JP2009125672A - Gas-liquid separating apparatus - Google Patents

Gas-liquid separating apparatus Download PDF

Info

Publication number
JP2009125672A
JP2009125672A JP2007303563A JP2007303563A JP2009125672A JP 2009125672 A JP2009125672 A JP 2009125672A JP 2007303563 A JP2007303563 A JP 2007303563A JP 2007303563 A JP2007303563 A JP 2007303563A JP 2009125672 A JP2009125672 A JP 2009125672A
Authority
JP
Japan
Prior art keywords
gas
liquid
cooling pipe
fluid
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007303563A
Other languages
Japanese (ja)
Other versions
JP4688223B2 (en
Inventor
Yoshitaka Ishida
省貴 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007303563A priority Critical patent/JP4688223B2/en
Priority to KR1020080099493A priority patent/KR101376345B1/en
Priority to CN2008101811164A priority patent/CN101439235B/en
Publication of JP2009125672A publication Critical patent/JP2009125672A/en
Application granted granted Critical
Publication of JP4688223B2 publication Critical patent/JP4688223B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/05Separating dispersed particles from gases, air or vapours by liquid as separating agent by condensation of the separating agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas-liquid separating apparatus which can collect fine liquid drops floating in a gas-liquid mixed fluids and collect evaporated materials contained in the gas-liquid mixed fluids. <P>SOLUTION: A cooler 12 and a plurality of corrugated plates 13 are provided in a box body 11. The cooler 12 is connected to an outside cooler mounted on the sectional surface of the flow of the fluid passing in a box body 11b, condensates the evaporated materials contained in the fluid by cooling the gas-liquid mixed fluids, and cools the plurality of corrugated plates 13 by heat transmission. The plurality of corrugated plates 13 is provided with a throttling part 13a enhancing the flow rate of the gas-liquid mixed fluids and passing the same by narrowing the distance between corrugated plates and with a wall surface 13b arranged in the downstream of the throttling part 13a for collision with the gas-liquid mixed fluids. Thus, the plurality of corrugated plates 13 make the fine liquid drops floating in the gas-liquid mixed fluids stick to, and flow down on, the wall surface 13b to be recovered. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は気液分離装置に関するもので、更に詳細には、例えば半導体製造に使用される塗布処理や現像処理等の液処理装置から排気される流体中に含まれる気化物質や流体中に浮遊する処理液のミスト状微細粒子等を液滴化して分離回収する気液分離装置に関するものである。   The present invention relates to a gas-liquid separation device, and more specifically, for example, a vaporized substance contained in a fluid exhausted from a liquid processing device used in semiconductor manufacturing, such as coating processing and development processing, or floating in the fluid. The present invention relates to a gas-liquid separation device that separates and recovers mist-like fine particles of a processing liquid into droplets.

従来、処理液のミスト状粒子等を空気中から分離回収するミスト分離器の1つとして、筐体内に複数の波板を並列に備え、ミスト状粒子等を含んだガスを流入させると、ミスト状粒子等が波板によって捕集・回収されることになり、ガス中からミスト状粒子等を分離する構成のものが知られている(例えば、特許文献1参照)。
特開2005−252100号公報(特許請求の範囲、図4)
Conventionally, as one of the mist separators for separating and recovering mist-like particles of processing liquid from the air, a plurality of corrugated plates are provided in parallel in a casing, and when a gas containing mist-like particles is introduced, A configuration in which mist-like particles and the like are collected and collected by corrugated plates and mist-like particles and the like are separated from gas is known (for example, see Patent Document 1).
Japanese Patent Laying-Open No. 2005-252100 (Claims, FIG. 4)

特許文献1に記載の技術のものでは、ミスト分離器で処理した後の流体(空気)中に、処理液の気化物質やミスト状の微細粒子等が残留する虞があり、ミスト分離器を通過した流体を工場外(系外)に排気することには問題がある。   In the technique described in Patent Document 1, there is a possibility that vaporized substances of the processing liquid, mist-like fine particles, etc. may remain in the fluid (air) after being processed by the mist separator, and pass through the mist separator. There is a problem in exhausting the fluid out of the factory (outside the system).

この発明は、上記事情に鑑みてなされたもので、気液混合流体中に浮遊する微細液滴を捕集でき、さらに、気液混合流体中に含まれている気化物質を捕集できる気液分離装置を提供すること目的としている。   The present invention has been made in view of the above circumstances, and is capable of collecting fine droplets floating in a gas-liquid mixed fluid, and further capable of collecting vaporized substances contained in the gas-liquid mixed fluid. The object is to provide a separation device.

上記課題を解決するために、この発明は、気液混合流体を通過させる管路に接続される筐体内に、上記流体の流れの断面上に備える冷却器と、この冷却器の下流側に上記流体の流れに沿って並列に配設される複数の波板と、を具備し、上記冷却器は、外部に備えられる冷却源と接続され、上記気液混合流体中に含まれる気化物質を冷却により凝縮するように構成され、上記複数の波板は、波板同士の間隔を狭めて上記流体の流速を高めて通過させる絞り部と、この絞り部の下流側に上記気液混合流体が衝突する壁面と、を備え、上記流体中に浮遊する微細液滴を上記壁面に付着流下させ回収する液滴捕集通路を備えている、ことを特徴とする(請求項1)。   In order to solve the above-described problems, the present invention provides a cooler provided on a cross section of the flow of the fluid in a casing connected to a pipe line through which the gas-liquid mixed fluid passes, and the cooler provided on the downstream side of the cooler. A plurality of corrugated plates arranged in parallel along the flow of the fluid, and the cooler is connected to a cooling source provided outside to cool the vaporized substance contained in the gas-liquid mixed fluid. The plurality of corrugated plates are configured to condense with each other, and the gas-liquid mixed fluid collides with the constricted portion that narrows the distance between the corrugated plates and increases the flow velocity of the fluid, and the downstream side of the constricted portion. And a droplet collecting passage for collecting and dropping fine droplets floating in the fluid by adhering to and falling on the wall surface (Claim 1).

このように構成することにより、筐体内を通流する気液混合流体は、冷却器に通流させ波板間を通流し、その後、筐体外へ流出する。気液混合流体は波板間の絞り通路を流速を高めて通過し、この下流側の壁面に衝突するときに、該流体中に浮遊する微細液滴を該壁面に付着し捕集される。この場合、上流側の冷却器が気液混合流体を冷却するので、該流体中に含まれている気化物質は、凝縮されて該流体中に浮遊する微細液滴と共に液滴化されることになる。このため、上記壁面に付着し捕集される液滴として、ミストだけでなく、気化物質も効果的に分離回収することができる。   By comprising in this way, the gas-liquid mixed fluid which flows through the inside of a housing | casing is made to flow through a cooler and between corrugated plates, and it flows out out of a housing | casing after that. The gas-liquid mixed fluid passes through the constricted passage between the corrugated plates at an increased flow velocity, and when it collides with the downstream wall surface, fine droplets floating in the fluid are attached to the wall surface and collected. In this case, since the upstream cooler cools the gas-liquid mixed fluid, the vaporized substance contained in the fluid is condensed into droplets together with fine droplets floating in the fluid. Become. For this reason, not only mist but also a vaporized substance can be effectively separated and collected as droplets that adhere to and are collected on the wall surface.

この発明において、上記波板は、熱伝導性を有する材料よりなり、上記冷却器に接続されていることが好ましい(請求項2)。   In the present invention, it is preferable that the corrugated plate is made of a material having thermal conductivity and is connected to the cooler.

このように構成すると、冷却器により波板を効果的に冷却することができ、これにより波板の温度と上記流体の温度との温度差が生じるので、上記流体中に含まれている気化物質を、波板の表面に結露・凝縮させることができ、液滴が大きく成長すると流下するので液滴を筐体底部より回収できる。したがって、上記流体中から微細液滴の捕捉量を一層増やすことができる。   If comprised in this way, a corrugated sheet can be cooled effectively with a cooler, and this causes a temperature difference between the temperature of the corrugated sheet and the temperature of the fluid, and therefore the vaporized substance contained in the fluid Can be condensed and condensed on the surface of the corrugated plate, and when the droplet grows large, it flows down, so that the droplet can be recovered from the bottom of the casing. Therefore, the amount of fine droplets captured from the fluid can be further increased.

この発明において、上記冷却器が格子状の冷却パイプよりなり、該冷却パイプと上記波板との間で熱伝導が行われるように、冷却パイプが波板と一体に連結されていることが好ましい(請求項3)。更には、上記冷却パイプは上記波板の上部及び下部に接触し、上記熱交換パイプは上記波板の端部に接触して設けられていることが好ましい。   In the present invention, it is preferable that the cooler comprises a grid-like cooling pipe, and the cooling pipe is integrally connected to the corrugated plate so that heat conduction is performed between the cooling pipe and the corrugated plate. (Claim 3). Furthermore, it is preferable that the cooling pipe is provided in contact with the upper and lower parts of the corrugated sheet, and the heat exchange pipe is provided in contact with an end of the corrugated sheet.

このように構成することにより、上記と同様に、波板を冷却することで、上記流体中に含まれている気化物質の回収ができる。   By comprising in this way, the vaporization substance contained in the said fluid can be collect | recovered by cooling a corrugated sheet like the above.

この発明において、上記波板間に形成される上記絞り通路における内側面に疎水層を形成してなることが好ましい(請求項4)。またこの発明において、上記波板間に形成される上記液滴捕集通路における流体衝突壁面に親水層を形成してなることが好ましい(請求項5)。更に、この発明において、上記波板間に形成される上記絞り通路における内側面に疎水層を形成すると共に、上記波板間に形成される上記液滴捕集通路における流体衝突壁面に親水層を形成する方が好ましい(請求項6)。   In the present invention, it is preferable that a hydrophobic layer is formed on the inner surface of the throttle passage formed between the corrugated plates. In the present invention, it is preferable that a hydrophilic layer is formed on a fluid collision wall surface in the droplet collecting passage formed between the corrugated plates. Furthermore, in the present invention, a hydrophobic layer is formed on the inner surface of the throttle passage formed between the corrugated plates, and a hydrophilic layer is formed on the fluid collision wall surface of the droplet collecting passage formed between the corrugated plates. It is preferable to form them (claim 6).

このように構成することにより、疎水層を形成した絞り通路の内側面に、微細液滴が付着しにくく、また、流体中に含まれている気化物質が結露し難いので、流体が絞り通路を通過する際の圧力損失の低減を小さく抑えられる。また、親水層を形成した表面に、微細液滴が付着し易いので、微細液滴の捕捉量を一層増やすことができる。   With this configuration, fine droplets are unlikely to adhere to the inner surface of the constricted passage in which the hydrophobic layer is formed, and vaporized substances contained in the fluid are difficult to condense. Reduction in pressure loss during passage can be kept small. Moreover, since fine droplets are easily attached to the surface on which the hydrophilic layer is formed, the amount of fine droplets captured can be further increased.

この発明において、上記冷却器は、上記気液混合流体の流れの断面上の上部と下部に水平に備える上部冷却パイプ及び下部冷却パイプと、互いに平行に配設され上端及び下端を上部冷却パイプ及び下部冷却パイプに連通接続された複数の縦冷却パイプとで、格子状に形成され、かつ上記上部冷却パイプの外端及び下部冷却パイプの外端を外部に備えられる上記冷却源である冷媒供給源と接続され、冷媒供給源の冷媒をパイプ内に供給する構成とする方がよい(請求項7)。あるいは、この発明において、上記冷却器は、上記流体の流れの断面上の上部と下部に水平に備えるヒートパイプからなる上部冷却パイプ及び下部冷却パイプと、互いに平行に配設され上端及び下端を上部冷却パイプ及び下部冷却パイプに連通接続された複数のヒートパイプからなる縦冷却パイプとで、格子状に形成され、かつ上記上部冷却パイプの外端及び下部冷却パイプの外端を外部に備えられる上記冷却源であるペルチェ素子の吸熱側に接続する方がよい(請求項8)。   In the present invention, the cooler includes an upper cooling pipe and a lower cooling pipe that are horizontally provided in an upper part and a lower part on a cross section of the flow of the gas-liquid mixed fluid, and an upper cooling pipe and an upper cooling pipe arranged in parallel to each other. A refrigerant supply source that is a cooling source that is formed in a lattice shape with a plurality of vertical cooling pipes that are connected to the lower cooling pipe and that has the outer end of the upper cooling pipe and the outer end of the lower cooling pipe provided outside. It is better to have a configuration in which the refrigerant of the refrigerant supply source is supplied into the pipe. Alternatively, in the present invention, the cooler includes an upper cooling pipe and a lower cooling pipe made of heat pipes horizontally provided at an upper portion and a lower portion on the cross section of the fluid flow, and arranged in parallel with each other, with an upper end and a lower end at an upper portion. The vertical cooling pipe comprising a plurality of heat pipes connected to the cooling pipe and the lower cooling pipe, and formed in a lattice shape, and the outer end of the upper cooling pipe and the outer end of the lower cooling pipe are provided outside It is better to connect to the heat absorption side of the Peltier element which is a cooling source.

このように構成することにより、上記冷却器は、冷媒供給源の冷媒を通流して上部冷却パイプ及び下部冷却パイプと複数の縦冷却パイプを冷却して、上記流体を冷却し、また、上記波板を熱伝達により冷却することができる。   With this configuration, the cooler flows the refrigerant of the refrigerant supply source to cool the upper cooling pipe, the lower cooling pipe, and the plurality of vertical cooling pipes, thereby cooling the fluid, and the wave The plate can be cooled by heat transfer.

この発明において、上記複数の波板は、各波板の上記冷却器に連結された端部を固定端として上記流体の流れに沿った方向に伸縮変形可能に形成され、伸縮駆動機構により伸縮されることが好ましい(請求項9)。この場合、上記冷却器に上記各波板に対応してガイドバーを連結し、このガイドバーにより伸縮変形可能な上記各波板が支持されていることが好ましい(請求項10)。   In the present invention, the plurality of corrugated plates are formed to be extendable and deformable in a direction along the fluid flow with the end portion of each corrugated plate connected to the cooler as a fixed end, and are expanded and contracted by a telescopic drive mechanism. (Claim 9). In this case, it is preferable that a guide bar is connected to the cooler corresponding to each of the corrugated plates, and the corrugated plates capable of expanding and contracting are supported by the guide bar.

このように構成することにより、気液混合流体の上記筐体内における通風量に応じて適切な波板間の隙間となるように調整することによって、波板間の絞り通路を通過する流速を調整でき、上記流体中に浮遊する微細液滴をこの絞り通路の下流側の壁面において効果的に付着捕集されるように、壁面に衝突する流速を調整できる。   By configuring in this way, the flow velocity passing through the constricted passage between the corrugated plates is adjusted by adjusting the gap between the corrugated plates according to the amount of air flow in the casing of the gas-liquid mixed fluid. In addition, the flow velocity at which the liquid droplets collide with the wall surface can be adjusted so that the fine droplets floating in the fluid are effectively attached and collected on the wall surface on the downstream side of the throttle passage.

この発明によれば、上記のように構成されているので、以下のような優れた効果が得られる。   According to this invention, since it is configured as described above, the following excellent effects can be obtained.

(1)請求項1記載の発明によれば、筐体内を通流する気液混合流体を波板間の絞り通路を流速を高めて通過させて壁面に衝突させることにより上記流体中に浮遊する微細液滴を付着捕集でき、特に、気液混合流体を波板間を通流させる前に冷却器で冷却して該流体中に含まれている気化物質を凝縮できるようにしたので、気液混合流体を冷却器で冷却しない場合には行えない気化物質の凝縮捕集を行うことができ、これによって、例えば半導体製造に使用される塗布処理や現像処理等の液処理装置から排気される気体中から処理液のミスト状粒子等の液滴を分離回収するのに好適な気液分離装置を提供することができる。   (1) According to the first aspect of the present invention, the gas-liquid mixed fluid flowing in the casing is caused to float in the fluid by causing the gas-liquid mixed fluid to pass through the throttle passage between the corrugated plates with increasing flow velocity and collide with the wall surface. Since fine droplets can be attached and collected, in particular, since the gas-liquid mixed fluid is cooled by a cooler before flowing between the corrugated plates, the vaporized substances contained in the fluid can be condensed. It is possible to condense and collect vaporized substances that cannot be performed when the liquid mixture fluid is not cooled by a cooler, and thereby, for example, exhausted from liquid processing apparatuses such as coating processing and development processing used in semiconductor manufacturing A gas-liquid separation apparatus suitable for separating and recovering droplets such as mist-like particles of the processing liquid from the gas can be provided.

(2)請求項2記載の発明によれば、波板を冷却することができるので、上記(1)に加えて、更に波板の表面に上記流体中に含まれている気化物質の結露を促進でき、気化物質の回収量を一層増やすことができる。   (2) According to the invention described in claim 2, since the corrugated plate can be cooled, in addition to the above (1), the condensation of vaporized substances contained in the fluid is further formed on the surface of the corrugated plate. The amount of vaporized material recovered can be further increased.

(3)請求項3記載の発明によれば、上記(2)と同様に、波板を冷却することができて気化物質の回収ができることに加え、筐体内という小空間において上記流体の圧力損失を少なく抑えて波板の支持構造を強固にかつ簡素に実現できて、装置の低コスト化に寄与することができる。   (3) According to the invention described in claim 3, as in (2) above, in addition to being able to cool the corrugated plate and recover the vaporized substance, the pressure loss of the fluid in a small space within the housing As a result, the corrugated plate support structure can be realized firmly and simply, contributing to cost reduction of the apparatus.

(4)請求項4記載の発明によれば、疎水層を形成した表面に微細液滴が付着しにくいので、上記流体の絞り通路を通過する際の圧力損失を少なくすることができる。   (4) According to the invention described in claim 4, since the fine droplets hardly adhere to the surface on which the hydrophobic layer is formed, it is possible to reduce the pressure loss when the fluid passes through the throttle passage.

(5)請求項5記載の発明によれば、親水層を形成した表面には、微細液滴が付着し易いので、微細液滴の捕捉量を一層増やすことができる。   (5) According to the fifth aspect of the present invention, since fine droplets are likely to adhere to the surface on which the hydrophilic layer is formed, the amount of captured fine droplets can be further increased.

(6)請求項6記載の発明によれば、疎水層を形成した表面には、微細液滴が付着しにくいので、上記流体が絞り通路を通過する際の圧力損失を少なくすることができ、また、親水層を形成した表面には、微細液滴が付着し易く、また上記流体中に含まれている気化物質が結露し易いので、微細液滴の捕捉量を一層増やすことができる。   (6) According to the invention described in claim 6, since the fine droplets hardly adhere to the surface on which the hydrophobic layer is formed, the pressure loss when the fluid passes through the throttle passage can be reduced, In addition, fine droplets are likely to adhere to the surface on which the hydrophilic layer is formed, and vaporized substances contained in the fluid are likely to condense, so that the amount of captured fine droplets can be further increased.

(7)請求項7記載の発明によれば、上記(1)〜(6)に加えて、更に冷媒冷却システムにより、上記流体を冷却し、また、上記波板を熱伝達により冷却することができる。   (7) According to the invention described in claim 7, in addition to the above (1) to (6), the coolant is further cooled by the refrigerant cooling system, and the corrugated plate is cooled by heat transfer. it can.

(8)請求項8記載の発明によれば、上記(1)〜(6)に加えて、更にヒートパイプとペルチェ素子による冷却システムにより、上記流体を冷却し、また、上記波板を熱伝達により冷却することができる。   (8) According to the invention described in claim 8, in addition to the above (1) to (6), the fluid is further cooled by the cooling system using a heat pipe and a Peltier element, and the corrugated plate is heat-transferred. Can be cooled.

(9)請求項9記載の発明によれば、絞り通路を調整でき、その下流側の壁面に衝突する上記流体の流速を調整できるので、上記(1)〜(8)に加えて、更に上記流体中に浮遊する微細液滴を効果的に捕集できる。   (9) According to the ninth aspect of the invention, the throttle passage can be adjusted, and the flow velocity of the fluid colliding with the wall surface on the downstream side can be adjusted. Therefore, in addition to the above (1) to (8), Fine droplets floating in the fluid can be effectively collected.

(10)請求項10記載の発明によれば、上記(9)に加えて、更に上記各波板を簡素な構造で伸縮変形可能に支持することができ、装置の低コスト化に寄与することができる。   (10) According to the invention described in claim 10, in addition to the above (9), each of the corrugated plates can be supported so as to be elastically deformable with a simple structure, contributing to cost reduction of the apparatus. Can do.

以下、本発明の実施の形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1実施形態>
まず、この発明の第1実施形態に係る気液分離装置の構成を説明する。図1は、第1実施形態に係る気液分離装置の斜視図(a)及びこの発明における、波板を平面方向に見た一部拡大平面図(b)である。
<First Embodiment>
First, the configuration of the gas-liquid separation device according to the first embodiment of the present invention will be described. FIG. 1: is the perspective view (a) of the gas-liquid separator which concerns on 1st Embodiment, and the partially expanded plan view (b) which looked at the corrugated sheet in the plane direction in this invention.

上記気液分離装置10は、例えば半導体製造に使用される塗布処理や現像装置の廃液処理部から分岐する気液混合流体を通過させる管路に接続され、あるいは従来のミストトラップ(装置の排気管路)に接続され、筐体11と、この筐体11内に備えられる冷却器12と複数の波板13とからなる。   The gas-liquid separation device 10 is connected to a conduit for passing a gas-liquid mixed fluid branched from a waste liquid processing unit of a coating process or a developing device used in semiconductor manufacturing, for example, or a conventional mist trap (exhaust pipe of the device). A casing 11, a cooler 12 provided in the casing 11, and a plurality of corrugated plates 13.

筐体11は、流体入口11aと、冷却器12と複数の波板13を収容する筐体本体11bと、被分離液が分離された流体の出口である流体出口11cとを具備し、底面部に分離液を排出するトラップ構造の出口(図示せず)を具備してなる。なお、筐体本体11bの内面には親水性皮膜が形成されている。   The casing 11 includes a fluid inlet 11a, a casing main body 11b that houses the cooler 12 and the plurality of corrugated plates 13, and a fluid outlet 11c that is an outlet of the fluid from which the liquid to be separated is separated. And a trap structure outlet (not shown) for discharging the separation liquid. A hydrophilic film is formed on the inner surface of the housing body 11b.

冷却器12は、上部冷却パイプ12aと、下部冷却パイプ12bと、複数の縦冷却パイプ12cとで格子状に形成され、筐体本体11b内を通流する上記流体の流れの断面上に備えられている。上部冷却パイプ12aは冷媒流出パイプであり、下部冷却パイプ12bは冷媒流入パイプであり、複数の縦冷却パイプ12cは、上端及び下端を上部冷却パイプ12a及び下部冷却パイプ12bに連通接続され、平行に並列に配設されている。上部冷却パイプ12aと下部冷却パイプ12bは、上下に平行に配され筐体本体11bの外部に伸びている外端を冷却源である冷媒供給源(図示せず)に接続され、冷媒供給源の冷媒を下部冷却パイプ12b内に供給する構成である。なお、上部冷却パイプ12a,下部冷却パイプ12b及び縦冷却パイプ12cは、例えばアルミニウム管によって形成されている。   The cooler 12 is formed in a lattice shape with an upper cooling pipe 12a, a lower cooling pipe 12b, and a plurality of vertical cooling pipes 12c, and is provided on a cross section of the flow of the fluid flowing through the housing body 11b. ing. The upper cooling pipe 12a is a refrigerant outflow pipe, the lower cooling pipe 12b is a refrigerant inflow pipe, and the plurality of vertical cooling pipes 12c are connected in communication with the upper cooling pipe 12a and the lower cooling pipe 12b at the upper and lower ends, in parallel. They are arranged in parallel. The upper cooling pipe 12a and the lower cooling pipe 12b are arranged in parallel in the vertical direction and are connected to a refrigerant supply source (not shown) as a cooling source at an outer end extending to the outside of the housing body 11b. The refrigerant is supplied into the lower cooling pipe 12b. The upper cooling pipe 12a, the lower cooling pipe 12b, and the vertical cooling pipe 12c are formed of, for example, an aluminum pipe.

このように構成される冷却器12は、筐体介内を通流する気液混合流体を冷却して、該流体中に含まれている気化物質を凝縮させる役目を果たすと共に、複数の波板13を熱伝達により冷却する役目を果たす。   The cooler 12 configured as described above serves to cool the gas-liquid mixed fluid flowing through the housing and condense the vaporized substance contained in the fluid, and also to a plurality of corrugated plates. It serves to cool 13 by heat transfer.

複数の波板13は、熱伝導性を有する部材、例えばアルミニウムの押出形材にて形成され、波板の厚みを変えることで波板同士の間隔を狭めて気液混合流体の流速を高めて通過させる絞り部13aと、この絞り部13aの下流側のほぼ正面に配置されこの絞り部13aを流速を高めて通過する気液混合流体が衝突する壁面13bと、を備えている(図2参照)。絞り通路13aにおける内側面13cの一方の面には、微細液滴が付着しにくく、かつ、気液混合流体中に含まれている気化物質が結露し難くするために、該流体の圧力損失の低減を小さく抑えられる疎水層14が形成されている。また、壁面13bには、微細液滴が付着し易く、微細液滴の捕捉量を一層増やすことができる親水層15が形成されている。これによって、複数の波板13は、気液混合流体中に浮遊する微細液滴を壁面13bに付着・流下させ回収する液滴捕集通路13dを備えている。   The plurality of corrugated plates 13 are formed of a thermally conductive member, for example, an extruded aluminum material, and by changing the thickness of the corrugated plates, the interval between the corrugated plates is reduced to increase the flow rate of the gas-liquid mixed fluid. A throttle part 13a to be passed, and a wall surface 13b disposed substantially in front of the throttle part 13a on the downstream side and colliding with a gas-liquid mixed fluid passing through the throttle part 13a at an increased flow velocity (see FIG. 2). ). In order to make it difficult for fine droplets to adhere to one surface of the inner side surface 13c in the throttle passage 13a and to make the vaporized substance contained in the gas-liquid mixed fluid difficult to condense, the pressure loss of the fluid is reduced. A hydrophobic layer 14 that can suppress the reduction is formed. Further, a hydrophilic layer 15 is formed on the wall surface 13b so that fine droplets can easily adhere to the wall surface 13b, and the amount of captured fine droplets can be further increased. Thus, the plurality of corrugated plates 13 are provided with a droplet collection passage 13d for collecting and dropping fine droplets floating in the gas-liquid mixed fluid on the wall surface 13b.

複数の波板13は、上部及び下部の端面を、冷却器12の上部冷却パイプ12aと下部冷却パイプ12bに一体に連結支持され、また、上部及び下部の間の端面を、複数の縦冷却パイプ12cに一体に連結支持されている。このため、複数の波板13は、冷却器12により熱伝導で冷却されるので、波板表面の温度が上記流体の温度との温度差が生じるように低く保たれる。   The plurality of corrugated plates 13 are integrally connected and supported at the upper and lower end faces to the upper cooling pipe 12a and the lower cooling pipe 12b of the cooler 12, and the end faces between the upper and lower parts are connected to the plurality of vertical cooling pipes. 12c is integrally connected and supported. For this reason, since the plurality of corrugated plates 13 are cooled by heat conduction by the cooler 12, the temperature of the corrugated plate surface is kept low so that a temperature difference from the temperature of the fluid occurs.

次に、上記気液分離装置10の動作態様について説明する。筐体11内を通流する気液混合流体は、冷却器12を通流し波板13間を通流し筐体11外へ流出する。気液混合流体は冷却器12で冷却され、波板間の疎水層14を形成した内側面13cで形成された絞り通路13aを流速を高めて通過し、この下流側の親水層15を形成した壁面13bに衝突し、その後流速を緩和して筐体11外へ流出する。気液混合流体は冷却器12で冷却されると、該流体中に含まれている気化物質は凝縮され、該流体中に浮遊する微細液滴中に含まれて成長した液滴になる。気液混合流体は絞り通路13aを流速を高めて通過し、壁面13bに衝突すると、該流体中に浮遊する微細液滴が壁面13bに付着して捕集され、流下する液滴は液滴捕集通路13dを流れて筐体底部より回収される。該流体中に含まれる気化物質も冷却され凝縮するので壁面13bに付着して捕集される。   Next, the operation | movement aspect of the said gas-liquid separation apparatus 10 is demonstrated. The gas-liquid mixed fluid flowing in the housing 11 flows through the cooler 12, flows between the corrugated plates 13, and flows out of the housing 11. The gas-liquid mixed fluid is cooled by the cooler 12 and passes through the throttle passage 13a formed by the inner side surface 13c formed with the hydrophobic layer 14 between the corrugated plates at an increased flow velocity, thereby forming the downstream hydrophilic layer 15. It collides with the wall surface 13b and then flows out of the housing 11 with the flow velocity reduced. When the gas-liquid mixed fluid is cooled by the cooler 12, the vaporized substance contained in the fluid is condensed to become droplets grown and contained in fine droplets floating in the fluid. When the gas-liquid mixed fluid passes through the throttle passage 13a with an increased flow velocity and collides with the wall surface 13b, the fine liquid droplets floating in the fluid adhere to the wall surface 13b and are collected. It flows through the collecting passage 13d and is collected from the bottom of the casing. Since the vaporized substance contained in the fluid is cooled and condensed, it adheres to the wall surface 13b and is collected.

また、波板13は、冷却器12により冷却され、波板表面の温度と上記流体との間で温度差が生じるので、上記流体中に含まれている気化物質を、波板13の表面に結露・凝縮させることができ、分離回収できる。   Further, the corrugated plate 13 is cooled by the cooler 12 and a temperature difference is generated between the temperature of the corrugated plate surface and the fluid. Therefore, the vaporized substance contained in the fluid is transferred to the surface of the corrugated plate 13. Condensation / condensation can be achieved and separated and recovered.

<第2実施形態>
図2は、この発明の第2実施形態に係る気液分離装置の斜視図である。この気液分離装置20は、筐体21と、この筐体21内に備えられる冷却器22と、第1実施形態と同様の複数の波板13とからなる。
Second Embodiment
FIG. 2 is a perspective view of a gas-liquid separator according to a second embodiment of the present invention. The gas-liquid separator 20 includes a casing 21, a cooler 22 provided in the casing 21, and a plurality of corrugated plates 13 similar to those in the first embodiment.

筐体21は、流体入口21aと、筐体本体21bと、流体出口21cとを具備してなり、第1実施形態の場合と同様に構成されている。   The casing 21 includes a fluid inlet 21a, a casing main body 21b, and a fluid outlet 21c, and is configured in the same manner as in the first embodiment.

冷却器22は、ヒートパイプにより構成される、上部冷却パイプ22aと、下部冷却パイプ22bと、複数の縦冷却パイプ22cとで格子状に形成され、筐体本体21b内を通流する上記流体の流れの断面上に備えられている。上部冷却パイプ22aと下部冷却パイプ22bは、上下に平行に配され筐体本体21bの外部に伸びている外端を冷却源であるペルチェ素子24の吸熱側に接続されている。   The cooler 22 is formed of a heat pipe and is formed in a lattice shape with an upper cooling pipe 22a, a lower cooling pipe 22b, and a plurality of vertical cooling pipes 22c, and the above-described fluid flowing through the housing body 21b. It is provided on the cross section of the flow. The upper cooling pipe 22a and the lower cooling pipe 22b are arranged in parallel in the vertical direction and are connected to the heat absorption side of the Peltier element 24 serving as a cooling source at the outer end extending to the outside of the housing body 21b.

このペルチェ素子24は、PN接合部に電流を流すと、N→P接合部分では吸熱現象が、P→N接合部分では放熱現象が発生し熱を低温側(吸熱側)から高温側(発熱側)へ輸送する。したがって、上部冷却パイプ22aと下部冷却パイプ22bの外端が大きな面積を有して形成されていて、ペルチェ素子24のN→P接合部分に熱伝達が良好に行われるように一体連結されている。このペルチェ素子24は、ヒートパイプが汲み上げてくる熱をヒートパイプ連結面で吸熱し、反対側の面で放熱する。   In this Peltier element 24, when a current is passed through the PN junction, an endothermic phenomenon occurs in the N → P junction, and a heat dissipation phenomenon occurs in the P → N junction, and heat is transferred from the low temperature side (endothermic side) to the high temperature side (heat generation side). ). Therefore, the outer ends of the upper cooling pipe 22a and the lower cooling pipe 22b are formed to have a large area, and are integrally connected to the N → P junction portion of the Peltier element 24 so that heat transfer is performed satisfactorily. . The Peltier element 24 absorbs the heat pumped up by the heat pipe at the heat pipe connecting surface and dissipates it at the opposite surface.

ヒートパイプは、パイプ本体と、パイプ本体に収容されたウイックと呼ばれる多孔質体と、He,N,H2O,NH3,Na,Kなどから選ばれる作動流体とからなり、パイプ本体の一端で気液混合流体を冷却すると(パイプ本体の他端が加熱されると)、作動流体が蒸発してペルチェ素子24によって冷却される端部に移動して凝縮し、該凝縮した作動流体を、多孔質体の内部を毛管現象により移動してパイプ本体の上記一端に戻り、再び蒸発することで、筐体11内を通流する気液混合流体を冷却する。複数の縦冷却パイプ22cは、気液混合流体から汲み上げる熱を上部冷却パイプ22aと下部冷却パイプ22bのいずれかの一方に熱伝達されるように設けられている。 A heat pipe is composed of a pipe body, a porous body called a wick accommodated in the pipe body, and a working fluid selected from He, N, H 2 O, NH 3 , Na, K, etc., and one end of the pipe body When the gas-liquid mixed fluid is cooled in (when the other end of the pipe body is heated), the working fluid evaporates and moves to the end cooled by the Peltier element 24 to condense, and the condensed working fluid is The gas-liquid mixed fluid flowing in the housing 11 is cooled by moving inside the porous body by capillary action, returning to the one end of the pipe body, and evaporating again. The plurality of vertical cooling pipes 22c are provided so that heat pumped up from the gas-liquid mixed fluid is transferred to one of the upper cooling pipe 22a and the lower cooling pipe 22b.

上記のように構成される第2実施形態の気液分離装置20によれば、筐体21内を通過する気液混合流体は冷却器22で冷却されると、該流体中に含まれている気化物質は凝縮され、該流体中に浮遊する微細液滴中に含まれて成長した液滴になる。そして、第1実施形態と同様に、波板13間を通過する過程で、該流体中に浮遊する微細液滴が捕集され、流下する液滴は液滴捕集通路13dを流れて筐体底部より回収される。   According to the gas-liquid separation device 20 of the second embodiment configured as described above, when the gas-liquid mixed fluid passing through the housing 21 is cooled by the cooler 22, it is contained in the fluid. The vaporized material is condensed into droplets grown and contained in fine droplets floating in the fluid. As in the first embodiment, in the process of passing between the corrugated plates 13, fine droplets floating in the fluid are collected, and the falling droplets flow through the droplet collecting passage 13d to form the casing. It is collected from the bottom.

<第3実施形態>
図3(a)はこの発明の第3実施形態に係る気液分離装置の斜視図であり、図3(b)は平面図である。図4(a)は、他の状態の斜視図であり、図4(b)は平面図である。この気液分離装置30は、筐体31と、この筐体31内に備えられる冷却器32と、複数の波板33とからなる。筐体31は、流体入口31aと、筐体本体31bと、流体出口31cとを具備してなり、第1実施形態の場合と同一の構成であり、説明を省略する。冷却器32は、ヒートパイプにより構成される、上部冷却パイプ32aと、下部冷却パイプ32bと、複数の縦冷却パイプ32cとで格子状に形成され、第2実施形態の冷却器22と同一であり、説明を省略する。
<Third Embodiment>
FIG. 3 (a) is a perspective view of a gas-liquid separator according to a third embodiment of the present invention, and FIG. 3 (b) is a plan view. FIG. 4A is a perspective view of another state, and FIG. 4B is a plan view. The gas-liquid separation device 30 includes a casing 31, a cooler 32 provided in the casing 31, and a plurality of corrugated plates 33. The casing 31 includes a fluid inlet 31a, a casing main body 31b, and a fluid outlet 31c. The casing 31 has the same configuration as that of the first embodiment, and a description thereof is omitted. The cooler 32 is formed in a lattice shape with an upper cooling pipe 32a, a lower cooling pipe 32b, and a plurality of vertical cooling pipes 32c, which are configured by heat pipes, and is the same as the cooler 22 of the second embodiment. The description is omitted.

複数の波板33は、第1実施形態の波板13と相違する。各波板33は、冷却器32に連結された端部を固定端とし、筐体31内を通流する気液混合流体の流れに沿った方向に伸縮変形可能に形成されている。   The plurality of corrugated plates 33 are different from the corrugated plate 13 of the first embodiment. Each corrugated plate 33 has an end connected to the cooler 32 as a fixed end, and is formed to be stretchable and deformable in a direction along the flow of the gas-liquid mixed fluid flowing through the housing 31.

この場合、波板33が例えば合成樹脂製の板部材であれば、図5(a)に示すように、波板33の屈曲部で隣接する一方の板部材33aの一側面に断面円形状の膨隆軸部33bを突設し、他方の板部材33cの端部に、膨隆軸部33bに回動自在に嵌合する断面円弧状の嵌合凹部33dを設けると共に、端部の一側に収縮変形時の干渉を防止するための傾斜面33を設けた構造とする。なお、波板33を合成樹脂製の板部材に変えてアルミニウム製の押出形材にて形成することも可能であり、この場合も上記と同様に膨隆軸部33bと嵌合凹部33dを設けて伸縮変形可能に形成することができる。   In this case, if the corrugated plate 33 is a plate member made of synthetic resin, for example, as shown in FIG. 5A, a circular cross section is formed on one side surface of one plate member 33a adjacent to the bent portion of the corrugated plate 33. The bulging shaft portion 33b protrudes, and an end portion of the other plate member 33c is provided with a fitting concave portion 33d having an arc-shaped cross section that is rotatably fitted to the bulging shaft portion 33b, and contracts to one side of the end portion. The structure is provided with an inclined surface 33 for preventing interference during deformation. It is also possible to replace the corrugated plate 33 with a synthetic resin plate member and form it with an aluminum extruded shape. In this case as well, a bulging shaft portion 33b and a fitting concave portion 33d are provided in the same manner as described above. It can be formed to be stretchable and deformable.

また、波板33を板金にて形成する場合は、図5(b)に示すように、波板33の屈曲部で隣接する一方の板部材33fの一側面にピン挿通孔部33gを有するヒンジ受部材33hを固着し、他方の板部材33iの端部に、上記ヒンジ受部材33hのピン挿通孔部33gと軸方向で合致するピン挿通孔部33jを有するヒンジ係止部33を設け、両板部材33f,33iのヒンジ受部材33hのピン挿通孔部33gとヒンジ係止部33kのピン挿通孔部33jとを合致させた状態でヒンジピン33pを貫挿して、両板部材33f,33iを回動自在にする構造としてもよい。   When the corrugated sheet 33 is formed of sheet metal, as shown in FIG. 5B, a hinge having a pin insertion hole 33g on one side surface of one of the adjacent plate members 33f at the bent portion of the corrugated sheet 33. The receiving member 33h is fixed, and a hinge locking portion 33 having a pin insertion hole portion 33j axially matching the pin insertion hole portion 33g of the hinge receiving member 33h is provided at the end of the other plate member 33i. With the pin insertion hole 33g of the hinge receiving member 33h of the plate members 33f and 33i and the pin insertion hole 33j of the hinge locking portion 33k aligned, the hinge pin 33p is inserted to rotate both the plate members 33f and 33i. It is good also as a structure which makes it movable.

また、冷却器32にガイドバー40が連結され、このガイドバー40により伸縮変形可能な上記各波板33が支持されている。筐体31内の波板33の側方に伸縮駆動機構である直動往復形アクチュエータ41が備えられ、該直動往復形アクチュエータ41のピストンロッド41aの先端が、複数の波板33の下流端の一部に共通に連結された押圧板42と連結されていて、ピストンロッド41aを伸縮することにより波板33を伸縮することができる。気液混合流体の流量が多いときは、図3に示すように、ピストンロッド41aを伸張して波板33間の屈曲通路の屈曲度合いを緩くし、気液混合流体の流量が少ないときは、図4に示すように、ピストンロッド41aを収縮して波板33間の屈曲通路の屈曲度合いをきつくし、波板33間の絞り通路を通過する流速を調整する。   A guide bar 40 is connected to the cooler 32, and the corrugated plates 33 that can be expanded and contracted are supported by the guide bar 40. A linear motion reciprocating actuator 41, which is an expansion / contraction drive mechanism, is provided on the side of the corrugated plate 33 in the housing 31, and the tip of the piston rod 41a of the linear motion reciprocating actuator 41 is the downstream end of the plurality of corrugated plates 33. The corrugated sheet 33 can be expanded and contracted by expanding and contracting the piston rod 41a. When the flow rate of the gas-liquid mixed fluid is large, as shown in FIG. 3, the piston rod 41a is extended to loosen the bending degree of the bent passage between the corrugated plates 33, and when the flow rate of the gas-liquid mixed fluid is small, As shown in FIG. 4, the piston rod 41 a is contracted to tighten the bending degree of the bent passage between the corrugated plates 33, and the flow velocity passing through the throttle passage between the corrugated plates 33 is adjusted.

このように構成すると、ピストンロッド41aの伸縮度を調整することにより、気液混合流体の筐体31内における通風量に応じて適切な波板33間の隙間となるように調整することによって、波板33間の絞り通路を通過する流速を調整できる。これによって、気液混合流体中に浮遊する微細液滴をこの絞り通路の下流側の壁面において効果的に付着捕集されるように、壁面に衝突する流速を調整できる。   With this configuration, by adjusting the degree of expansion / contraction of the piston rod 41a, by adjusting the gap between the corrugated plates 33 according to the amount of air flow in the casing 31 of the gas-liquid mixed fluid, The flow velocity passing through the throttle passage between the corrugated plates 33 can be adjusted. This makes it possible to adjust the flow velocity at which the liquid droplets collide with the wall surface so that the fine liquid droplets floating in the gas-liquid mixed fluid are effectively adhered and collected on the wall surface on the downstream side of the throttle passage.

<適用例>
次に、この発明に係る気液分離装置を半導体製造に使用される現像処理装置に備えた場合について、図6を参照して説明する。
<Application example>
Next, the case where the gas-liquid separation apparatus according to the present invention is provided in a development processing apparatus used for semiconductor manufacturing will be described with reference to FIG.

この現像処理装置50は、スピンチャック51でウエハWの裏面(下面)中央部を吸着し該ウエハWを水平に保持し、該スピンチャック51を、その軸部52に連結した駆動機構53により昇降及び回転自在に備え、スピンチャック51に保持された、ウエハWの側方及び下方を囲み、液回収路54aを有する内カップ54と、気体供給口55dを有する外カップ55と、を備え、更に、現像液供給ノズル56,洗浄液供給ノズル65及びミストを回収するミストトラップ61と、この発明に係る気液分離装置10,20,30とを備えている。   In the developing processing apparatus 50, the central portion of the back surface (lower surface) of the wafer W is attracted by the spin chuck 51 to hold the wafer W horizontally, and the spin chuck 51 is moved up and down by a driving mechanism 53 connected to the shaft portion 52. And an inner cup 54 having a liquid recovery path 54a and an outer cup 55 having a gas supply port 55d, which surrounds the side and lower side of the wafer W and is held by the spin chuck 51. The developer supply nozzle 56, the cleaning liquid supply nozzle 65, the mist trap 61 for collecting the mist, and the gas-liquid separators 10, 20, and 30 according to the present invention are provided.

この場合、内カップ54の内側には環状の液回収路54aが形成され、外カップ55と内カップ54の上部開口部に、内方側が開口する環状のミスト回収部55cとミスト回収路55aが形成されている。このミスト回収路55aにおける上部と側部の近接部位には、気体供給口55dと吸引口55bが同心円上に等間隔をおいて複数例えば8個形成されている。そして、気体供給口55dには、気体供給源例えば空気供給源67が接続されている。開閉弁66を介して、開閉弁66の開放により空気供給源67から空気が気体供給口55dに供給されると、空気はミスト回収路55a内に沿って流れ、その気流による負圧を利用すなわち気流による負圧が作用するエジェクタ効果によってミスト回収部55c及び吸引口55bを介してミストをミスト回収路55a内に回収できるように構成されている。この空気の供給のタイミングは、ウエハWに洗浄液を供給後、スピンチャック51が回転する際に行う。   In this case, an annular liquid recovery passage 54a is formed inside the inner cup 54, and an annular mist recovery portion 55c and a mist recovery passage 55a that are open on the inner side are formed in the upper openings of the outer cup 55 and the inner cup 54. Is formed. A plurality of, for example, eight gas supply ports 55d and suction ports 55b are formed concentrically on the mist collection path 55a in the vicinity of the upper part and the side part at equal intervals. A gas supply source such as an air supply source 67 is connected to the gas supply port 55d. When air is supplied from the air supply source 67 to the gas supply port 55d by opening the on-off valve 66 through the on-off valve 66, the air flows along the mist collection path 55a and uses the negative pressure generated by the air flow, that is, The mist can be recovered in the mist recovery path 55a through the mist recovery part 55c and the suction port 55b by an ejector effect in which a negative pressure due to the airflow acts. This air supply timing is performed when the spin chuck 51 rotates after supplying the cleaning liquid to the wafer W.

なお、内カップ54に設けられた液回収路54aにはドレイン弁60を介設したドレイン管路59が接続されている。このドレイン管路59と、外カップ55の底部に設けられ排出口55eに接続する排出管路68は、ミストトラップ61に接続され、ミストトラップ61によって気体と廃液とに気液分離されるように構成されている。   A drain conduit 59 having a drain valve 60 is connected to the liquid recovery passage 54 a provided in the inner cup 54. The drain pipe 59 and the discharge pipe 68 provided at the bottom of the outer cup 55 and connected to the discharge port 55e are connected to a mist trap 61 so that gas and liquid are separated into gas and waste liquid by the mist trap 61. It is configured.

一方、スピンチャック51に保持されたウエハWの上方側には、ウエハWの表面の中央部と隙間を介して対向する現像液供給ノズル56が進退自在かつ昇降自在に設けられている。この現像液供給ノズル56は、流量調整可能な開閉弁57を介して現像液供給源58に接続されている。また、ウエハWの表面と隙間を介して対向する洗浄液供給ノズル62が進退自在かつ昇降自在に設けられている。この洗浄液供給ノズル62は、開閉弁64を介して洗浄液例えば純水の供給源63に接続されている。   On the other hand, on the upper side of the wafer W held by the spin chuck 51, a developing solution supply nozzle 56 facing the central portion of the surface of the wafer W via a gap is provided so as to be movable back and forth and up and down. The developer supply nozzle 56 is connected to a developer supply source 58 via an on-off valve 57 that can adjust the flow rate. Further, a cleaning liquid supply nozzle 62 facing the surface of the wafer W via a gap is provided so as to be movable back and forth and lifted up and down. The cleaning liquid supply nozzle 62 is connected to a supply source 63 of a cleaning liquid, such as pure water, via an on-off valve 64.

上記のように構成された現像処理装置50において、現像液供給ノズル56によりウエハWの表面に現像液が供給されて現像処理が行われる。これにより、ウエハW表面のレジスト膜のうちの現像液に対して可溶解性の部位が溶解することにより所定のレジストパターンが形成される。更にウエハWには洗浄液供給ノズル62から例えば純水などのリンス液が供給されてリンス処理がなされ、その後にリンス液を振り切るスピン乾燥が行われる。この際、開閉弁66が開放して空気供給源67から空気が気体供給口55dに供給されると、空気はミスト回収路55aに沿って流れ、その気流による負圧を利用すなわち気流による負圧が作用するエジェクタ効果によってミスト回収部55c及び吸引口55bを介してミストをミスト回収路55a内に回収する。ミスト回収路55a内に回収されたミストは、排出口55eからミストトラップ61に排出され、ミストトラップ61によって気液分離される。また、液回収路54a内に回収された現像液,リンス液はドレイン管路59からミストトラップ61に排出され、ミストトラップ61によって気液分離される。   In the developing apparatus 50 configured as described above, the developing solution is supplied to the surface of the wafer W by the developing solution supply nozzle 56 to perform the developing process. Thus, a predetermined resist pattern is formed by dissolving a portion that is soluble in the developer in the resist film on the surface of the wafer W. Further, a rinse liquid such as pure water is supplied to the wafer W from the cleaning liquid supply nozzle 62 to perform a rinsing process, and then spin drying is performed to shake off the rinse liquid. At this time, when the on-off valve 66 is opened and air is supplied from the air supply source 67 to the gas supply port 55d, the air flows along the mist recovery path 55a, and the negative pressure due to the airflow is used, that is, the negative pressure due to the airflow. The mist is recovered in the mist recovery path 55a through the mist recovery part 55c and the suction port 55b by the ejector effect that acts. The mist recovered in the mist recovery path 55 a is discharged from the discharge port 55 e to the mist trap 61 and is separated into gas and liquid by the mist trap 61. Further, the developer and the rinsing liquid recovered in the liquid recovery path 54 a are discharged from the drain line 59 to the mist trap 61 and are separated into gas and liquid by the mist trap 61.

ミストトラップ61で気液分離され、現像液を含む廃液は廃液回収タンク(図示せず)に回収され、空気供給源67の空気と、現像液のミストと、洗浄液のミストと、現像液及び洗浄液の気化物質は、この発明に係る気液分離装置10,20,30に流入する。   The liquid waste is separated in the mist trap 61, and the waste liquid containing the developer is recovered in a waste liquid recovery tank (not shown). The air of the air supply source 67, the mist of the developer, the mist of the cleaning liquid, the developer and the cleaning liquid. The vaporized substance flows into the gas-liquid separators 10, 20, and 30 according to the present invention.

気液分離装置10,20,30は、筐体内に流入する気液混合流体(空気と、現像液のミストと、洗浄液のミストと、現像液及び洗浄液の気化物質との混合流体)を冷却器12,22,32で冷却し、波板間を通流させてから、筐体内に流出する。このとき、気液混合流体は、波板間の絞り通路を流速を高めて通過し、この下流側の壁面に衝突するときに、該流体中に浮遊する微細液滴(現像液のミストと、洗浄液のミスト)は該壁面に付着し捕集される。また、冷却器12,22,32が上記流体を冷却するので、該流体中に含まれている現像液及び洗浄液の気化物質は、凝縮され、該流体中に浮遊する微細液滴中に含まれて成長した液滴となり、上記壁面に付着し捕集される微細液滴として分離回収される。   The gas-liquid separators 10, 20, and 30 cool the gas-liquid mixed fluid (mixed fluid of air, developer mist, cleaning liquid mist, developer and cleaning liquid vaporized substance) flowing into the housing. It cools by 12, 22, 32, and after flowing between corrugated sheets, it flows out in a housing | casing. At this time, the gas-liquid mixed fluid passes through the constricted passage between the corrugated plates with an increased flow velocity, and when it collides with the wall surface on the downstream side, fine droplets (developer mist, The mist of the cleaning liquid adheres to the wall surface and is collected. Further, since the coolers 12, 22, and 32 cool the fluid, the vaporized substances of the developer and the cleaning liquid contained in the fluid are condensed and contained in fine droplets floating in the fluid. The liquid droplets grow and become separated and collected as fine droplets that adhere to the wall surface and are collected.

なお、上記説明では、この発明に係る気液分離装置10,20,30を現像処理装置50に適用する場合について説明したが、現像処理装置50以外の液処理装置例えばレジスト塗布処理装置にも適用できる。   In the above description, the case where the gas-liquid separators 10, 20, and 30 according to the present invention are applied to the development processing apparatus 50 has been described. However, the present invention is also applicable to a liquid processing apparatus other than the development processing apparatus 50, such as a resist coating processing apparatus. it can.

この発明の第1実施形態に係る気液分離装置の概略斜視図(a)及びこの発明における波板の一部を示す拡大断面図(b)である。It is the schematic perspective view (a) of the gas-liquid separation apparatus which concerns on 1st Embodiment of this invention, and the expanded sectional view (b) which shows a part of corrugated sheet in this invention. この発明の第2実施形態に係る気液分離装置の概略斜視図である。It is a schematic perspective view of the gas-liquid separator which concerns on 2nd Embodiment of this invention. この発明の第3実施形態に係る気液分離装置における波板の伸長状態を示す概略斜視図(a)及びその概略平面図(b)である。It is the schematic perspective view (a) which shows the expansion | extension state of the corrugated sheet in the gas-liquid separator which concerns on 3rd Embodiment of this invention, and its schematic plan view (b). この発明に係る第3実施形態の気液分離装置における波板の収縮状態を示す概略斜視図(a)及びその概略平面図(b)である。It is the schematic perspective view (a) which shows the contraction state of the corrugated sheet in the gas-liquid separation apparatus of 3rd Embodiment concerning this invention, and its schematic plan view (b). この発明に係る第3実施形態における波板の変形例を示す要部斜視図である。It is a principal part perspective view which shows the modification of the corrugated sheet in 3rd Embodiment which concerns on this invention. この発明に係る気液分離装置の使用状態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the use condition of the gas-liquid separator which concerns on this invention.

符号の説明Explanation of symbols

10,20,30 気液分離装置
11,21,31 筐体
12,22,32 冷却器
12a,22a,32a 上部冷却パイプ
12b,22b,32b 下部冷却パイプ
12c,22c,32c 縦冷却パイプ
13,33 波板
13a 絞り部
13b 壁面
13c 内側面
13d 液滴捕集通路
14 疎水層
15 親水層
24 ペルチェ素子
40 ガイドバー
41 直動往復形アクチュエータ(伸縮駆動機構)
10, 20, 30 Gas-liquid separators 11, 21, 31 Housings 12, 22, 32 Coolers 12a, 22a, 32a Upper cooling pipes 12b, 22b, 32b Lower cooling pipes 12c, 22c, 32c Vertical cooling pipes 13, 33 Corrugated plate 13a Restriction portion 13b Wall surface 13c Inner side surface 13d Droplet collecting passage 14 Hydrophobic layer 15 Hydrophilic layer 24 Peltier element 40 Guide bar 41 Direct acting reciprocating actuator (extension / retraction drive mechanism)

Claims (10)

気液混合流体を通過させる管路に接続される筐体内に、上記流体の流れの断面上に備える冷却器と、この冷却器の下流側に上記流体の流れに沿って並列に配設される複数の波板と、を具備し、
上記冷却器は、外部に備えられる冷却源と接続され、上記気液混合流体中に含まれる気化物質を冷却により凝縮するように構成され、
上記複数の波板は、波板同士の間隔を狭めて上記流体の流速を高めて通過させる絞り部と、この絞り部の下流側に上記気液混合流体が衝突する壁面と、を備え、上記流体中に浮遊する微細液滴を上記壁面に付着流下させ回収する液滴捕集通路を備えている、
ことを特徴とする気液分離装置。
A cooler provided on a cross section of the fluid flow is disposed in a housing connected to a pipe line through which the gas-liquid mixed fluid passes, and is arranged in parallel along the fluid flow on the downstream side of the cooler. A plurality of corrugated plates,
The cooler is connected to a cooling source provided outside, and is configured to condense the vaporized substance contained in the gas-liquid mixed fluid by cooling,
The plurality of corrugated plates includes a throttle portion that narrows the interval between the corrugated plates to increase the flow velocity of the fluid, and a wall surface on which the gas-liquid mixed fluid collides with the downstream side of the throttle portion, It has a droplet collection passage that collects fine droplets floating in the fluid by adhering to the wall and collecting them.
A gas-liquid separator characterized by that.
請求項1に記載の気液分離装置において、
上記波板は、熱伝導性を有する材料よりなり、上記冷却器に接続されていることを特徴とする気液分離装置。
In the gas-liquid separation device according to claim 1,
The corrugated plate is made of a material having thermal conductivity and connected to the cooler.
請求項1又は2に記載の気液分離装置において、
上記冷却器が格子状の冷却パイプよりなり、該冷却パイプと上記波板との間で熱伝導が行われるように、冷却パイプが波板と一体に連結されていることを特徴とする気液分離装置。
In the gas-liquid separation device according to claim 1 or 2,
The gas / liquid is characterized in that the cooler comprises a grid-like cooling pipe, and the cooling pipe is integrally connected to the corrugated plate so that heat conduction is performed between the cooling pipe and the corrugated plate. Separation device.
請求項1ないし3のいずれかに記載の気液分離装置において、
上記波板間に形成される上記絞り通路における内側面に疎水層を形成してなる、ことを特徴とする気液分離装置。
The gas-liquid separator according to any one of claims 1 to 3,
A gas-liquid separation device, wherein a hydrophobic layer is formed on an inner surface of the throttle passage formed between the corrugated plates.
請求項1ないし3のいずれかに記載の気液分離装置において、
上記波板間に形成される上記液滴捕集通路における流体衝突壁面に親水層を形成してなる、ことを特徴とする気液分離装置。
The gas-liquid separator according to any one of claims 1 to 3,
A gas-liquid separation device, wherein a hydrophilic layer is formed on a fluid collision wall surface in the droplet collecting passage formed between the corrugated plates.
請求項1ないし3のいずれかに記載の気液分離装置において、
上記波板間に形成される上記絞り通路における内側面に疎水層を形成してなり、
上記波板間に形成される上記液滴捕集通路における流体衝突壁面に親水層を形成してなる、ことを特徴とする気液分離装置。
The gas-liquid separator according to any one of claims 1 to 3,
A hydrophobic layer is formed on the inner surface of the throttle passage formed between the corrugated plates,
A gas-liquid separation device, wherein a hydrophilic layer is formed on a fluid collision wall surface in the droplet collecting passage formed between the corrugated plates.
請求項1ないし6のいずれかに記載の気液分離装置において、
上記冷却器は、上記気液混合流体の流れの断面上の上部と下部に水平に備える上部冷却パイプ及び下部冷却パイプと、互いに平行に配設され上端及び下端を上部冷却パイプ及び下部冷却パイプに連通接続された複数の縦冷却パイプとで、格子状に形成され、かつ上記上部冷却パイプの外端及び下部冷却パイプの外端を外部に備えられる上記冷却源である冷媒供給源と接続してなる、ことを特徴とする気液分離装置。
The gas-liquid separation device according to any one of claims 1 to 6,
The cooler includes an upper cooling pipe and a lower cooling pipe that are horizontally provided at an upper part and a lower part on a cross section of the flow of the gas-liquid mixed fluid, and are arranged in parallel to each other, and an upper end and a lower end are provided as an upper cooling pipe and a lower cooling pipe A plurality of vertically connected cooling pipes connected to each other, connected to a refrigerant supply source, which is the cooling source, formed in a lattice shape, and the outer ends of the upper cooling pipe and the lower cooling pipe are provided outside. A gas-liquid separator characterized by comprising:
請求項1ないし6のいずれかに記載の気液分離装置において、
上記冷却器は、上記気液混合流体の流れの断面上の上部と下部に水平に備えるヒートパイプからなる上部冷却パイプ及び下部冷却パイプと、互いに平行に配設され上端及び下端を上部冷却パイプ及び下部冷却パイプに連通接続された複数のヒートパイプからなる縦冷却パイプとで、格子状に形成され、かつ上記上部冷却パイプの外端及び下部冷却パイプの外端を外部に備えられる上記冷却源であるペルチェ素子の吸熱側に接続してなる、ことを特徴とする気液分離装置。
The gas-liquid separation device according to any one of claims 1 to 6,
The cooler includes an upper cooling pipe and a lower cooling pipe, each of which is a heat pipe provided horizontally at an upper part and a lower part on a cross section of the flow of the gas-liquid mixed fluid, and an upper cooling pipe and an upper cooling pipe arranged in parallel to each other. A vertical cooling pipe comprising a plurality of heat pipes connected in communication with the lower cooling pipe, the cooling source formed in a lattice shape, and provided with an outer end of the upper cooling pipe and an outer end of the lower cooling pipe provided outside. A gas-liquid separator characterized by being connected to the heat absorption side of a Peltier element.
請求項1ないし8のいずれかに記載の気液分離装置において、
上記複数の波板は、各波板の上記冷却器に連結された端部を固定端として上記気液混合流体の流れに沿った方向に伸縮変形可能に形成され、伸縮駆動機構により伸縮される、ことを特徴とする気液分離装置。
The gas-liquid separation device according to any one of claims 1 to 8,
The plurality of corrugated plates are formed to be extendable and deformable in a direction along the flow of the gas-liquid mixed fluid, with the end connected to the cooler of each corrugated plate as a fixed end, and are expanded and contracted by a telescopic drive mechanism. A gas-liquid separator characterized by that.
請求項9に記載の気液分離装置において、
上記冷却器に上記各波板に対応してガイドバーを連結し、このガイドバーにより伸縮変形可能な上記各波板が支持されている、ことを特徴とする気液分離装置。
The gas-liquid separator according to claim 9, wherein
A gas-liquid separation device, wherein a guide bar is connected to the cooler corresponding to each corrugated plate, and the corrugated plates that are elastically deformable are supported by the guide bar.
JP2007303563A 2007-11-22 2007-11-22 Gas-liquid separator Expired - Fee Related JP4688223B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007303563A JP4688223B2 (en) 2007-11-22 2007-11-22 Gas-liquid separator
KR1020080099493A KR101376345B1 (en) 2007-11-22 2008-10-10 Gas-liquid separator
CN2008101811164A CN101439235B (en) 2007-11-22 2008-11-21 Gas-liquid separating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007303563A JP4688223B2 (en) 2007-11-22 2007-11-22 Gas-liquid separator

Publications (2)

Publication Number Publication Date
JP2009125672A true JP2009125672A (en) 2009-06-11
JP4688223B2 JP4688223B2 (en) 2011-05-25

Family

ID=40723927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007303563A Expired - Fee Related JP4688223B2 (en) 2007-11-22 2007-11-22 Gas-liquid separator

Country Status (3)

Country Link
JP (1) JP4688223B2 (en)
KR (1) KR101376345B1 (en)
CN (1) CN101439235B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000435A (en) * 2010-11-22 2011-04-06 苏州市中衡压力容器制造有限公司 Defoaming device of plate type falling film evaporator

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960452B1 (en) 2010-05-31 2017-01-06 Corning Inc DEVICE FORMING MICROREACTOR EQUIPPED WITH MEANS FOR COLLECTING AND DRAINING IN SITU GAS FORMED AND METHOD THEREOF
CN102085439A (en) * 2010-12-23 2011-06-08 中色科技股份有限公司 Gas-liquid separation and purification method and device for lubricating liquid in air
CN102091493A (en) * 2010-12-23 2011-06-15 中色科技股份有限公司 Combined type method and device for air-liquid separation and purification
CN102350182B (en) * 2011-07-19 2014-02-26 武汉大学 Highly efficient dehumidification steam-water separator
KR101145279B1 (en) * 2011-11-02 2012-05-24 (주)진공플랜트 Apparatus for dividing compound into liquid and vapor
CN103170187A (en) * 2013-03-22 2013-06-26 无锡宏盛换热器制造股份有限公司 Cooler for integrated water separation device
CN103550949B (en) * 2013-11-21 2016-01-06 智慧城市系统服务(中国)有限公司 Dedusting demister
CN103752126A (en) * 2014-01-04 2014-04-30 江苏民生特种设备集团有限公司 Spraying separator device
WO2016149910A1 (en) * 2015-03-24 2016-09-29 占丽兴 Method and device for removing dust haze
CN105064457B (en) * 2015-08-20 2017-03-01 林记元 A kind of energy-saving air water-producing apparatus
TWI613541B (en) * 2016-08-11 2018-02-01 技嘉科技股份有限公司 Liquid cooling system
JP6934297B2 (en) * 2016-12-08 2021-09-15 臼井国際産業株式会社 Gas-liquid separator
CN107684788A (en) * 2017-09-29 2018-02-13 常州依丝特纺织服饰有限公司 A kind of spinning and weaving workshop dust pelletizing system
KR101965329B1 (en) * 2018-03-23 2019-04-04 (주)경성정기 Stretching structure droplet extractor
KR102086472B1 (en) * 2018-11-28 2020-03-09 이만식 Hybrid Type Droplet Separator
CN110215790A (en) * 2019-07-02 2019-09-10 江苏康泰环保股份有限公司 A kind of low-heat steam total heat recovery dedusting dehumidifying seperator
CN110354626A (en) * 2019-08-21 2019-10-22 珠海长先新材料科技股份有限公司 A kind of segmentation filter net type condenser
CN111271180B (en) * 2019-12-24 2022-06-17 哈尔滨工程大学 Water delivery tank area coating intake filter inertia level blade
CN111603878A (en) * 2020-05-19 2020-09-01 河源市天浩环保科技有限公司 High-concentration developing printing waste gas collecting system and device
TWI727902B (en) * 2020-10-20 2021-05-11 凱爾迪科技股份有限公司 Gas-liquid separation and stratification independent recovery device
CN113819684B (en) * 2021-09-28 2022-12-02 约克(无锡)空调冷冻设备有限公司 Economizer and refrigerating system comprising same
KR102498557B1 (en) * 2022-07-15 2023-02-10 (주)태연금속 Collector for Aluminum ingot manufacturing
CN115068982A (en) * 2022-07-26 2022-09-20 闫利军 Butanol-octanol tail gas butyraldehyde gas-liquid separation device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535989A (en) * 1978-09-08 1980-03-13 Goto Shoji Kk Impact type separator
JPS60181583U (en) * 1984-05-11 1985-12-02 三菱重工業株式会社 Gas cooler with gas-liquid separator
JPS62185306U (en) * 1986-05-09 1987-11-25
JPH0343301U (en) * 1989-08-29 1991-04-23
JPH04334516A (en) * 1991-05-09 1992-11-20 Mitsubishi Heavy Ind Ltd Air purifier
JPH0549805A (en) * 1991-08-13 1993-03-02 Ulvac Kuraio Kk Low temperature trap for vacuum equipment
JP2002228375A (en) * 2001-01-26 2002-08-14 Tokyo Electron Ltd Heat treatment device
JP2004134475A (en) * 2002-10-09 2004-04-30 Kowa Dennetsu Keiki:Kk Temperature raising/lowering device for semiconductor device
JP2005028309A (en) * 2003-07-07 2005-02-03 Sony Corp Gas-liquid separator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977977A (en) * 1972-10-19 1976-08-31 L. & C. Steinmuller Gmbh Separating device
US4494486A (en) * 1983-09-26 1985-01-22 Westinghouse Electric Corp. Sandwich nipple plate for a steam generator dryer
BE1015880A3 (en) * 2004-02-03 2005-10-04 Atlas Copco Airpower Nv Heat.
JP2005252100A (en) * 2004-03-05 2005-09-15 Shinwa Controls Co Ltd Mist separator, and substrate processing apparatus provided therewith

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535989A (en) * 1978-09-08 1980-03-13 Goto Shoji Kk Impact type separator
JPS60181583U (en) * 1984-05-11 1985-12-02 三菱重工業株式会社 Gas cooler with gas-liquid separator
JPS62185306U (en) * 1986-05-09 1987-11-25
JPH0343301U (en) * 1989-08-29 1991-04-23
JPH04334516A (en) * 1991-05-09 1992-11-20 Mitsubishi Heavy Ind Ltd Air purifier
JPH0549805A (en) * 1991-08-13 1993-03-02 Ulvac Kuraio Kk Low temperature trap for vacuum equipment
JP2002228375A (en) * 2001-01-26 2002-08-14 Tokyo Electron Ltd Heat treatment device
JP2004134475A (en) * 2002-10-09 2004-04-30 Kowa Dennetsu Keiki:Kk Temperature raising/lowering device for semiconductor device
JP2005028309A (en) * 2003-07-07 2005-02-03 Sony Corp Gas-liquid separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000435A (en) * 2010-11-22 2011-04-06 苏州市中衡压力容器制造有限公司 Defoaming device of plate type falling film evaporator

Also Published As

Publication number Publication date
KR101376345B1 (en) 2014-03-20
KR20090053683A (en) 2009-05-27
JP4688223B2 (en) 2011-05-25
CN101439235B (en) 2011-08-17
CN101439235A (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4688223B2 (en) Gas-liquid separator
US20050286227A1 (en) Cooling integrated circuits using a cold plate with two phase thin film evaporation
US7652372B2 (en) Microfluidic cooling of integrated circuits
US20070006994A1 (en) Loop-type heat exchange device
JP2008528939A (en) Gas-liquid separator for mini-channel heat exchanger
JP6862304B2 (en) heat pipe
US9022099B2 (en) Heat transport fluid passage device with hydrophobic membrane
JP2007096306A (en) Heat sink
US6165282A (en) Method for contaminant removal using natural convection flow and changes in solubility concentration by temperature
EP3241598B1 (en) Gas-liquid phase separator and method of separating a gas and a liquid
JP2009097817A (en) Cooler, cooling device, and heat pump
JP2007024411A (en) Air-cooled condenser
WO2015153651A1 (en) Phobic/philic structures in refrigeration systems and liquid vapor separation in refrigeration systems
JP2004085169A (en) Heat exchanger
JP2007178096A (en) Heat exchanger with cleaning device and its operation method
KR101019975B1 (en) Heat transfer device and electronic device
JP2008043938A (en) Washing apparatus
JP2001326311A (en) Cooling device for electronic equipment
JP2004349551A (en) Boiling cooling system
Joshi et al. Keynote Lecture: Micro and Meso Scale Compact Heat Exchangers in Electronics Thermal Management–Review
JP2004337694A (en) Dehumidification apparatus
CN101563775B (en) Heat exchanger for use in cooling of semiconductor element and method for manufacturing the same
US20110100594A1 (en) Water separator and system
WO2003074202A1 (en) Apparatus for contaminant temoval using natural convection flow and changes in solubility concentrations by temperature
JPH03181759A (en) Refrigerant evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees