JPH04334516A - Air purifier - Google Patents

Air purifier

Info

Publication number
JPH04334516A
JPH04334516A JP3104308A JP10430891A JPH04334516A JP H04334516 A JPH04334516 A JP H04334516A JP 3104308 A JP3104308 A JP 3104308A JP 10430891 A JP10430891 A JP 10430891A JP H04334516 A JPH04334516 A JP H04334516A
Authority
JP
Japan
Prior art keywords
air
gas
dust
condensable gas
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3104308A
Other languages
Japanese (ja)
Inventor
Hideto Matsuo
英人 松尾
Hiroaki Kaneda
金田 博晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3104308A priority Critical patent/JPH04334516A/en
Publication of JPH04334516A publication Critical patent/JPH04334516A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Of Particles Using Liquids (AREA)

Abstract

PURPOSE:To easily remove dust by a method wherein air desired to be purified is once mixed with condensible gas and the condensible gas in the gaseous mixture is collected and liquefied in a condensing separator to be subjected to gas liquid separation. CONSTITUTION:In a mixer, raw air 1 desired to be purified by the removal of dust is mixed with condensible gas 2 (e.g. volatile hydrocarbon). Further, the condensible gas in the gaseous mixture formed by mixing the raw air 1 and the condensible gas 2 by the mixer 4 is cooled and liquefied in a condensing separator 5 to be subjected to gas-liquid separation. That is, when the condensible gas is condensed and liquefied, dust can easily be removed by utilizing such a property that the condensible gas is condensed and liquefied using extremely fine dust as a condensing nucleus.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体製造産業、食品製
造産業、医薬品製造産業等で使用される清浄空気製造装
置や大気汚染の原因となる工業排出物、バイオ関連排出
物、原子力関連排出物の除去装置等に用いられる空気清
浄装置に関する。
[Industrial Application Field] The present invention is applicable to clean air production equipment used in the semiconductor manufacturing industry, food manufacturing industry, pharmaceutical manufacturing industry, etc., as well as industrial emissions, bio-related emissions, and nuclear-related emissions that cause air pollution. The present invention relates to an air cleaning device used in a removal device, etc.

【0002】0002

【従来の技術】従来の空気清浄装置には原料空気の塵埃
を帯電させて除去する静電式電気集塵装置やフィルター
等でろ過するろ過式集塵装置があり、脱臭、脱ガスに対
しては洗浄法等が用いられている。
[Prior Art] Conventional air purifiers include electrostatic electric precipitators that charge and remove dust from raw air, and filter-type dust collectors that filter dust with a filter. Cleaning methods are used.

【0003】また大気汚染の原因となる工業排出物の除
去に関してもこれらの装置が用いられている。
[0003] These devices are also used for the removal of industrial emissions that cause air pollution.

【0004】0004

【発明が解決しようとする課題】上記従来の空気清浄装
置には解決すべき次の課題があった。
[Problems to be Solved by the Invention] The conventional air cleaning device described above has the following problems to be solved.

【0005】即ち、従来の装置においては、除去可能な
塵埃の大きさに下限があり、いずれの場合も0.1μm
(サブミクロン)以下の塵埃の除去は非常に難しいとい
う問題があった。また、脱臭と脱ガスを行うには別装置
を必要とするという問題もあった。
That is, in the conventional apparatus, there is a lower limit to the size of dust that can be removed, and in any case, it is 0.1 μm.
There is a problem in that it is extremely difficult to remove dust of (submicron) size or smaller. Another problem was that separate equipment was required for deodorization and degassing.

【0006】本発明は上記問題に鑑み、凝縮性気体が極
微細な塵埃を凝縮核として凝縮液化する性質を利用し、
容易に塵埃を除去できる空気清浄装置を提供することを
目的とする。
In view of the above problems, the present invention utilizes the property of condensable gas to condense and liquefy using extremely fine dust as condensation nuclei.
It is an object of the present invention to provide an air cleaning device that can easily remove dust.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題の解決
手段として、次の(1),(2)に記載の空気清浄装置
及び凝縮分離装置を提供しようとするものである。 (1)、塵埃を除去し清浄化を求められる原料空気に凝
縮性気体を混合する混合器と、同混合器により原料気体
と凝縮性気体とを混合してなる混合気体の中の凝縮性気
体を冷却液化すると共に気液分離する凝縮分離器とを具
備してなることを特徴とする空気清浄装置。 (2)、凝縮性気体を含む空気の流路に同空気の当接可
能に設けられた冷却器と、同冷却器に当接して凝縮した
凝縮性気体の液滴を分離捕捉する衝突板とを具備してな
ることを特徴とする凝縮分離装置。
[Means for Solving the Problems] As a means for solving the above-mentioned problems, the present invention provides an air cleaning device and a condensation separation device described in the following (1) and (2). (1) A mixer that mixes a condensable gas with the raw material air that needs to be purified by removing dust, and a condensable gas in the mixed gas that is created by mixing the raw material gas and the condensable gas using the mixer. An air cleaning device characterized by comprising a condensing separator that cools and liquefies the air and separates it into gas and liquid. (2) A cooler installed in a flow path of air containing condensable gas so that the air can come into contact with the air, and a collision plate that separates and captures droplets of condensable gas that come into contact with the cooler and condense. A condensation separation device characterized by comprising:

【0008】[0008]

【作用】本発明は上記のように構成されるので次の(1
),(2)の作用を有する。 (1)、上記(1)の構成にあっては混合器により、原
料空気に凝縮性気体を混合し、その混合気体中の凝縮性
気体を凝縮分離器により冷却、液化して気液分離するの
で、凝縮性気体が冷却されて微細な液滴となる際、混合
気体中の極微細な塵埃を霧核として液滴に発達し、それ
を包み込み、空気中の塵埃を凝縮液中に持ち去る。従っ
て原料空気はサブミクロン(0.1μm)以下の塵埃を
も殆ど含まない清浄空気となって装置を出る。その際、
NOX 、SOX 、アンモニアやその他臭いガス等も
霧核となるか凝縮液に吸収されて原料空気中から除去さ
れる。 (2)、上記(2)の構成にあっては凝縮性気体を含む
空気の流路に、同空気の当接可能に冷却器を設けるので
冷却器に当接した空気中の凝縮性気体は空気中の極微細
な塵埃を霧核として液滴に発達し、それを包み込み、空
気中の塵埃を凝縮液中に持ち去る。なお、冷却器表面に
凝縮結露した凝縮性気体は液滴となり、冷却器下方に流
れるが、空気によって運び去られようとする微細霧滴は
空気より遙かに大きい比重のために慣性によって衝突板
に衝突し、他の霧滴と集合し、或はすでに露滴程度に発
達している凝縮液に凝集されて液滴となって下方へ流れ
、空気と分離される。
[Operation] Since the present invention is constructed as described above, the following (1)
), (2). (1) In the configuration of (1) above, a condensable gas is mixed with raw air using a mixer, and the condensable gas in the mixed gas is cooled and liquefied by a condensing separator to separate gas and liquid. Therefore, when the condensable gas is cooled and becomes fine droplets, the fine dust in the gas mixture develops into droplets as fog nuclei, envelops them, and carries away the dust in the air into the condensed liquid. Therefore, the raw air leaves the device as clean air containing almost no dust of submicron (0.1 μm) or less. that time,
NOX, SOX, ammonia, and other odorous gases become fog nuclei or are absorbed by the condensate and removed from the raw air. (2) In the configuration of (2) above, a cooler is provided in the flow path of the air containing condensable gas so that the air can come into contact with it, so that the condensable gas in the air that comes into contact with the cooler is Microscopic dust particles in the air are used as fog nuclei to develop into droplets, enveloping them, and carrying away the dust particles in the air into the condensate. The condensable gas condensed on the surface of the cooler turns into droplets and flows down the cooler, but the fine mist droplets that are being carried away by the air have a much higher specific gravity than the air, so they collide with the collision plate due to inertia. The mist collides with other mist droplets, collects with other mist droplets, or aggregates with condensate that has already developed into dewdrops, forms droplets, flows downward, and is separated from the air.

【0009】この結果、上記(1)の場合と同様、サブ
ミクロン以下の塵埃をも殆ど含まない、また、臭いガス
、異ガスも含まない清浄な空気が得られる。
As a result, as in the case (1) above, clean air containing almost no submicron or smaller dust and no odor gas or foreign gas is obtained.

【0010】0010

【実施例】請求項1の発明に係る第1、第2実施例の空
気清浄装置を図1〜図3により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Air cleaning apparatuses according to first and second embodiments of the present invention will be explained with reference to FIGS. 1 to 3.

【0011】先ず第1実施例を図1により説明する。図
1は第1実施例の模式的構成図で、図において、混合器
4は塵埃を含む原料空気1と過熱器3で過熱された水、
アルコール等揮発性炭化水素、フロン等高融点ガスなど
の凝縮性気体2を混合するもので、その下流は凝縮分離
器5に接続されている。凝縮分離器5内には液滴を分離
捕捉するための衝突板を備えた冷却器6が水平または垂
直に収容されており、その下部には凝縮水槽8が連接さ
れている。なお、原料空気1や凝縮性気体2等は図の矢
印の向きに流れる。
First, a first embodiment will be explained with reference to FIG. FIG. 1 is a schematic block diagram of the first embodiment. In the figure, a mixer 4 includes raw air 1 containing dust, water superheated in a superheater 3,
It is used to mix condensable gases 2 such as volatile hydrocarbons such as alcohol and high melting point gases such as fluorocarbons, and the downstream thereof is connected to a condensing separator 5. A cooler 6 equipped with a collision plate for separating and trapping droplets is housed horizontally or vertically in the condensing separator 5, and a condensing water tank 8 is connected to the lower part of the cooler 6. Note that the raw material air 1, condensable gas 2, etc. flow in the direction of the arrow in the figure.

【0012】次に上記構成の作用について説明する。混
合器4で塵埃を含む原料空気1と、過熱器3で過熱され
た凝縮性気体2が混合し、凝縮性気体2の一部が凝縮し
塵埃を核とした液滴となった状態で凝縮分離器5に送ら
れる。凝縮分離器5では冷却器6により冷却される過程
でさらに凝縮が加速され1〜10μm程度の液滴が発生
し、また空気中の臭い分子、水溶性ガス等も核として液
滴となるか、発生した液滴に吸収される。
Next, the operation of the above configuration will be explained. The raw air 1 containing dust is mixed in the mixer 4 with the condensable gas 2 superheated in the superheater 3, and a part of the condensable gas 2 is condensed into droplets with dust as the core. It is sent to separator 5. In the condensation separator 5, condensation is further accelerated in the process of being cooled by the cooler 6, and droplets of about 1 to 10 μm are generated, and odor molecules in the air, water-soluble gases, etc. also act as nuclei to form droplets. It is absorbed by the generated droplets.

【0013】これらの液滴は冷却器6に連接する衝突板
で分離捕捉され、捕捉された液滴はお互いに接触して成
長し、凝縮水として衝突板を伝わって凝縮水槽8に溜ま
る。溜まった凝縮水は定期的に凝縮水槽8より凝縮水7
として取り出す。液滴を分離捕捉された空気は清浄空気
9として取り出される。
These droplets are separated and captured by a collision plate connected to the cooler 6, and the captured droplets grow in contact with each other and travel through the collision plate as condensed water and accumulate in a condensed water tank 8. The accumulated condensed water is periodically transferred to condensed water 7 from condensed water tank 8.
Take it out as The air in which the droplets have been separated and captured is taken out as clean air 9.

【0014】次に上記構成に必要に応じた周辺機器を組
み合わせた第2実施例を図2により説明する。なお、図
1と同様の部品には同符号を付し、説明を省略する。
Next, a second embodiment in which the above configuration is combined with peripheral equipment as required will be described with reference to FIG. Note that parts similar to those in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted.

【0015】図2において、混合器4に原料空気1を送
る送風機10、凝縮性気体を送る気体発生装置11を組
み合わせ、凝縮分離器5を出たあとにさらに液滴を捕捉
するために静電集塵器12を組み合わせてある。また静
電集塵器12の後流に空気温度を調節する空気温度調整
器13をつけ目的の温度に合った清浄空気9が得られる
In FIG. 2, a blower 10 that sends raw air 1 to the mixer 4 and a gas generator 11 that sends condensable gas are combined, and an electrostatic charger is used to capture droplets after they exit the condensation separator 5. A dust collector 12 is combined. Further, an air temperature regulator 13 for adjusting the air temperature is provided downstream of the electrostatic precipitator 12, so that clean air 9 having a target temperature can be obtained.

【0016】第1、第2実施例による風量変化と塵埃の
捕捉率変化の模式的関係線図を図3に示す。
FIG. 3 shows a schematic relationship diagram between changes in air volume and changes in dust capture rate according to the first and second embodiments.

【0017】横軸に風量を縦軸に塵埃捕捉率を取り、原
料空気の温度を変えた図となっており、風量を3〜10
m3 /min の範囲で変えると原料空気の温度が2
0〜30℃程度の高温の範囲では最高で90〜98%程
度の塵埃捕捉率が得られ、温度が10〜20℃程度の低
温の範囲では60〜70%程度の塵埃捕捉率が得られる
[0017] The diagram shows the air volume on the horizontal axis and the dust capture rate on the vertical axis, and the temperature of the raw air is changed.
If the temperature is changed within the range of m3/min, the temperature of the raw air will be 2
In a high temperature range of about 0 to 30°C, a maximum dust capture rate of about 90 to 98% can be obtained, and in a low temperature range of about 10 to 20°C, a dust capture rate of about 60 to 70% can be obtained.

【0018】なお、第1、第2実施例に用いられる凝縮
分離器5の好適例として第3、第4実施例に説明する凝
縮分離装置が推奨される。但し、第3、第4実施例の使
用に限定されるものではなく、発明の目的を逸脱しない
範囲で如何ような凝縮分離器が用いられてもよい。
It should be noted that the condensing separator described in the third and fourth embodiments is recommended as a preferable example of the condensing separator 5 used in the first and second embodiments. However, the use is not limited to the third and fourth embodiments, and any condensing separator may be used without departing from the purpose of the invention.

【0019】次に請求項2の発明に係る第3、第4実施
例の凝縮分離装置を図4〜図6により説明する。
Next, third and fourth embodiments of the condensation separation apparatus according to the second aspect of the invention will be explained with reference to FIGS. 4 to 6.

【0020】先ず、第3実施例を図4により説明する。 図4は第3実施例の要部の図で、(a)は側断面図、(
b)は(a)の下面図である。図において、冷却器14
は長方形状の断面を持った耐食材料でできたパイプであ
り、冷媒配管15によって冷媒流体16を貫流されてい
る。そして冷却効率を上げるため図示のように波状に配
列され、各々の冷却器14の端面には液滴を分離捕捉す
るための衝突板17が取り付けられている。原料空気1
は白抜き矢印のように図の右から入って冷却器14の間
を衝突を繰り返しながら図の左方へ清浄空気9となって
出てゆく。
First, a third embodiment will be explained with reference to FIG. FIG. 4 shows the main parts of the third embodiment, where (a) is a side sectional view, (a) is a side sectional view, and (
b) is a bottom view of (a). In the figure, cooler 14
is a pipe made of a corrosion-resistant material with a rectangular cross section, through which a refrigerant fluid 16 flows through a refrigerant pipe 15. In order to increase the cooling efficiency, the coolers 14 are arranged in a wave shape as shown in the figure, and a collision plate 17 for separating and trapping droplets is attached to the end face of each cooler 14. Raw air 1
The air enters from the right side of the figure as indicated by the white arrow, repeatedly collides between the coolers 14, and exits as clean air 9 to the left side of the figure.

【0021】次に上記構成の作用について説明する。塵
埃を含む空気と凝縮性気体よりなる原料空気1が、本装
置に入ったと同時に、冷媒配管15で給排される冷媒流
体16が流れる冷却器14で冷却される。冷却される過
程で原料空気1中に含まれる凝縮性気体が、塵埃を核と
して凝縮して1〜10μm程度の液滴が発生し衝突板1
7に衝突する。衝突した液滴は衝突板17に付着し、互
いに接触して成長し衝突板17を伝わって凝縮水として
集められ取り出される。その際、霧核となり得なかった
粒度の大きい塵埃も空気より遙かに大きい比重による慣
性力のため、濡れた衝突板17に衝突し、凝縮液に捕捉
されて、原料空気1から除去される。液滴を分離捕捉し
た空気は清浄空気9として取り出される。
Next, the operation of the above configuration will be explained. When raw air 1 consisting of dust-containing air and condensable gas enters the apparatus, it is cooled by a cooler 14 through which a refrigerant fluid 16 is supplied and discharged through a refrigerant pipe 15. During the cooling process, the condensable gas contained in the raw material air 1 condenses with dust as the core, generating droplets of approximately 1 to 10 μm, and the collision plate 1
Collision with 7. The collided droplets adhere to the collision plate 17, grow in contact with each other, travel through the collision plate 17, and are collected as condensed water and taken out. At this time, large particles of dust that could not become fog nuclei also collide with the wet collision plate 17 due to the inertial force due to the specific gravity, which is much larger than that of air, and are captured by the condensate and removed from the raw air 1. . The air in which the droplets have been separated and captured is taken out as clean air 9.

【0022】次に第4実施例を図5により説明する。な
お、図4と同様の部材には同符号を付し、説明を省略す
る。
Next, a fourth embodiment will be explained with reference to FIG. Note that members similar to those in FIG. 4 are designated by the same reference numerals, and explanations thereof will be omitted.

【0023】図5は第4実施例の要部の図で(a)は側
断面図、(b)は(a)の下面図である。図において、
冷却器14aの断面形状を円形とし、冷媒配管15aよ
り冷媒流体16を貫流させる。衝突板17aを各冷却器
14aをつなぐように配列することで液滴の分離効果を
損なうことなく、製作に必要な工数を低減できる。即ち
、第3実施例の冷却器14は断面が長矩形で製作工程、
工数共に大きいのに比し、本実施例の冷却器14aは断
面が円形をなすので、既製のパイプをそのまま使用でき
、製作工程、工数共に小さいという利点がある。
FIG. 5 is a view of the main part of the fourth embodiment, in which (a) is a side sectional view and (b) is a bottom view of (a). In the figure,
The cooler 14a has a circular cross-sectional shape, and the refrigerant fluid 16 flows through it from the refrigerant pipe 15a. By arranging the collision plates 17a so as to connect the respective coolers 14a, the number of man-hours required for manufacturing can be reduced without impairing the droplet separation effect. That is, the cooler 14 of the third embodiment has a long rectangular cross section, and the manufacturing process
Compared to this, since the cooler 14a of this embodiment has a circular cross section, ready-made pipes can be used as they are, and both the manufacturing process and the number of man-hours are small.

【0024】第3、第4実施例と従来型の凝縮性気体分
離装置の塵埃捕捉率を比較した模式的関係線図を図6に
示す。
FIG. 6 shows a schematic relationship diagram comparing the dust capture rates of the third and fourth embodiments and the conventional condensable gas separation device.

【0025】横軸に空気流量、縦軸に塵埃の捕捉率を取
った結果を示し、3〜10m3 /min の間で空気
流量を変えると従来型では40〜50%程度の捕捉率し
か得られないのに対し、両実施例の場合には最高で90
〜98%程度の塵埃捕捉率が得られる。
[0025] The horizontal axis shows the air flow rate and the vertical axis shows the dust capture rate. When the air flow rate is changed between 3 and 10 m3/min, the conventional type can only obtain a capture rate of about 40 to 50%. In contrast, in the case of both examples, the maximum
A dust capture rate of about 98% can be obtained.

【0026】以上の通り、第1、第2実施例によれば原
料空気1に凝縮性気体2を混合器4で混し、これを凝縮
分離器5に通して凝縮性気体2を凝縮結露させるので、
一般に気体が凝縮霧化する際に気体中の極微細な、或は
超微細な塵埃等を核に気体分子が凝集し、霧化し、露化
し、液滴となってゆく過程を凝縮性気体2が辿り、空気
中の塵埃をサブミクロンないしはそれ以下の極微細な粒
度に至る迄、凝縮液中に持ち去って、残った原料空気1
はきわめて清澄に浄化されるという利点がある。
As described above, according to the first and second embodiments, the condensable gas 2 is mixed with the raw air 1 in the mixer 4, and the mixture is passed through the condensation separator 5 to condense the condensable gas 2 into condensation. So,
Generally, when a gas condenses and atomizes, the gas molecules condense using extremely fine or ultrafine dust particles in the gas as nuclei, atomize, expose, and become droplets.Condensable gas 2 The remaining raw material air
has the advantage of being purified very clearly.

【0027】また、原料空気1中の臭い分子、水溶性ガ
ス等も凝縮液の霧核として、或は発生した液滴に吸収さ
れて持ち去られ、脱臭、脱ガスが果たされるという利点
がある。
Further, there is an advantage that odor molecules, water-soluble gases, etc. in the raw air 1 are also carried away as fog nuclei of the condensate or absorbed by the generated droplets, thereby achieving deodorization and degassing.

【0028】また、第3、第4実施例によれば凝縮性気
体を含む空気の流路に冷却器14,14aをおき、かつ
、衝突板17,17aを設けるので、冷却器14,14
aで凝縮した凝縮性気体が衝突板17,17aに衝突し
、捕捉されるため、凝縮液滴が空気中へ飛散して清浄空
気9内へ混ることがなく、清浄空気の清浄度が一層、高
まるという利点がある。
Further, according to the third and fourth embodiments, since the coolers 14, 14a are placed in the flow path of air containing condensable gas, and the collision plates 17, 17a are provided, the coolers 14, 14
Since the condensable gas condensed in step a collides with the collision plates 17 and 17a and is captured, the condensed droplets do not scatter into the air and mix into the clean air 9, and the cleanliness of the clean air is further improved. , has the advantage of increasing

【0029】また、冷却器14等は空気(原料空気1)
が衝突を繰り返すよう配設されるので、比較的粒度が高
く、霧核となり得ない塵埃も、そのイナーシャのため、
空気流から出て冷却器14に衝突し、或は、衝突板17
等に衝突し、凝縮液に捕捉されて空気から除去されると
いう利点がある。
[0029] Also, the cooler 14 etc. are air (raw air 1)
are arranged so that they repeatedly collide, so even dust that has a relatively high particle size and cannot become a fog nucleus, due to its inertia,
exiting the air stream and impinging on cooler 14 or impinging plate 17
It has the advantage that it impinges on the air and is trapped in the condensate and removed from the air.

【0030】[0030]

【0031】即ち、清浄したい空気に一旦、凝縮性気体
を混合したのち、再び凝縮分離器で凝縮性気体を凝縮液
化させるので空気中に含まれる塵埃、臭い分子、水溶性
ガス等を核として凝縮液の液滴が生じ、残部の清浄した
い空気は著しく清浄化される。
That is, once the condensable gas is mixed with the air to be purified, the condensable gas is condensed and liquefied again in the condensation separator, so that dust, odor molecules, water-soluble gases, etc. contained in the air are condensed as nuclei. Droplets of liquid are formed and the remaining air to be cleaned is significantly cleaned.

【0032】また、従来、果たしにくかったサブミクロ
ン(0.1μm)以下の塵埃も十分に除去された空気が
得られる。
Furthermore, air can be obtained from which dust of submicron (0.1 μm) or less, which has been difficult to remove in the past, has been sufficiently removed.

【0033】塵埃除去と同時に脱臭、脱ガスをする。ま
た、従来のように脱臭、脱異ガス等のための装置を用意
する必要がないので、設備費及び設備面積等が小さくな
る。
[0033] At the same time as removing dust, deodorization and degassing are performed. Further, unlike the conventional method, there is no need to prepare devices for deodorizing, degassing, etc., so the equipment cost and equipment area are reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例の模式的構成図である。FIG. 1 is a schematic diagram of a first embodiment of the present invention.

【図2】本発明の第2実施例の模式的構成図である。FIG. 2 is a schematic configuration diagram of a second embodiment of the present invention.

【図3】上記第1、第2実施例の効果、即ち、風量変化
と塵埃の捕捉率変化を示す模式的関係線図である。
FIG. 3 is a schematic relationship diagram showing the effects of the first and second embodiments, that is, changes in air volume and changes in dust capture rate.

【図4】本発明の第3実施例の要部の図で、(a)は側
断面図、(b)は(a)の下面図である。
4A and 4B are diagrams of main parts of a third embodiment of the present invention, in which (a) is a side sectional view and (b) is a bottom view of (a).

【図5】本発明の第4実施例の要部の図で、(a)は側
断面図、(b)は(a)の下面図である。
5A and 5B are diagrams of main parts of a fourth embodiment of the present invention, in which (a) is a side sectional view and (b) is a bottom view of (a).

【図6】上記第3,第4実施例の効果、即ち、空気流量
に対する塵埃捕捉率を従来例と比較して示した比較線図
である。
FIG. 6 is a comparison diagram showing the effects of the third and fourth embodiments, that is, the dust capture rate with respect to the air flow rate in comparison with the conventional example.

【符号の説明】[Explanation of symbols]

1            原料空気 2            凝縮性気体3      
      過熱器 4            混合器 5            凝縮分離器6      
      冷却器 7            凝縮水 8            凝縮水槽 9            清浄空気 10          送風機 11          気体発生装置12     
     静電式集塵器13          空気
温度調整器14,14a  冷却器 15,15a  冷媒配管 16          冷媒流体 17,17a  衝突板
1 Raw material air 2 Condensable gas 3
Superheater 4 Mixer 5 Condensation separator 6
Cooler 7 Condensed water 8 Condensed water tank 9 Clean air 10 Air blower 11 Gas generator 12
Electrostatic precipitator 13 Air temperature regulator 14, 14a Cooler 15, 15a Refrigerant piping 16 Refrigerant fluid 17, 17a Collision plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  塵埃を除去し清浄化を求められる原料
空気に凝縮性気体を混合する混合器と、同混合器により
原料気体と凝縮性気体とを混合してなる混合気体の中の
凝縮性気体を冷却液化すると共に気液分離する凝縮分離
器とを具備してなることを特徴とする空気清浄装置。
Claim 1: A mixer for mixing a condensable gas with raw material air that is required to be purified by removing dust, and condensability in the mixed gas obtained by mixing the raw material gas and the condensable gas using the mixer. An air cleaning device characterized by comprising a condensing separator that cools and liquefies gas and separates it from gas and liquid.
【請求項2】  凝縮性気体を含む空気の流路に同空気
の当接可能に設けられた冷却器と、同冷却器に当接して
凝縮した凝縮性気体の液滴を分離捕捉する衝突板とを具
備してなることを特徴とする凝縮分離装置。
2. A cooler provided in a flow path of air containing a condensable gas so that the air can come into contact with the air, and a collision plate that separates and captures droplets of the condensable gas that come into contact with the cooler and condense. A condensation separation device characterized by comprising:
JP3104308A 1991-05-09 1991-05-09 Air purifier Withdrawn JPH04334516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104308A JPH04334516A (en) 1991-05-09 1991-05-09 Air purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104308A JPH04334516A (en) 1991-05-09 1991-05-09 Air purifier

Publications (1)

Publication Number Publication Date
JPH04334516A true JPH04334516A (en) 1992-11-20

Family

ID=14377296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104308A Withdrawn JPH04334516A (en) 1991-05-09 1991-05-09 Air purifier

Country Status (1)

Country Link
JP (1) JPH04334516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125672A (en) * 2007-11-22 2009-06-11 Tokyo Electron Ltd Gas-liquid separating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125672A (en) * 2007-11-22 2009-06-11 Tokyo Electron Ltd Gas-liquid separating apparatus
JP4688223B2 (en) * 2007-11-22 2011-05-25 東京エレクトロン株式会社 Gas-liquid separator

Similar Documents

Publication Publication Date Title
CA2552760C (en) Method and apparatus for separating liquid droplets from a gas stream
US5176723A (en) Condensation-growth particle scrubber
US4319890A (en) Dry impact capture of aerosol particulates
MX2013008932A (en) Wet electrostatic precipitator and related methods.
US4266951A (en) Particle scrubber and related method
JP2000325742A (en) Method and apparatus for removing dust and recovering water or steam from outlet gas of desurfurization equipment
EP0110438B1 (en) Process and apparatus for cleaning solids-laden gas
JPS62193621A (en) Method and apparatus for purifying contaminated gas
CN213492812U (en) Flue gas treatment system
US5676715A (en) Key advanced linear kinetic absorber system particulate arresting device
JPH04334516A (en) Air purifier
KR100561550B1 (en) method and apparatus for collecting a dust and cleaning air by electrostatic spray
US11857897B2 (en) Gas cooling-scrubbing apparatus and method
JPH0439367B2 (en)
CN204745965U (en) Cloud formula dust pelletizing system
JPH02218412A (en) Production of clean gas
JP2000042338A (en) Air purifying method and air purifying device
WO1995018664A1 (en) Method and apparatus for pollution control
JPS6092B2 (en) A device that removes contaminants from a gas stream
JPH09187615A (en) Steam condensation dust collecting device and method therefor
Park et al. Performance and techno-economic evaluation of a high-efficiency electrospray cyclone
KR20190039029A (en) Process for treating furnace and furnace gas
JP6939719B2 (en) Particle recovery device and particle recovery method
AU696223B2 (en) Method and apparatus for pollution control
CN208990488U (en) A kind of flue gas purification system and smoke processing system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806