JPH0439367B2 - - Google Patents

Info

Publication number
JPH0439367B2
JPH0439367B2 JP5198187A JP5198187A JPH0439367B2 JP H0439367 B2 JPH0439367 B2 JP H0439367B2 JP 5198187 A JP5198187 A JP 5198187A JP 5198187 A JP5198187 A JP 5198187A JP H0439367 B2 JPH0439367 B2 JP H0439367B2
Authority
JP
Japan
Prior art keywords
air
droplets
air purification
steam
enlarged diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5198187A
Other languages
Japanese (ja)
Other versions
JPS63221822A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62051981A priority Critical patent/JPS63221822A/en
Publication of JPS63221822A publication Critical patent/JPS63221822A/en
Publication of JPH0439367B2 publication Critical patent/JPH0439367B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Particles Using Liquids (AREA)
  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液滴生成による空気浄化方法及び装
置に関し、とくに空気フイルターにおける種々の
問題点を避けると共に効率良くしかも容易に清浄
空気を供給することができる液滴生成による空気
浄化方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for air purification by droplet generation, and in particular to a method and apparatus for air purification that avoids various problems in air filters and efficiently and easily supplies clean air. The present invention relates to a method and apparatus for air purification by droplet generation.

従来の技術 技術の高度化に伴いクリーンルームが半導体の
製造、製薬、病院の手術室、生物工学技術その他
の諸分野で使われている。従来は、クリーンルー
ム内の清浄空気を得るためにHEPA(High
Efficiency Particulate Air)フイルターや更に
性能の高いULPA(Ultra Low Penetration
Air)フイルターを用いている。これらのフイル
ターには、フイルター素子が高価であつて装置の
コスト高を招くだけでなく、フイルター自体から
の発じん及びフイルター素子保持器具からの空気
漏れ等の問題がある。
BACKGROUND OF THE INVENTION As technology becomes more sophisticated, clean rooms are used in semiconductor manufacturing, pharmaceuticals, hospital operating rooms, biotechnology, and other fields. Conventionally, HEPA (High
Efficiency Particulate Air) filter and even higher performance ULPA (Ultra Low Penetration) filter.
Air) filter is used. These filters not only have expensive filter elements that increase the cost of the device, but also have problems such as dust generation from the filter itself and air leakage from the filter element holding device.

また、コンピユータに組込まれる集積回路等の
半導体デバイスにおいては高集積化が進み、数mm
角のシリコンチツプの中に数十万個の素子が搭載
されたものも製作されているが、高集積化は当然
に精密な回路パターンを必要とし幅1μm以下の
最小パターン幅が使われている。この様な精密回
路パターンを実際に製作するためには清浄な環境
が不可欠であり、空気中に浮遊する粒径約0.1μm
未満の微粒子(以下、超微粒子という)。をも除
去することが求められる。しかし、超微粒子を空
気中から確実に除去する経済的な方法は未だ開発
されていない。
In addition, semiconductor devices such as integrated circuits built into computers are becoming more highly integrated, and
Some silicon chips with hundreds of thousands of elements mounted on them have been manufactured, but high integration naturally requires precise circuit patterns, and a minimum pattern width of 1 μm or less is used. . A clean environment is essential for actually manufacturing such precision circuit patterns, and particles with a diameter of approximately 0.1 μm floating in the air
(hereinafter referred to as ultrafine particles). It is also required to remove the However, an economical method for reliably removing ultrafine particles from the air has not yet been developed.

発明が解決しようとする問題点 従つて、本発明が解決しようとする問題点は、
フイルターを使わずに空気中の微粒子、とくに超
微粒子を除去するにある。
Problems to be solved by the invention Therefore, the problems to be solved by the invention are as follows:
The purpose is to remove fine particles, especially ultrafine particles, from the air without using a filter.

問題点を解決するための手段 水蒸気を用いた第1図の例を参照して本発明の
空気浄化方法及び装置の構成を説明するが、本発
明は水蒸気の使用に限定されるものではない。噴
霧口6からベンチユリ管状ノズル室5の内部へ水
を噴霧し同室内でこれを蒸発させて水蒸気とす
る。ノズル室5内の水蒸気混入空気を、ノズルス
ロート13の縮径部13aから拡径出口13bへ
の送出により断熱膨張させ、断熱膨張に伴なう温
度降下によつて水蒸気を過飽和とさせることによ
り空気中の浮遊微粒子を凝結核として上記水蒸気
から水滴を生成させる。上記拡径出口13bを膨
張室14に連通し、同室内に設けられた放電電極
19と集じん電極20,21からなる電気集じん
装置により上記水滴を除去することにより浮遊微
粒子を除去して空気を浄化する。
Means for Solving the Problems The configuration of the air purification method and apparatus of the present invention will be described with reference to the example shown in FIG. 1 using water vapor, but the present invention is not limited to the use of water vapor. Water is sprayed from the spray port 6 into the interior of the bench lily tubular nozzle chamber 5, and is evaporated into water vapor within the same chamber. The water vapor-containing air in the nozzle chamber 5 is adiabatically expanded by being sent from the reduced diameter portion 13a of the nozzle throat 13 to the enlarged diameter outlet 13b, and the water vapor is supersaturated due to the temperature drop accompanying the adiabatic expansion. Water droplets are generated from the water vapor by using the floating particles inside as condensation nuclei. The enlarged diameter outlet 13b is communicated with the expansion chamber 14, and the water droplets are removed by an electrostatic precipitator consisting of a discharge electrode 19 and dust collection electrodes 20 and 21 provided in the same chamber, thereby removing floating particles and air. Purify.

上記拡径出口13bの近傍に設けた蒸気噴出口
17から水蒸気を噴出し、上記拡径出口13bか
らの水滴を蒸気噴出口17からの水蒸気と共に電
気集じん装置の放電電極19の近傍へ送ることに
より水滴を一層成長させさらに水滴径を増大させ
ることもできる。
Steam is ejected from a steam outlet 17 provided near the enlarged diameter outlet 13b, and water droplets from the enlarged diameter outlet 13b are sent to the vicinity of the discharge electrode 19 of the electrostatic precipitator together with the water vapor from the steam outlet 17. It is also possible to further grow the water droplets and further increase the diameter of the water droplets.

あらかじめ空気フイルター2により比較的大粒
径の浮遊微粒子を除去して浄化した空気をノズル
室5へ送り、これに対して上記の断熱膨張及び電
気集じん操作を加えることにより、超微粒子の除
去を効率的に行なうこともできる。
The air, which has been purified by removing relatively large suspended particles in advance using the air filter 2, is sent to the nozzle chamber 5, and is subjected to the above-mentioned adiabatic expansion and electrostatic collection operations to remove ultrafine particles. It can also be done efficiently.

作 用 ノズル室5内の流れは、空気中に浮遊微粒子が
含まれた二相流の状態、即ちいわゆるエアロゾル
の流れの状態にある。超微粒子の除去を目的とす
る場合には、エアロゾル中の比較的大きな浮遊微
粒子は中・高性能の空気フイルターによつてあら
かじめ取除かれている。ノズル室5内のエアロゾ
ルの中に水蒸気を注入した後、その水蒸気混入エ
アロゾルをノズルスロート13や第3図のベンチ
ユリースクラバーによつて断熱膨張させると、上
記浮遊微粒子を凝結核とする水滴の生成が急速に
進む現象が知られている。
Operation The flow within the nozzle chamber 5 is in a two-phase flow state in which air contains suspended particles, that is, a so-called aerosol flow state. When the purpose is to remove ultrafine particles, relatively large suspended particles in the aerosol are removed in advance by a medium to high performance air filter. After water vapor is injected into the aerosol in the nozzle chamber 5, when the water vapor-containing aerosol is adiabatically expanded by the nozzle throat 13 or the ventilate scrubber shown in FIG. 3, water droplets are formed with the floating particles as condensation nuclei. It is known that the phenomenon occurs rapidly.

この現象を利用すれば、空気中の浮遊粒子を水
滴として捕捉することができる。この水滴を放電
電極19により荷電して帯電水滴とし、これを集
じん電極20,21により集めて除去するなら
ば、極めて清浄な空気が得られる。
By utilizing this phenomenon, suspended particles in the air can be captured as water droplets. If these water droplets are charged by the discharge electrode 19 to become charged water droplets and collected and removed by the dust collection electrodes 20 and 21, extremely clean air can be obtained.

水滴の上記帯電をさらに効率よく行なうため、
ノズルスロート13からの水滴を帯電された水蒸
気と接触させながら放電電極19の近傍に通すこ
ともできる。
In order to charge the water droplets more efficiently,
Water droplets from the nozzle throat 13 can also be passed near the discharge electrode 19 while being in contact with charged water vapor.

エアロゾル内に水蒸気を注入すると、その状態
は第2図の空気線図に従つて変化する。同図中の
点gは水蒸気が加えられる前の空気の状態、点i
は水蒸気が加えられた後の最初の状態、点fは最
終の状態、Hiは最初の状態iの絶対湿度、Hsiは
最初の状態iの飽和空気の絶対湿度、Hsfは最終
の状態fの飽和空気の絶対湿度、Tsiは最初の状
態iの飽和空気の温度、Tsfは最終の状態fの飽
和空気の温度である。
When water vapor is injected into the aerosol, its state changes according to the psychrometric diagram shown in FIG. Point g in the figure is the state of the air before water vapor is added, and point i
is the initial state after water vapor is added, point f is the final state, Hi is the absolute humidity of the initial state i, Hsi is the absolute humidity of the saturated air in the initial state i, Hsf is the saturation of the final state f The absolute humidity of the air, Tsi is the temperature of the saturated air in the initial state i, and Tsf is the temperature of the saturated air in the final state f.

このエアロゾルの断熱膨張を第3図のベンチユ
リースクラバによつてする場合には、空気の状態
は第4図の空気線図に従つて変化する。第3図及
び第4図において、oはベンチユリーに入る前の
空気の状態、iは最初の状態、fは最終の状態、
Poはベンチユリーの入口の蒸気圧、Ptはベンチ
ユリーの喉の蒸気圧、Toはベンチユリーに入る
前の温度、Ttはベンチユリーの喉の温度、ΔHは
水滴の量を表わす。
When adiabatic expansion of this aerosol is performed using the ventilate scrubber shown in FIG. 3, the state of the air changes according to the psychrometric diagram shown in FIG. 4. In Figures 3 and 4, o is the state of the air before entering the ventilate, i is the initial state, f is the final state,
Po is the vapor pressure at the inlet of the ventilate, Pt is the vapor pressure at the throat of the ventilate, To is the temperature before entering the ventilate, Tt is the temperature at the throat of the ventilate, and ΔH is the amount of water droplets.

電気集じん装置の集じん率ηを与えるものとし
て次のドイツチユの式が知られている。
The following Germanschew equation is known as a formula that gives the dust collection rate η of an electrostatic precipitator.

η=1−e-WF (1) ここに、Wは粒子見掛け移動速度、Fは集じん電
極表面積及び気体流量等により定まる比収じん表
面積である。また粒子見掛け移動速度Wについて
は次式が知られている。
η=1−e −WF (1) Here, W is the particle apparent moving speed, and F is the specific dust collection surface area determined by the dust collection electrode surface area, gas flow rate, etc. Furthermore, the following equation is known for particle apparent moving speed W.

W=d・Kc・Ec・Ep・Km/(12πμ) (2) ここに、dは粒子径、Kcは誘電係数、Ecは荷
電用放電の電界の強さ、Epは集じん電界の強さ、
Kmはストークス・カニンガムの補正係数、μは
空気の粘度である。上記補正係数Kmの特性値を
考慮すると粒子見掛け移動速度Wは、粒子径dが
約0.2μm以上ではほぼ粒径に比例し、約1μm以下
ではほぼ一定になるといわれている。
W=d・Kc・Ec・Ep・Km/(12πμ) (2) Here, d is the particle diameter, Kc is the dielectric constant, Ec is the electric field strength of the charging discharge, and Ep is the strength of the dust collection electric field. ,
Km is the Stokes-Cunningham correction coefficient, and μ is the viscosity of air. Considering the characteristic value of the above correction coefficient Km, it is said that the particle apparent moving speed W is approximately proportional to the particle size when the particle diameter d is approximately 0.2 μm or more, and is approximately constant when the particle diameter d is approximately 1 μm or less.

本発明は、空気中の浮遊粒子の粒径dを液滴生
成によつて増大させ、電気集じん装置の集じん率
ηを高めることにより、効率的に空気浄化を行な
うものである。従来の電気集塵装置の集じん率
(η=0.99)%であり空気中の浮遊粒子の濃度を
10-2程度に減少させることができるので、本発明
により粒径を2−3倍以上増大させるならば、空
気中の浮遊粒子濃度を10-4−10-6程度減少させる
強力な浄化効果を期待することができる。即ち、
(1)式において、 η=1−e-WF=0.99 e=-WF=0.01=10-9 WF=4.605 粒子径dを2倍にすれば(1)、(2)式から η=1−e-2WF=0.9999 粒子径dを3倍にすれば同様にして η=1−e-3WF=0.999999 となる。しかし本発明の空気浄化の効率はこの数
値に限定されるものではない。
The present invention efficiently purifies air by increasing the particle diameter d of suspended particles in the air by generating droplets and increasing the dust collection rate η of an electrostatic precipitator. The dust collection rate of a conventional electrostatic precipitator (η = 0.99)% is the concentration of suspended particles in the air.
Therefore, if the particle size is increased by 2-3 times or more according to the present invention, a strong purifying effect that reduces the suspended particle concentration in the air by about 10 -4 -10 -6 can be achieved. You can expect it. That is,
In equation (1), η=1−e -WF =0.99 e= -WF =0.01=10 -9 WF=4.605 If the particle diameter d is doubled, from equations (1) and (2), η=1− e -2WF = 0.9999 If the particle diameter d is tripled, η = 1 - e -3WF = 0.999999. However, the air purification efficiency of the present invention is not limited to this value.

実施例 第1図は本発明による空気浄化装置の一実施例
を示す。この例では、浄化すべき空気をターボ圧
縮機1により空気フイルター2へ送り大きな浮遊
粒子をあらかじめ除去する。空気フイルター2か
らの空気を、調圧弁3により減圧した後、圧力計
4により随時監視しながらノズル室5へ送る。ノ
ズル室5内に設けられた噴霧口6は、水タンク7
からの水がストレーナ8、水ポンプ9、エアチヤ
ンバー10及び水フイルター11を介して供給さ
れる水を霧状にノズル室内の空気へ噴出する。噴
出された水は直ちに気化し水蒸気として空気に混
入される。
Embodiment FIG. 1 shows an embodiment of an air purification device according to the present invention. In this example, the air to be purified is sent by a turbo compressor 1 to an air filter 2 to remove large suspended particles in advance. After the air from the air filter 2 is reduced in pressure by a pressure regulating valve 3, it is sent to a nozzle chamber 5 while being monitored by a pressure gauge 4 at any time. A spray port 6 provided in the nozzle chamber 5 is connected to a water tank 7.
Water supplied through the strainer 8, water pump 9, air chamber 10, and water filter 11 is sprayed into the air in the nozzle chamber in the form of mist. The ejected water immediately vaporizes and is mixed into the air as water vapor.

エアチヤンバー10の入口圧力は圧力計4によ
つて随時計測され、エアチヤンバー10の底部に
はドレーン弁12が取付けられる。
The inlet pressure of the air chamber 10 is measured at any time by a pressure gauge 4, and a drain valve 12 is attached to the bottom of the air chamber 10.

ノズル室5の出口側は、縮径部13a及び拡径
出口13bからなるノズルスロート13を介して
膨張室14の混合器15に連通する。拡径出口1
3bの開口端に臨む位置には、蒸気発生機16に
接続された蒸気噴出口17が配置される。高圧電
源18から高電圧を受ける放電電極19が、蒸気
噴出口17と混合器15との間に配置される。膨
張室14の側壁には第1段集じん電極20及び第
2段集じん電極21が設けられる。放電電極19
と集じん電極20,21とは電気集じん装置を形
成する。
The outlet side of the nozzle chamber 5 communicates with the mixer 15 of the expansion chamber 14 via a nozzle throat 13 consisting of a reduced diameter section 13a and an enlarged diameter outlet 13b. Expanded diameter outlet 1
A steam outlet 17 connected to the steam generator 16 is arranged at a position facing the open end of the steam generator 3b. A discharge electrode 19 receiving a high voltage from a high voltage power supply 18 is arranged between the steam outlet 17 and the mixer 15. A first stage dust collection electrode 20 and a second stage dust collection electrode 21 are provided on the side wall of the expansion chamber 14 . Discharge electrode 19
and the dust collecting electrodes 20 and 21 form an electrostatic precipitator.

放電電極19の好ましい例はコロナ電極であ
り、その設置位置は図示例の蒸気噴出口17と混
合器15との中間に限定されものではない。第1
段集じん電極20のみで所期の粒子除去効果が得
られる場合には第2段集じん電極21を省略して
もよい。図示例の膨張室14の底部にはドレン管
22が設けられる。
A preferred example of the discharge electrode 19 is a corona electrode, and its installation position is not limited to the intermediate position between the steam outlet 17 and the mixer 15 in the illustrated example. 1st
If the desired particle removal effect can be obtained only with the stage dust collection electrode 20, the second stage dust collection electrode 21 may be omitted. A drain pipe 22 is provided at the bottom of the illustrated expansion chamber 14 .

第1図の空気浄化装置によれば、粒径0.1μm以
上の浮遊微粒子を対象として、その濃度が約
350000個/の外気を0.35−0.035個/程度に
浄化することが可能であり、現在要求される空気
清浄度を十分に満足する。また、超微粒子の除去
にも効果が期待される。
According to the air purification device shown in Figure 1, the concentration of suspended particles with a particle size of 0.1 μm or more is approximately
It is possible to purify 350,000 particles per day in the outside air to about 0.35-0.035 particles per particle, which satisfies the current air cleanliness requirements. It is also expected to be effective in removing ultrafine particles.

発明の効果 以上詳細に説明した如く本発明による空気浄化
は、断熱膨張させることにより空気中の微粒子を
凝結核として蒸気から液滴を生成させ、生成され
た液滴を電気集じんにより除去するので次の効果
を奏する。
Effects of the Invention As explained in detail above, air purification according to the present invention generates droplets from vapor by adiabatically expanding fine particles in the air as condensation nuclei, and removes the generated droplets by electrostatic precipitation. It has the following effects.

(イ) 粒径1μm前後の浮遊微粒子を除去すること
ができるので、超清浄の空気が迅速にしかも低
コストで得られる。
(b) Since suspended particles with a particle size of around 1 μm can be removed, ultra-clean air can be obtained quickly and at low cost.

(ロ) フイルターなしで空気を清浄にするので、フ
イルターによる二次汚染のおそれがない。
(b) Since the air is purified without a filter, there is no risk of secondary contamination caused by the filter.

(ハ) 非常に低廉にしかも容易に清浄空気が得られ
る。
(c) Clean air can be obtained easily and at a very low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一実施例のブロツク図、第2図から第
4図までは液滴生成過程の説明図である。 1…ターボ圧縮機、2…空気フイルター、3…
調圧弁、4…圧力計、5…ノズル室、6…噴霧
口、7…水タンク、8…ストレーナ、9…水ポン
プ、10…エアチヤンバー、11…水フイルタ
ー、12…ドレーン弁、13…ノズルスロート、
14…膨張室、15…混合器、16…蒸気発生
機、17…蒸気噴出口、18…高圧電源、19…
放電電極、20…第1段集じん電極、21…第2
段集じん電極。
FIG. 1 is a block diagram of one embodiment, and FIGS. 2 to 4 are explanatory diagrams of the droplet generation process. 1...turbo compressor, 2...air filter, 3...
Pressure regulating valve, 4...Pressure gauge, 5...Nozzle chamber, 6...Spray port, 7...Water tank, 8...Strainer, 9...Water pump, 10...Air chamber, 11...Water filter, 12...Drain valve, 13...Nozzle throat ,
14... Expansion chamber, 15... Mixer, 16... Steam generator, 17... Steam spout, 18... High voltage power supply, 19...
Discharge electrode, 20...first stage dust collection electrode, 21...second stage
Stage dust collection electrode.

Claims (1)

【特許請求の範囲】 1 蒸気が混入された空気をベンチユリ管の縮径
部から拡径部へ送出して断熱膨張させ、空気中の
微粒子を凝結核として上記蒸気から液滴を生成さ
せ、生成された液滴を電気集じんにより除去して
なる液滴生成による空気浄化方法。 2 特許請求の範囲第1項記載の空気浄化方法に
おいて、上記断熱膨張直後の空気に上記蒸気を噴
射することにより液滴の径を増大させてなる液滴
生成による空気浄化方法。 3 特許請求の範囲第1項記載の空気浄化方法に
おいて、粒径約1μm超過の粒子が除去された後
に蒸気が混入された空気を断熱膨張させることに
より粒径が1μm以下の微粒子を凝結核として前
記蒸気から液滴を生成させてなる液滴生成による
空気浄化方法。 4 一端に空気入口を設け内部に液滴生成物質の
噴霧口を配置したノズル室の他端に縮径部び拡径
出口からなるノズルスロートを設け、そのノズル
スロートの拡径出口を電気集塵装置に連通してな
る液滴生成による空気浄化装置。 5 特許請求の範囲第4項記載の空気浄化装置に
おいて、上記ノズルスロートの拡径出口に液滴生
成物質の蒸気噴出口を設けてなる液滴生成による
空気浄化装置。 6 特許請求の範囲第4項記載の空気浄化装置に
おいて、空気圧縮機に連通された空気フイルター
からの空気の流路を上記ノズル室の空気入口へ連
通してなる液滴生成による空気浄化装置。
[Scope of Claims] 1. Air mixed with steam is sent from the reduced diameter part to the enlarged diameter part of the bench lily tube for adiabatic expansion, and fine particles in the air are used as condensation nuclei to generate droplets from the vapor. An air purification method using droplet generation, in which the collected droplets are removed by electrostatic precipitation. 2. An air purification method according to claim 1, in which the diameter of the droplets is increased by injecting the steam into the air immediately after the adiabatic expansion. 3. In the air purification method described in claim 1, after particles with a particle size of more than about 1 μm have been removed, air mixed with steam is adiabatically expanded to produce fine particles with a particle size of 1 μm or less as condensation nuclei. An air purification method by generating droplets, which comprises generating droplets from the vapor. 4 An air inlet is provided at one end of the nozzle chamber, in which a spray port for the droplet generating material is arranged, and a nozzle throat consisting of a reduced diameter section and an enlarged diameter outlet is provided at the other end of the nozzle chamber, and the enlarged diameter exit of the nozzle throat is used for electrostatic precipitator. An air purification device that generates droplets and is connected to the device. 5. The air purifying device according to claim 4, wherein the enlarged diameter outlet of the nozzle throat is provided with a vapor jetting port for a droplet generating substance. 6. The air purification device according to claim 4, which uses droplet generation, wherein an air flow path from an air filter connected to an air compressor is connected to an air inlet of the nozzle chamber.
JP62051981A 1987-03-09 1987-03-09 Air cleaning method and device by forming droplets Granted JPS63221822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62051981A JPS63221822A (en) 1987-03-09 1987-03-09 Air cleaning method and device by forming droplets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62051981A JPS63221822A (en) 1987-03-09 1987-03-09 Air cleaning method and device by forming droplets

Publications (2)

Publication Number Publication Date
JPS63221822A JPS63221822A (en) 1988-09-14
JPH0439367B2 true JPH0439367B2 (en) 1992-06-29

Family

ID=12902037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62051981A Granted JPS63221822A (en) 1987-03-09 1987-03-09 Air cleaning method and device by forming droplets

Country Status (1)

Country Link
JP (1) JPS63221822A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2715227B1 (en) * 1994-01-19 1996-04-12 Rein Andre Roos Instrument for measuring atmospheric particles.
WO2008038348A1 (en) * 2006-09-27 2008-04-03 Hitachi Plant Technologies, Ltd. Treating apparatus for exhaust gas containing sulfuric acid mist and treating method therefor
CN105056671B (en) * 2015-07-22 2017-07-28 江苏新中金环保科技股份有限公司 A kind of wet desulphurization tower desulfurization and dedusting demisting water saving art and its device
CN104998504B (en) * 2015-07-22 2017-06-30 江苏新中金环保科技股份有限公司 A kind of wet desulphurization tower desulfurization and dedusting demisting water saving art
CN107115967B (en) * 2017-05-12 2019-05-31 浙江大学 Temperature/wet regulation more field strength Combined Electrostatic dust pelletizing system
CN109622224A (en) * 2018-12-20 2019-04-16 东南大学 A kind of pretreatment unit and method of the fine grained coring condensation of electron spray auxiliary
DE102018222504B4 (en) * 2018-12-20 2022-11-03 Universität Stuttgart Method and device for separating particles from an air flow

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS459269Y1 (en) * 1967-04-19 1970-04-30
JPS4850360A (en) * 1971-10-18 1973-07-16
JPS6078654A (en) * 1983-10-05 1985-05-04 Mitsubishi Heavy Ind Ltd Air purifying method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS459269Y1 (en) * 1967-04-19 1970-04-30
JPS4850360A (en) * 1971-10-18 1973-07-16
JPS6078654A (en) * 1983-10-05 1985-05-04 Mitsubishi Heavy Ind Ltd Air purifying method

Also Published As

Publication number Publication date
JPS63221822A (en) 1988-09-14

Similar Documents

Publication Publication Date Title
US8206494B2 (en) Device for air/water extraction by semi-humid electrostatic collection and method using same
EP1095705A2 (en) Device and method of collecting dust using highly charged hyperfine liquid droplets
US2357354A (en) Electrified liquid spray dust precipitator
KR20010101080A (en) Electrostatic precipitator
US20050126393A1 (en) Dual-type air purification system
JPH04194527A (en) Air ionization system
US6607579B2 (en) Apparatus and method for purifying air
US6863716B2 (en) Trap-type air purification system
US3363403A (en) Electrostatic filtering apparatus
JPH0439367B2 (en)
WO2003037518A1 (en) Fluid utilized in apparatus for purifying air
JPH1057835A (en) Collecting device for oily fume
KR100561550B1 (en) method and apparatus for collecting a dust and cleaning air by electrostatic spray
KR200343967Y1 (en) apparatus for collecting a dust and cleaning air by electrostatic spray
JP2574603Y2 (en) Air cleaner
JP2012090671A (en) Air cleaning device
KR102389530B1 (en) Hybrid Dust Collector
JP2007330898A (en) Dust collector
JPH07299388A (en) Oily fume collector
JPH1015333A (en) Air cleaning method and device therefor
JPH03154656A (en) Wet dust collector for coating booth
JPH0757299B2 (en) Dust collector
JP3393211B2 (en) Air cleaning method and device
KR100812716B1 (en) Gas eliminator for semiconductor facility
KR102469555B1 (en) Treatment apparatus of particle and gas material