステルに限られる。 The liquid crystalline polymer exhibiting optical anisotropy when melted is an indispensable element in the present invention in order to have both thermal stability and easy processability. The wholly aromatic polyesters comprising the structural units (I) to (V) may not form an anisotropic melt phase depending on the constituent components and the sequence distribution in the polymer, but the polymer according to the present invention is melted. Limited to wholly aromatic polyesters that sometimes exhibit optical anisotropy.
 溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。より具体的には溶融異方性の確認はオリンパス社製偏光顕微鏡を使用しリンカム社製ホットステージにのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより実施できる。上記ポリマーは光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光は透過する。 The property of melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the melting anisotropy can be confirmed by melting a sample placed on a hot stage manufactured by Linkham using an Olympus polarizing microscope and observing it at a magnification of 150 times in a nitrogen atmosphere. The polymer is optically anisotropic and transmits light when inserted between crossed polarizers. If the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.
 本発明の全芳香族ポリエステルにおいて、加工性の指標としては液晶性及び融点(液晶性発現温度)が考えられる。液晶性を示すか否かは溶融時の流動性に深く係わり、本発明の全芳香族ポリエステルは溶融状態で液晶性を示すことが不可欠である。 In the wholly aromatic polyester of the present invention, liquid crystallinity and melting point (liquid crystallinity expression temperature) can be considered as an index of processability. Whether or not it exhibits liquid crystallinity is deeply related to the fluidity during melting, and it is essential that the wholly aromatic polyester of the present invention exhibits liquid crystallinity in a molten state.
 ネマチックな液晶性ポリマーは融点以上で著しく粘性低下を生じるので、一般的に融点またはそれ以上の温度で液晶性を示すことが加工性の指標となる。融点(液晶性発現温度)は、出来得る限り高い方が耐熱性の観点からは好ましいが、ポリマーの溶融加工時の熱劣化や成形機の加熱能力等を考慮すると、280~390℃であることが好ましい目安となる。なお、より好ましくは、380℃以下である。 Since nematic liquid crystalline polymers cause a significant decrease in viscosity at the melting point or higher, generally exhibiting liquid crystallinity at the melting point or higher is an index of workability. The melting point (liquid crystallinity expression temperature) is preferably as high as possible from the viewpoint of heat resistance, but it is 280 to 390 ° C in consideration of thermal degradation during polymer melt processing and heating capability of the molding machine. Is a preferred guideline. In addition, More preferably, it is 380 degrees C or less.
 更に、融点より10~40℃高い温度で、剪断速度1000sec-1における溶融粘度が1×10Pa・s以下であることが好ましい。更に好ましくは5Pa・s以上で1×10Pa・s以下である。これらの溶融粘度は液晶性を具備することで概ね実現される。 Furthermore, the melt viscosity at a shear rate of 1000 sec −1 at a temperature 10 to 40 ° C. higher than the melting point is preferably 1 × 10 5 Pa · s or less. More preferably, it is 5 Pa · s or more and 1 × 10 2 Pa · s or less. These melt viscosities are generally realized by having liquid crystallinity.
<ポリエステル樹脂組成物>
 本発明のポリエステル樹脂組成物は、既述の本発明の全芳香族ポリエステル100質量部に対し無機又は有機充填剤を120質量部以下配合してなることを特徴としている。
 無機及び有機充填剤としては、繊維状、粉粒状、板状のものが挙げられる。
<Polyester resin composition>
The polyester resin composition of the present invention is characterized by blending 120 parts by mass or less of an inorganic or organic filler with respect to 100 parts by mass of the wholly aromatic polyester of the present invention described above.
Examples of inorganic and organic fillers include fibrous, granular, and plate-like ones.
 繊維状充填剤としてはガラス繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化珊素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維、ウォラストナイトの如き珪酸塩の繊維、硫酸マグネシウム繊維、ホウ酸アルミニウム繊維、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物などの無機質繊維状物質が挙げられる。特に代表的な繊維状充填剤はガラス繊維である。尚、ポリアミド、フツ素樹脂、ポリエステル樹脂、アクリル樹脂などの高融点有機質繊維状物質も使用することが出来る。 Fiber fillers include glass fibers, asbestos fibers, silica fibers, silica / alumina fibers, alumina fibers, zirconia fibers, silicon nitride fibers, silicon nitride fibers, boron fibers, potassium titanate fibers, silicates such as wollastonite. Inorganic fibrous materials such as fibers, magnesium sulfate fibers, aluminum borate fibers, and metal fibrous materials such as stainless steel, aluminum, titanium, copper, and brass. A particularly typical fibrous filler is glass fiber. High melting point organic fibrous materials such as polyamide, fluorine resin, polyester resin, and acrylic resin can also be used.
 一方、粉粒状充填剤としてはカーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ミルドガラスファイバー、ガラスバルーン、ガラス粉、珪酸カルシウム、珪酸アルミニウム、カオリン、クレー、珪藻土、ウォラストナイトの如き珪酸塩、酸化鉄、酸化チタン、酸化亜鉛、三酸化アンチモン、アルミナの如き金属の酸化物、炭酸カルシウム、炭酸マグネシウムの如き金属の炭酸塩、硫酸カルシウム、硫酸バリウムの如き金属の硫酸塩、その他フェライト、炭化磋素、窒化珪素、窒化瑚素、各種金属粉末等が挙げられる。 On the other hand, as particulate filler, silicates such as carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, calcium silicate, aluminum silicate, kaolin, clay, diatomaceous earth, and wollastonite , Iron oxide, titanium oxide, zinc oxide, antimony trioxide, metal oxides such as alumina, metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate, other ferrites, carbonization Examples thereof include silicon, silicon nitride, silicon nitride, and various metal powders.
 又、板状充填剤としてはマイカ、ガラスフレーク、タルク、各種の金属箔等が挙げられる。 In addition, examples of the plate-like filler include mica, glass flakes, talc, and various metal foils.
 有機充填剤の例を示せば芳香族ポリエステル繊維、液晶性ポリマー繊維、芳香族ポリアミド、ポリイミド繊維等の耐熱性高強度合成繊維等である。 Examples of organic fillers include heat-resistant high-strength synthetic fibers such as aromatic polyester fibers, liquid crystalline polymer fibers, aromatic polyamides, and polyimide fibers.
 これらの無機及び有機充填剤は一種又は二種以上併用することが出来る。繊維状充填剤と粒状又は板状充填剤との併用は特に機械的強度と寸法精度、電気的性質等を兼備する上で好ましい組み合わせである。無機充填剤の配合量は、全芳香族ポリエステル100質量部に対し、120質量部以下、好ましくは20~80質量部である。 These inorganic and organic fillers can be used alone or in combination of two or more. The combined use of the fibrous filler and the granular or plate-like filler is a preferable combination particularly in combination of mechanical strength, dimensional accuracy, electrical properties and the like. The blending amount of the inorganic filler is 120 parts by mass or less, preferably 20 to 80 parts by mass with respect to 100 parts by mass of the wholly aromatic polyester.
 特に好ましくは、繊維状充填剤としてガラス繊維、板状充填剤としてマイカ及びタルクであり、その配合量は、全芳香族ポリエステル100質量部に対し30~80質量部である。なお、ガラス繊維の繊維長は、200μm以上であることが好ましい。このようなガラス繊維は上記配合量で含む組成物は、熱変形温度、機械的物性等の向上が特に顕著である。 Particularly preferably, the fibrous filler is glass fiber, and the platy filler is mica and talc. The blending amount is 30 to 80 parts by mass with respect to 100 parts by mass of the total aromatic polyester. In addition, it is preferable that the fiber length of glass fiber is 200 micrometers or more. A composition containing such a glass fiber in the above blending amount is particularly remarkable in improving the heat distortion temperature and mechanical properties.
 これらの充填剤の使用にあたっては必要ならば収束剤又は表面処理剤を使用することができる。 When using these fillers, a sizing agent or a surface treatment agent can be used if necessary.
 更に本発明の全芳香族ポリエステルには、本発明の企図する目的を損なわない範囲で他の熱可塑性樹脂を補助的に添加してもよい。 Furthermore, another thermoplastic resin may be supplementarily added to the wholly aromatic polyester of the present invention as long as the purpose intended by the present invention is not impaired.
 この場合に使用する熱可塑性樹脂の例を示すと、ポリエチレン、ホリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の芳香族ジカルボン酸とジオール等からなる芳香族ポリエステル、ポリアセタール(ホモ又はコポリマー)、ポリスチレン、ポリ塩化ビニル、ポリアミド、ポリカーボネート、ABS、ポリフェニレンオキシド、ポリフェニレンスルフィド、フッ素樹脂等を挙げることができる。またこれらの熱可塑性樹脂は2種以上混合して使用することができる。 Examples of the thermoplastic resin used in this case include polyolefins such as polyethylene and polypropylene, aromatic polyesters composed of aromatic dicarboxylic acids such as polyethylene terephthalate and polybutylene terephthalate, and diols, polyacetals (homo or copolymers), Examples thereof include polystyrene, polyvinyl chloride, polyamide, polycarbonate, ABS, polyphenylene oxide, polyphenylene sulfide, and fluororesin. These thermoplastic resins can be used in combination of two or more.
<ポリエステル成形品>
 本発明のポリエステル成形品は、既述の本発明の全芳香族ポリエステル、又は本発明のポリエステル樹脂組成物を成形してなる。
 本発明のポリエステル成形品は、具体的には、コネクター、CPUソケット、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース、又はOA機器の加熱定着ロールが挙げられる。その他、ポリエステル繊維や、ポリエステルフィルムも挙げられる。これらは、本発明の全芳香族ポリエステル、又は本発明のポリエステル樹脂組成物を用い、公知の樹脂の成形手法により成形することができる。
 また、ポリエステル成形品の具体的態様としては、外枠の内部に格子構造を有し、格子部のピッチ間隔が1.5mm以下の構造に特徴がある平面状コネクターが挙げられる。以下に、当該平面状コネクターについて詳述する。
<Polyester molded product>
The polyester molded product of the present invention is formed by molding the wholly aromatic polyester of the present invention described above or the polyester resin composition of the present invention.
Specific examples of the polyester molded product of the present invention include a connector, a CPU socket, a relay switch component, a bobbin, an actuator, a noise reduction filter case, and a heat fixing roll of OA equipment. Other examples include polyester fibers and polyester films. These can be molded by a known resin molding method using the wholly aromatic polyester of the present invention or the polyester resin composition of the present invention.
Moreover, as a specific aspect of the polyester molded article, a planar connector characterized by a structure having a lattice structure inside the outer frame and a pitch interval of the lattice portion of 1.5 mm or less. Hereinafter, the planar connector will be described in detail.
 本発明の全芳香族ポリエステル、又は本発明のポリエステル樹脂組成物を成形することにより、各種平面状コネクターを得ることができるが、従来、工業的に実用性のあるものが提供されていなかった、格子部のピッチ間隔が1.5mm以下、端子を保持する格子部の樹脂部分の幅が0.5mm以下、製品全体の高さが5.0mm以下という非常に薄肉の平面状コネクターに特に有効である。
 このような平面状コネクターをより詳細に説明するならば、実施例で成形した図1に示すようなコネクターであり、厚みが4.0mm以下の外枠部と厚みが4.0mm以下の格子部からなり、格子部に40mm×40mm×1mm程度の製品中に数百のピン孔数を有するものである。図1に示すように、格子部のピッチ間隔が1.5mm以下、端子を保持する樹脂部分の幅が0.5mm以下という、射出成形が非常に困難な形状となっている。なお、本発明で言う平面状コネクターは、格子部の中に適当な大きさの開口部を有しているものも含まれる。
By molding the wholly aromatic polyester of the present invention or the polyester resin composition of the present invention, various planar connectors can be obtained, but conventionally, industrially practical ones have not been provided, Especially effective for very thin planar connectors where the pitch of the grid is 1.5 mm or less, the width of the resin part of the grid holding the terminal is 0.5 mm or less, and the overall height of the product is 5.0 mm or less. is there.
If explaining such a planar connector in more detail, it is a connector as shown in FIG. 1 formed in the embodiment, and an outer frame portion having a thickness of 4.0 mm or less and a lattice portion having a thickness of 4.0 mm or less. The lattice portion has a number of pin holes of several hundreds in a product of about 40 mm × 40 mm × 1 mm. As shown in FIG. 1, injection molding is very difficult, with the pitch interval of the lattice portions being 1.5 mm or less and the width of the resin portion holding the terminals being 0.5 mm or less. The planar connector referred to in the present invention includes one having an opening of an appropriate size in the lattice portion.
 本発明の全芳香族ポリエステル又はポリエステル樹脂組成物を用いることにより、図1に示すように格子部のピッチ間隔が1.5mm以下(1.2mm)、端子を保持する格子部の樹脂部分の幅が0.5mm以下(0.18mm)という、格子部の樹脂部分の幅が非常に薄肉の平面状コネクターを成形性良く成形することが可能であり、その平面度も優れている。
 この平面度を数値的に規定するならば、ピーク温度230~280℃で表面実装のためのIRリフロー工程を経る前の平面度が0.05mm以下であり、なおかつリフロー前後の平面度の差が0.10mm以下であるものは、実用上優れた平面度を有するものと言える。
By using the wholly aromatic polyester or polyester resin composition of the present invention, as shown in FIG. 1, the pitch interval of the lattice portion is 1.5 mm or less (1.2 mm), and the width of the resin portion of the lattice portion that holds the terminal It is possible to form a flat connector having a very thin resin portion width of the lattice portion of 0.5 mm or less (0.18 mm) with good moldability and excellent flatness.
If this flatness is specified numerically, the flatness before the IR reflow process for surface mounting at a peak temperature of 230 to 280 ° C is 0.05 mm or less, and the difference in flatness before and after reflow is Those having a thickness of 0.10 mm or less can be said to have excellent flatness in practical use.
 このような優れた平面度を有するコネクターを得る成形方法としては、特に制限はないが、経済的な射出成形方法が好ましく用いられる。射出成形でこのような優れた平面度を有するコネクターを得るためには、既述の本発明の全芳香族ポリエステル、又は本発明のポリエステル樹脂組成物を用いることが重要であるが、残留内部応力のない成形条件を選ぶことが好ましい。充填圧を低くし、得られるコネクターの残留内部応力を低下させるために、成形機のシリンダー温度は、全芳香族ポリエステルの融点T℃以上の温度が好ましく、またシリンダー温度が高すぎると樹脂の分解等に伴うシリンダーノズルからの鼻タレ等の問題が発生するため、シリンダー温度はT℃~(T+30)℃、好ましくはT℃~(T+15)℃である。また、金型温度は70~100℃が好ましい。金型温度が低いと充填樹脂組成物が流動不良を起こし好ましくなく、金型温度が高すぎると、バリ発生等の問題が生じ好ましくない。射出速度については、150mm/sec以上で成形することが好ましい。射出速度が低いと、未充填成形品しか得られない場合や、たとえ完全に充填した成形品が得られたとしても充填圧が高く残留内部応力の大きい成形品となり、平面度の悪いコネクターしか得られない場合がある The molding method for obtaining a connector having such excellent flatness is not particularly limited, but an economical injection molding method is preferably used. In order to obtain a connector having such excellent flatness by injection molding, it is important to use the wholly aromatic polyester of the present invention described above or the polyester resin composition of the present invention. It is preferable to select molding conditions that do not have any. In order to lower the filling pressure and reduce the residual internal stress of the resulting connector, the cylinder temperature of the molding machine is preferably a temperature equal to or higher than the melting point T ° C of the wholly aromatic polyester, and if the cylinder temperature is too high, the resin is decomposed. Since problems such as nasal sagging from the cylinder nozzle occur due to the above, the cylinder temperature is T ° C. to (T + 30) ° C., preferably T ° C. to (T + 15) ° C. The mold temperature is preferably 70 to 100 ° C. When the mold temperature is low, the filled resin composition is unfavorably caused by flow failure, and when the mold temperature is too high, problems such as generation of burrs are not preferable. The injection speed is preferably 150 mm / sec or more. If the injection speed is low, only unfilled molded products can be obtained, or even if a completely filled molded product is obtained, the molded product has a high filling pressure and a large residual internal stress, and only a connector with poor flatness can be obtained. May not be possible
 以下に実施例をもって本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。尚、実施例中の物性測定及び試験の方法は以下の通りである。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In addition, the physical-property measurement and the test method in an Example are as follows.
[融点]
 パーキンエルマー社製DSCにて、全芳香族ポリエステルを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度、20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度を測定した。
[Melting point]
After measuring the endothermic peak temperature (Tm1) observed when measuring fully aromatic polyester from room temperature to 20 ° C / min with a Perkin Elmer DSC, 2 minutes at a temperature of (Tm1 + 40) ° C After being held, it was once cooled to room temperature under a temperature drop condition of 20 ° C./min, and then the temperature of the endothermic peak observed when measured under a temperature rise condition of 20 ° C./min was measured again.
[結晶化温度]
 パーキンエルマー社製DSCにて、全芳香族ポリエステル及びポリエステル樹脂組成物を室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度を測定した。
[Crystallizing temperature]
After observing the endothermic peak temperature (Tm1) observed when the fully aromatic polyester and polyester resin composition were measured at room temperature to 20 ° C / min on a Perkin Elmer DSC, (Tm1 + 40) ° C After maintaining at a temperature of 2 minutes, an exothermic peak temperature observed when measured under a temperature drop condition of 20 ° C./minute was measured.
[結晶化熱量] 
 パーキンエルマー社製DSCにて、全芳香族ポリエステル及びポリエステル樹脂組成物を室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度のピークより求められる発熱ピークの熱量を測定した。
[Amount of crystallization]
After observing the endothermic peak temperature (Tm1) observed when the fully aromatic polyester and polyester resin composition were measured at room temperature to 20 ° C / min on a Perkin Elmer DSC, (Tm1 + 40) ° C After maintaining at a temperature of 2 minutes, the calorific value of the exothermic peak obtained from the peak of the exothermic peak temperature observed when the temperature was measured under a temperature drop condition of 20 ° C./min was measured.
[溶融粘度]
 全芳香族ポリエステル及びポリエステル樹脂組成物を融点よりも10~20℃高い温度で、内径1mm、長さ20mmのオリフィスを用いて東洋精機製キャピログラフで測定し、剪断速度1000sec-1での溶融粘度を算出した(ISO11443準拠)。
[Melt viscosity]
The total aromatic polyester and polyester resin composition was measured with a Toyo Seiki Capillograph using an orifice with an inner diameter of 1 mm and a length of 20 mm at a temperature 10 to 20 ° C. higher than the melting point, and the melt viscosity at a shear rate of 1000 sec −1 was measured. Calculated (ISO 11443 compliant).
[軟化温度]
 全芳香族ポリエステルから、ホットプレスで厚さ1mmの円盤を成形し、この成形品に12.7MPaの一定荷重をかけながらホットプレート上で20℃/分で昇温し、荷重のかかった直径1mmの針が成形品厚みの5%に到達した時の温度を軟化温度とした。
[Softening temperature]
A disk with a thickness of 1mm is formed from wholly aromatic polyester using a hot press, and the temperature is raised at 20 ° C / min on a hot plate while applying a constant load of 12.7MPa to the molded product. The temperature at which the needle reached 5% of the thickness of the molded product was defined as the softening temperature.
[コネクター平面度の測定]
 無機充填剤を含むポリエステル樹脂組成物から、下記成形条件で、図1に示すような、全体の大きさ39.82mm×41.82mm×1mmt、格子部ピッチ間隔1.2mmの平面状コネクター(ピン孔数750ピン)を射出成形した。
 尚、ゲートは長さの長い辺(41.82mmの辺)からのフィルムゲートを用い、ゲート厚みは0.3mmとした。
 得られたコネクターを水平な机の上に静置し、コネクターの高さをミツトヨ製クイックビジョン404PROCNC画像測定機により測定した。その際、コネクター端面より、0.5mmの位置を10mm間隔で測定し、最大高さと最小高さの差を平面度とした。
[コネクター変形量の測定]
 更に、下記条件のIRリフローを行い、上述の方法で平面度を測定し、リフロー前後の平面度の差をコネクター変形量として求めた。
[Measurement of connector flatness]
From a polyester resin composition containing an inorganic filler, a flat connector having a total size of 39.82 mm × 41.82 mm × 1 mmt and a lattice pitch of 1.2 mm as shown in FIG. Pin) was injection molded.
The gate was a film gate from a long side (side of 41.82 mm), and the gate thickness was 0.3 mm.
The obtained connector was allowed to stand on a horizontal desk, and the height of the connector was measured with Mitutoyo Quick Vision 404PROCNC image measuring machine. At that time, 0.5 mm positions were measured at 10 mm intervals from the connector end face, and the difference between the maximum height and the minimum height was defined as flatness.
[Measurement of connector deformation]
Furthermore, IR reflow was performed under the following conditions, the flatness was measured by the above-described method, and the difference in flatness before and after the reflow was determined as the amount of connector deformation.
~成形条件~
成形機;住友重機械工業SE30DUZ
シリンダー温度;
(ノズル)370℃-375℃-360℃-350℃(実施例4~6)
     340℃-340℃-330℃-320℃(比較例8)
     370℃-375℃-360℃-350℃(比較例9)
     350℃-350℃-340℃-330℃(比較例10)
金型温度;80℃
射出速度;300mm/sec
保圧力;50MPa
保圧時間;2sec
冷却時間;10sec
スクリュー回転数;120rpm
スクリュー背圧;1.2MPa
-Molding conditions-
Molding machine; Sumitomo Heavy Industries SE30DUZ
Cylinder temperature;
(Nozzle) 370 ° C-375 ° C-360 ° C-350 ° C (Examples 4-6)
340 ° C-340 ° C-330 ° C-320 ° C (Comparative Example 8)
370 ℃ -375 ℃ -360 ℃ -350 ℃ (Comparative Example 9)
350 ° C-350 ° C-340 ° C-330 ° C (Comparative Example 10)
Mold temperature: 80 ℃
Injection speed: 300mm / sec
Holding pressure: 50MPa
Holding pressure time: 2 sec
Cooling time: 10 sec
Screw rotation speed: 120rpm
Screw back pressure: 1.2MPa
~IRリフロー条件~
測定機;日本パルス技術研究所製大型卓上リフローハンダ付け装置RF-300(遠赤外線ヒーター使用)
試料送り速度;140mm/sec
リフロー炉通過時間;5min
温度条件 プレヒートゾーン;150℃、リフローゾーン;225℃、ピーク温度;287℃
-IR reflow conditions-
Measuring machine: RF-300 (using far-infrared heater)
Sample feed rate: 140mm / sec
Reflow furnace transit time: 5 min
Temperature conditions Preheat zone: 150 ° C, reflow zone: 225 ° C, peak temperature: 287 ° C
[コネクター最小充填圧]
 図1の平面状コネクターを射出成形する際に良好な成形品を得られる最小の射出充填圧をコネクター最小充填圧とした。
[Connector minimum filling pressure]
The minimum injection filling pressure at which a good molded product can be obtained when the planar connector of FIG.
[荷重たわみ温度]
 下記成形条件で、無機充填剤を含むポリエステル樹脂組成物をそれぞれ射出成形し、ISO75-1,2に準拠して測定した。
~成形条件~
成形機;住友重機械工業SE100DU
シリンダー温度;
(ノズル)370℃-375℃-360℃-350℃(実施例4~6)
     340℃-340℃-330℃-320℃(比較例8)
     370℃-375℃-360℃-350℃(比較例9)
     350℃-350℃-340℃-330℃(比較例10)
金型温度;80℃
射出速度;2m/min
保圧力;50MPa
保圧時間;2sec
冷却時間;10sec
スクリュー回転数;120rpm
スクリュー背圧;1.2MPa
[Load deflection temperature]
Under the following molding conditions, each polyester resin composition containing an inorganic filler was injection molded and measured in accordance with ISO75-1,2.
-Molding conditions-
Molding machine: Sumitomo Heavy Industries SE100DU
Cylinder temperature;
(Nozzle) 370 ° C-375 ° C-360 ° C-350 ° C (Examples 4-6)
340 ° C-340 ° C-330 ° C-320 ° C (Comparative Example 8)
370 ℃ -375 ℃ -360 ℃ -350 ℃ (Comparative Example 9)
350 ° C-350 ° C-340 ° C-330 ° C (Comparative Example 10)
Mold temperature: 80 ℃
Injection speed: 2m / min
Holding pressure: 50MPa
Holding pressure time: 2 sec
Cooling time: 10 sec
Screw rotation speed: 120rpm
Screw back pressure: 1.2MPa
[耐クラック性]
 無機充填剤を含むポリエステル樹脂組成物から、下記成形条件で、図2に示すような、評価用成形品を射出成形した。
 図2に示す評価用射出成形品は、外周が直径:23.6mmで内部に31個のφ3.2mmの孔が開いており、孔間距離の最小肉厚が0.16mmである。ゲートは図1の矢印部の3点ゲートを採用した。成形品割れ観察は実体顕微鏡を使用し、倍率5倍で孔周りの割れ発生状況を観察し、成形品に割れが発生していた場合は“×”、発生していなかった場合は“○”と判断した。
~成形条件~
成形機;住友重機械工業SE30DUZ
シリンダー温度;
(ノズル)370℃-375℃-360℃-350℃(実施例4~6)
     340℃-340℃-330℃-320℃(比較例8)
     370℃-375℃-360℃-350℃(比較例9)
     350℃-350℃-340℃-330℃(比較例10)
金型温度;140℃
射出速度;50mm/sec
保圧力;100MPa
保圧時間;2sec
冷却時間;10sec
スクリュー回転数;120rpm
スクリュー背圧;1.2MPa
[Crack resistance]
From the polyester resin composition containing the inorganic filler, an evaluation molded product as shown in FIG. 2 was injection molded under the following molding conditions.
The evaluation injection-molded product shown in FIG. 2 has an outer diameter of 23.6 mm, 31 holes of φ3.2 mm inside, and a minimum wall thickness of 0.16 mm. A three-point gate indicated by an arrow in FIG. Use a stereomicroscope to observe cracks in the molded product, and observe the occurrence of cracks around the hole at a magnification of 5 times. If the molded product is cracked, “X”; if not, “○”. It was judged.
-Molding conditions-
Molding machine; Sumitomo Heavy Industries SE30DUZ
Cylinder temperature;
(Nozzle) 370 ° C-375 ° C-360 ° C-350 ° C (Examples 4-6)
340 ° C-340 ° C-330 ° C-320 ° C (Comparative Example 8)
370 ℃ -375 ℃ -360 ℃ -350 ℃ (Comparative Example 9)
350 ° C-350 ° C-340 ° C-330 ° C (Comparative Example 10)
Mold temperature: 140 ℃
Injection speed: 50mm / sec
Holding pressure: 100MPa
Holding pressure time: 2 sec
Cooling time: 10 sec
Screw rotation speed: 120rpm
Screw back pressure: 1.2MPa
[実施例1]
 攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)4-ヒドロキシ安息香酸:145 g(48モル%)(HBA)
(II)6-ヒドロキシ-2-ナフトエ酸:12g(3モル%)(HNA)
(III)テレフタル酸:89g(24.7モル%)(TA)
(IV)レゾルシノール:8g(3.5モル%)(RES)
(V)4,4’-ジヒドロキシビフェニル85g(20.8モル%)(BP)
 酢酸カリウム触媒:15mg
 無水酢酸:229g
[Example 1]
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
(I) 4-hydroxybenzoic acid: 145 g (48 mol%) (HBA)
(II) 6-Hydroxy-2-naphthoic acid: 12 g (3 mol%) (HNA)
(III) Terephthalic acid: 89 g (24.7 mol%) (TA)
(IV) Resorcinol: 8 g (3.5 mol%) (RES)
(V) 4,4′-dihydroxybiphenyl 85 g (20.8 mol%) (BP)
Potassium acetate catalyst: 15mg
Acetic anhydride: 229 g
 原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で3時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから20分かけて10Torr(即ち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。攪拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出した。
 得られたポリマーの融点は357℃、結晶化温度は298℃、結晶化熱量は1.2J/g、軟化温度は246℃、溶融粘度は16Pa・sであった。
 以上の実施例1の原料モノマー組成及び得られたポリマーの各物性測定の結果を表1に示す。なお、表1において、各原料モノマーは、HBA、HNAなど上記括弧内に示す略称を用いて示した。
After charging the raw materials, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 3 hours. Thereafter, the temperature is further raised to 360 ° C. over 5.5 hours, and then the pressure is reduced to 10 Torr (ie, 1330 Pa) over 20 minutes, and melt polymerization is performed while distilling off acetic acid, excess acetic anhydride, and other low-boiling components. went. After the stirring torque reached a predetermined value, nitrogen was introduced and the pressure was changed from a reduced pressure state to an ordinary pressure, and the polymer was discharged from the lower part of the polymerization vessel.
The obtained polymer had a melting point of 357 ° C., a crystallization temperature of 298 ° C., a heat of crystallization of 1.2 J / g, a softening temperature of 246 ° C., and a melt viscosity of 16 Pa · s.
Table 1 shows the raw material monomer composition of Example 1 and the results of measurement of physical properties of the obtained polymer. In Table 1, each raw material monomer is indicated by using abbreviations shown in parentheses such as HBA and HNA.
[実施例2~3]
 原料モノマーの種類、仕込み比を表1に示す通りとした以外は、実施例1と同様にして重合を行い、重合容器の下部からポリマーを排出した。得られたポリマーの物性測定の結果を表1に示す。
[Examples 2 to 3]
Polymerization was carried out in the same manner as in Example 1 except that the types of raw material monomers and the charging ratio were as shown in Table 1, and the polymer was discharged from the lower part of the polymerization vessel. The results of measuring the physical properties of the obtained polymer are shown in Table 1.
[比較例1~7]
 原料モノマーの種類、仕込み比を表1に示す通りとした以外は、実施例1と同様にして重合を行い、重合容器の下部からポリマーを排出した。得られたポリマーの物性測定の結果を表1に示す。なお、比較例6及び7については、製造時にポリマーがリアクター内で固化し、所望の分子量のポリマーを製造することができなかった。また、表1中のAPAPは4-アセトアミドフェノールである。
[Comparative Examples 1 to 7]
Polymerization was carried out in the same manner as in Example 1 except that the types of raw material monomers and the charging ratio were as shown in Table 1, and the polymer was discharged from the lower part of the polymerization vessel. The results of measuring the physical properties of the obtained polymer are shown in Table 1. In Comparative Examples 6 and 7, the polymer solidified in the reactor at the time of production, and a polymer having a desired molecular weight could not be produced. In Table 1, APAP is 4-acetamidophenol.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1より、実施例1~3の全芳香族ポリエステルは、軟化温度が高く、かつ結晶化熱量が1.8J/g以下であり、耐熱性および靭性に優れていることが分かる。
 これに対して、RESを用いなかった比較例1及び5、並びにHNA+RES(一般式(II)+(IV))が4モル%未満である比較例2は靱性に劣っていた。また、HNA+RES(一般式(II)+(IV))が10モル%を超える比較例3及び4は耐熱性に劣っていた。さらに、原料モノマーの仕込み比(特に、HBA)が本発明の範囲外の比較例6及び7は、ポリマーの製造すらできなかった。
Table 1 shows that the wholly aromatic polyesters of Examples 1 to 3 have a high softening temperature and a heat of crystallization of 1.8 J / g or less, and are excellent in heat resistance and toughness.
On the other hand, Comparative Examples 1 and 5 in which RES was not used and Comparative Example 2 in which HNA + RES (general formula (II) + (IV)) was less than 4 mol% were inferior in toughness. Further, Comparative Examples 3 and 4 in which HNA + RES (general formula (II) + (IV)) exceeds 10 mol% were inferior in heat resistance. Furthermore, Comparative Examples 6 and 7 in which the feed ratio of raw material monomers (particularly HBA) was outside the scope of the present invention could not even produce a polymer.
[実施例4]
 攪拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)4-ヒドロキシ安息香酸:1061g(48モル%)(HBA)
(II)6-ヒドロキシ-2-ナフトエ酸:90g(3モル%)(HNA)
(III)テレフタル酸:657g(24.7モル%)(TA)
(IV)レゾルシノール:62g(3.5モル%)(RES)
(V)4,4’-ジヒドロキシビフェニル620g(20.8モル%)(BP)
 酢酸カリウム触媒:110mg
 無水酢酸:1676g
[Example 4]
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomer, metal catalyst, and acylating agent, and nitrogen substitution was started.
(I) 4-hydroxybenzoic acid: 1061 g (48 mol%) (HBA)
(II) 6-Hydroxy-2-naphthoic acid: 90 g (3 mol%) (HNA)
(III) Terephthalic acid: 657 g (24.7 mol%) (TA)
(IV) Resorcinol: 62 g (3.5 mol%) (RES)
(V) 4,4′-dihydroxybiphenyl 620 g (20.8 mol%) (BP)
Potassium acetate catalyst: 110 mg
Acetic anhydride: 1676 g
 原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で3時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから20分かけて5Torr(即ち667Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。攪拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。
 得られたポリマーの融点は355℃、結晶化温度は298℃、結晶化熱量は1.2J/g、溶融粘度は10Pa・sであった。
After charging the raw materials, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 3 hours. Thereafter, the temperature is further raised to 360 ° C. over 5.5 hours, and then the pressure is reduced to 5 Torr (ie, 667 Pa) over 20 minutes, and melt polymerization is carried out while distilling off acetic acid, excess acetic anhydride, and other low-boiling components. went. After the stirring torque reached a predetermined value, nitrogen was introduced to change the pressure from a reduced pressure state to a normal pressure state, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize.
The obtained polymer had a melting point of 355 ° C., a crystallization temperature of 298 ° C., a heat of crystallization of 1.2 J / g, and a melt viscosity of 10 Pa · s.
 上記ペレット100質量部に対してマイカ((株)山口雲母工業製、AB-25S、平均粒径25μm)33.3質量部を二軸押出機により配合混練し、ペレット形状の全芳香族ポリエステル樹脂組成物を得た。得られた樹脂組成物に対し、物性測定及び「コネクター平面度の測定」などの各種試験を行った。結果を表2に示す。 Mixing and kneading 33.3 parts by mass of mica (Yamaguchi Mica Kogyo Co., Ltd., AB-25S, average particle size 25 μm) with a twin-screw extruder to 100 parts by mass of the above pellets, a pellet-shaped wholly aromatic polyester resin composition Got. Various tests such as physical property measurement and “measurement of connector flatness” were performed on the obtained resin composition. The results are shown in Table 2.
[実施例5]
 原料モノマーの種類、仕込み比を表2に示す通りとした以外は実施例4と同様にしてポリマーを得た。次いで、実施例4と同様にしてペレット化した。得られたポリマーの融点は355℃、結晶化温度は298℃、結晶化熱量は1.2J/g、溶融粘度は10Pa・sであった。
 また、上記ペレット100質量部に対し、タルク(松村産業(株)製、クラウンタルクPP、平均粒径12.8μm)を23.1質量部及びガラス繊維(日本電気硝子(株)製、ECS03T-786H、繊維径10μm、長さ3mmのチョップドストランド)30.8質量部を二軸押出機により、配合混練し、ペレット形状の全芳香族ポリエステル樹脂組成物を得た。得られた樹脂組成物に対し、物性測定及び「コネクター平面度の測定」などの各種試験を行った。結果を表2に示す。
[Example 5]
A polymer was obtained in the same manner as in Example 4 except that the raw material monomer type and charging ratio were as shown in Table 2. Next, pelletization was performed in the same manner as in Example 4. The obtained polymer had a melting point of 355 ° C., a crystallization temperature of 298 ° C., a heat of crystallization of 1.2 J / g, and a melt viscosity of 10 Pa · s.
Moreover, 23.1 parts by mass of talc (manufactured by Matsumura Sangyo Co., Ltd., crown talc PP, average particle size 12.8 μm) and glass fiber (ECS03T-786H, fiber by mass with 100 parts by mass of the above pellets) 30.8 parts by mass of a chopped strand having a diameter of 10 μm and a length of 3 mm was compounded and kneaded by a twin screw extruder to obtain a pellet-shaped wholly aromatic polyester resin composition. Various tests such as physical property measurement and “measurement of connector flatness” were performed on the obtained resin composition. The results are shown in Table 2.
[実施例6]
 原料モノマーの種類、仕込み比を表2に示す通りとした以外は実施例4と同様にしてポリマーを得た。次いで、実施例4と同様にしてペレット化した。得られたポリマーの融点は355℃、結晶化温度は298℃、結晶化熱量は1.2J/g、溶融粘度は10Pa・sであった。
 また、このペレット100質量部に対し、ガラス繊維66.7質量部を二軸押出機により、配合混練し、ペレット形状の全芳香族ポリエステル樹脂組成物を得た。得られた樹脂組成物に対し、物性測定及び「コネクター平面度の測定」などの各種試験を行った。結果を表2に示す。
[Example 6]
A polymer was obtained in the same manner as in Example 4 except that the raw material monomer type and charging ratio were as shown in Table 2. Next, pelletization was performed in the same manner as in Example 4. The obtained polymer had a melting point of 355 ° C., a crystallization temperature of 298 ° C., a heat of crystallization of 1.2 J / g, and a melt viscosity of 10 Pa · s.
Further, 66.7 parts by mass of glass fiber was blended and kneaded with 100 parts by mass of the pellets using a twin-screw extruder to obtain a pellet-shaped wholly aromatic polyester resin composition. Various tests such as physical property measurement and “measurement of connector flatness” were performed on the obtained resin composition. The results are shown in Table 2.
[比較例8~10]
 比較例8~10において、原料モノマーの種類、仕込み比を表2に示す通りとした以外は実施例4と同様にしてポリマーを得た。次いで、実施例4と同様にしてペレット化した。比較例8で得られたポリマーの融点は323℃、結晶化温度は276℃、結晶化熱量は2.0J/g、溶融粘度は12Pa・sであった。また、比較例9で得られたポリマーの融点は357℃、結晶化温度は305℃、結晶化熱量は2.1J/g、溶融粘度は10Pa・sであった。さらに、比較例10で得られたポリマーの融点は335℃、結晶化温度は291℃、結晶化熱量は3.1J/g、溶融粘度は20Pa・sであった。
 また、上記ペレット100質量部に対し、それぞれ表2に示す通りの配合量を二軸押出機により、配合混練し、ペレット形状の全芳香族ポリエステル樹脂組成物を得た。得られた樹脂組成物に対し、物性測定及び「コネクター平面度の測定」などの各種試験を行った。結果を表2に示す。
[Comparative Examples 8 to 10]
In Comparative Examples 8 to 10, polymers were obtained in the same manner as in Example 4 except that the types of raw material monomers and the charging ratios were as shown in Table 2. Next, pelletization was performed in the same manner as in Example 4. The polymer obtained in Comparative Example 8 had a melting point of 323 ° C., a crystallization temperature of 276 ° C., a heat of crystallization of 2.0 J / g, and a melt viscosity of 12 Pa · s. The polymer obtained in Comparative Example 9 had a melting point of 357 ° C., a crystallization temperature of 305 ° C., a crystallization heat amount of 2.1 J / g, and a melt viscosity of 10 Pa · s. Further, the polymer obtained in Comparative Example 10 had a melting point of 335 ° C., a crystallization temperature of 291 ° C., a crystallization heat amount of 3.1 J / g, and a melt viscosity of 20 Pa · s.
Further, with respect to 100 parts by mass of the pellets, the compounding amounts as shown in Table 2 were respectively compounded and kneaded by a twin screw extruder to obtain a pellet-shaped wholly aromatic polyester resin composition. Various tests such as physical property measurement and “measurement of connector flatness” were performed on the obtained resin composition. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2より、実施例4~6の平面状コネクターはいずれも、成形性が良好であり、反り変形が少なく、平面度、耐熱性、耐クラック性に優れていることが分かる。これに対して、比較例8~10においては、すべての評価を同時に良好な結果とすることができなかった。 Table 2 shows that all of the planar connectors of Examples 4 to 6 have good moldability, little warpage deformation, and excellent flatness, heat resistance, and crack resistance. On the other hand, in Comparative Examples 8 to 10, all the evaluations could not be made good at the same time.

Claims (10)

  1.  必須の構成成分として下記一般式(I)、(II)、(III)、(IV)及び(V)で表される構成単位を含み、全構成単位に対して(I)の構成単位が35~75モル%、(II)の構成単位が2~8モル%、(III)の構成単位が8.5~31.5モル%、(IV)の構成単位が2~8モル%、(V)の構成単位が0.5~29.5モル%、(II)+(IV)の構成単位が4~10モル%であることを特徴とする溶融時に光学的異方性を示す全芳香族ポリエステル。
    Figure JPOXMLDOC01-appb-C000001
    Including the structural units represented by the following general formulas (I), (II), (III), (IV) and (V) as essential structural components, the structural unit of (I) is 35 with respect to all the structural units. ~ 75 mol%, (II) constituent unit is 2 to 8 mol%, (III) constituent unit is 8.5 to 31.5 mol%, (IV) constituent unit is 2 to 8 mol%, (V ), 0.5 to 29.5 mol%, and (II) + (IV) is 4 to 10 mol%. polyester.
    Figure JPOXMLDOC01-appb-C000001
  2.  全芳香族ポリエステルの融点より10~40℃高い温度で、剪断速度1000sec-1における溶融粘度が1×10Pa・s以下である請求項1に記載の全芳香族ポリエステル。 2. The wholly aromatic polyester according to claim 1, which has a melt viscosity of 1 × 10 5 Pa · s or less at a shear rate of 1000 sec −1 at a temperature 10 to 40 ° C. higher than the melting point of the wholly aromatic polyester.
  3.  融点が280~390℃である請求項1又は2に記載の全芳香族ポリエステル。 The wholly aromatic polyester according to claim 1, having a melting point of 280 to 390 ° C.
  4.  請求項1~3のいずれか1項に記載の全芳香族ポリエステル100質量部に対し無機又は有機充填剤を120質量部以下配合してなるポリエステル樹脂組成物。 A polyester resin composition obtained by blending 120 parts by mass or less of an inorganic or organic filler with 100 parts by mass of the wholly aromatic polyester according to any one of claims 1 to 3.
  5.  無機充填剤がガラス繊維、マイカ及びタルクから選ばれた1種又は2種以上であり、その配合量が全芳香族ポリエステル100質量部に対し20~80質量部である請求項4に記載のポリエステル樹脂組成物。 The polyester according to claim 4, wherein the inorganic filler is one or more selected from glass fiber, mica and talc, and the blending amount is 20 to 80 parts by mass with respect to 100 parts by mass of the wholly aromatic polyester. Resin composition.
  6.  請求項1~3のいずれか1項に記載の全芳香族ポリエステル、又は請求項4若しくは5に記載のポリエステル樹脂組成物を成形したポリエステル成形品。 A polyester molded product obtained by molding the wholly aromatic polyester according to any one of claims 1 to 3 or the polyester resin composition according to claim 4 or 5.
  7.  成形品が、コネクター、CPUソケット、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース、又はOA機器の加熱定着ロールである請求項6に記載のポリエステル成形品。 The polyester molded product according to claim 6, wherein the molded product is a connector, a CPU socket, a relay switch component, a bobbin, an actuator, a noise reduction filter case, or a heat fixing roll of an OA device.
  8.  成形品が、外枠の内部に格子構造を有し、格子部のピッチ間隔が1.5mm以下の構造に特徴がある平面状コネクターである請求項6に記載のポリエステル成形品。 7. The polyester molded product according to claim 6, wherein the molded product is a planar connector characterized by a structure having a lattice structure inside the outer frame and a pitch interval of the lattice portion of 1.5 mm or less.
  9.  成形品が、ポリエステル繊維である請求項6に記載のポリエステル成形品。 The polyester molded product according to claim 6, wherein the molded product is a polyester fiber.
  10.  成形品が、ポリエステルフィルムである請求項6に記載のポリエステル成形品。 7. The polyester molded product according to claim 6, wherein the molded product is a polyester film.
PCT/JP2013/074382 2012-09-21 2013-09-10 Wholly aromatic polyester, polyester resin composition, and a polyester molded article WO2014045940A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380049255.0A CN104662064B (en) 2012-09-21 2013-09-10 Wholly aromatic polyester and polyester and resin composition and polyester products formed
KR1020157007213A KR101586760B1 (en) 2012-09-21 2013-09-10 Wholly aromatic polyester, polyester resin composition, and a polyester molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-208138 2012-09-21
JP2012208138A JP5753143B2 (en) 2012-09-21 2012-09-21 Totally aromatic polyester and polyester resin composition, and polyester molded article

Publications (1)

Publication Number Publication Date
WO2014045940A1 true WO2014045940A1 (en) 2014-03-27

Family

ID=50341254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074382 WO2014045940A1 (en) 2012-09-21 2013-09-10 Wholly aromatic polyester, polyester resin composition, and a polyester molded article

Country Status (5)

Country Link
JP (1) JP5753143B2 (en)
KR (1) KR101586760B1 (en)
CN (1) CN104662064B (en)
TW (1) TWI537303B (en)
WO (1) WO2014045940A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824072B2 (en) 2001-12-26 2006-09-20 信越化学工業株式会社 Silicone emulsion composition and release film having good adhesion to plastic film substrate
JP5753144B2 (en) * 2012-09-21 2015-07-22 ポリプラスチックス株式会社 Totally aromatic polyester and polyester resin composition, and polyester molded article
KR101757308B1 (en) * 2015-11-13 2017-07-12 세양폴리머주식회사 Method for preparing wholly aromatic polyester resin having improved flowability and wholly aromatic polyester resin prepared by the method
CN109563253B (en) * 2016-07-04 2021-08-17 Jxtg能源株式会社 Wholly aromatic liquid crystal polyester resin, molded article, and electrical/electronic component
JP6411702B1 (en) 2016-12-01 2018-10-24 Jxtgエネルギー株式会社 Totally aromatic liquid crystal polyester resin
WO2018139393A1 (en) * 2017-01-26 2018-08-02 ポリプラスチックス株式会社 Wholly aromatic polyester and polyester resin composition
WO2022014663A1 (en) * 2020-07-16 2022-01-20 ポリプラスチックス株式会社 Resin composition and molded article thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216120A (en) * 1988-07-05 1990-01-19 Polyplastics Co Polyester resin exhibiting optical anisotropy when melted and resin composition
JP2000507624A (en) * 1996-04-01 2000-06-20 クラリアント・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング LCP-blend
JP3471361B2 (en) * 1995-06-02 2003-12-02 ヘキスト・セラニーズ・コーポレーション Wholly aromatic thermotropic polyester
JP2008052170A (en) * 2006-08-28 2008-03-06 Konica Minolta Holdings Inc Polarization film, method for manufacturing polarization film, and polarization plate and liquid crystal using the same
JP2009127024A (en) * 2007-11-28 2009-06-11 Polyplastics Co Wholly aromatic polyester and polyester resin composition
JP2012149241A (en) * 2010-12-27 2012-08-09 Toray Ind Inc Process for producing liquid crystalline polyester resin

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962630A (en) 1982-07-26 1984-04-10 セラニ−ズ・コ−ポレイシヨン Anisotropic melt-processable polyester containing relativelylow concentration 6-oxy-2-naphthoyl portion
JPS5943021A (en) 1982-09-02 1984-03-09 Ueno Seiyaku Oyo Kenkyusho:Kk Production of aromatic (co)polyester
US6514611B1 (en) * 2001-08-21 2003-02-04 Ticona Llc Anisotropic melt-forming polymers having a high degree of stretchability
JP4717366B2 (en) 2004-03-26 2011-07-06 ポリプラスチックス株式会社 Planar connector
JP5165492B2 (en) 2008-05-23 2013-03-21 ポリプラスチックス株式会社 Planar connector
JP5355957B2 (en) * 2008-07-31 2013-11-27 住友化学株式会社 LAMINATE, MANUFACTURING METHOD THEREOF, AND CIRCUIT BOARD MEMBER
JP5753144B2 (en) * 2012-09-21 2015-07-22 ポリプラスチックス株式会社 Totally aromatic polyester and polyester resin composition, and polyester molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216120A (en) * 1988-07-05 1990-01-19 Polyplastics Co Polyester resin exhibiting optical anisotropy when melted and resin composition
JP3471361B2 (en) * 1995-06-02 2003-12-02 ヘキスト・セラニーズ・コーポレーション Wholly aromatic thermotropic polyester
JP2000507624A (en) * 1996-04-01 2000-06-20 クラリアント・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング LCP-blend
JP2008052170A (en) * 2006-08-28 2008-03-06 Konica Minolta Holdings Inc Polarization film, method for manufacturing polarization film, and polarization plate and liquid crystal using the same
JP2009127024A (en) * 2007-11-28 2009-06-11 Polyplastics Co Wholly aromatic polyester and polyester resin composition
JP2012149241A (en) * 2010-12-27 2012-08-09 Toray Ind Inc Process for producing liquid crystalline polyester resin

Also Published As

Publication number Publication date
KR20150060712A (en) 2015-06-03
CN104662064A (en) 2015-05-27
CN104662064B (en) 2016-08-31
TWI537303B (en) 2016-06-11
JP2014062182A (en) 2014-04-10
JP5753143B2 (en) 2015-07-22
KR101586760B1 (en) 2016-01-19
TW201422660A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
JP5753144B2 (en) Totally aromatic polyester and polyester resin composition, and polyester molded article
JP5546081B2 (en) Totally aromatic polyester and polyester resin composition
JP5753143B2 (en) Totally aromatic polyester and polyester resin composition, and polyester molded article
JP5165492B2 (en) Planar connector
JP5485216B2 (en) Planar connector
JP5155769B2 (en) Totally aromatic polyester and polyester resin composition
JP5032957B2 (en) Totally aromatic polyester and polyester resin composition
CN109790378B (en) Composite resin composition and connector molded from the same
KR20190026037A (en) A composite resin composition, and an electronic component molded from the composite resin composition
CN111971346B (en) Liquid crystalline resin composition
WO2014050370A1 (en) Composite resin composition and flat connector molded from same
JP6109651B2 (en) Composite resin composition and planar connector molded from the composite resin composition
JP5032958B2 (en) Totally aromatic polyester and polyester resin composition
JP6189750B2 (en) Totally aromatic polyester, polyester resin composition, and polyester molded article
CN114630865B (en) Resin composition and connector
JP6944616B1 (en) Resin composition and planar connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157007213

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838950

Country of ref document: EP

Kind code of ref document: A1