JPH02218412A - Production of clean gas - Google Patents
Production of clean gasInfo
- Publication number
- JPH02218412A JPH02218412A JP63276171A JP27617188A JPH02218412A JP H02218412 A JPH02218412 A JP H02218412A JP 63276171 A JP63276171 A JP 63276171A JP 27617188 A JP27617188 A JP 27617188A JP H02218412 A JPH02218412 A JP H02218412A
- Authority
- JP
- Japan
- Prior art keywords
- droplets
- air
- gas
- droplet
- dust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 230000005684 electric field Effects 0.000 claims abstract description 14
- 239000012530 fluid Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 5
- 238000009833 condensation Methods 0.000 abstract description 24
- 230000005494 condensation Effects 0.000 abstract description 24
- 239000000428 dust Substances 0.000 abstract description 22
- 239000010419 fine particle Substances 0.000 abstract description 11
- 238000002156 mixing Methods 0.000 abstract description 6
- 238000001816 cooling Methods 0.000 abstract description 2
- 238000011065 in-situ storage Methods 0.000 abstract 1
- 238000000926 separation method Methods 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000002245 particle Substances 0.000 description 5
- 230000005672 electromagnetic field Effects 0.000 description 4
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
Landscapes
- Electrostatic Separation (AREA)
- Separation Of Particles Using Liquids (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体製造やノイオテクノロジー医薬品・食
品製造工場などで必要とされるクリーンエア等のクリー
ンな気体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing clean gas such as clean air required in semiconductor manufacturing, neurotechnology pharmaceutical and food manufacturing factories, and the like.
従来のクリーンエア製造方法として、濾過集塵装置(バ
グフィルタ−等)を使用し塵埃を除去する方法、電気集
塵装置により塵埃を除去する方法。Conventional methods for producing clean air include a method of removing dust using a filtration and dust collector (such as a bag filter), and a method of removing dust using an electrostatic precipitator.
遠心力集塵装置(サイクロン等)による方法などがある
。There are methods using centrifugal dust collectors (cyclones, etc.).
上記従来の方法においては、フィルターの目詰まりに伴
いフィルターを交換する必要があったり。In the conventional method described above, it may be necessary to replace the filter when it becomes clogged.
帯電に伴って微粒子が炭化(煙の発生)するなどの解決
すべき課題があった。There were issues that needed to be resolved, such as the particles becoming carbonized (smoke generation) due to charging.
更に上記従来の方法では、いずれも直径がサプミク四ン
(α03〜0.1μm)以下の微粒子が捕集されにくい
という問題があった。Furthermore, the conventional methods described above all have a problem in that fine particles having a diameter of less than α03 μm (α03 to 0.1 μm) are difficult to collect.
本発明のクリーン気体の製造方法は、次の手段を講じた
。The method for producing clean gas of the present invention takes the following measures.
(1) 被クリーン気体と凝縮性気体とを混合し、こ
の混合流体中の凝縮性気体を凝縮して液滴を発生せしめ
た後、との液滴を帯電させて電場及び/又は磁場域に通
して液滴な除去するようにした・
(2)被クリーン気体と凝縮性気体とを混合し、この混
合流体中の凝縮性気体を凝縮して液滴を発生せしめた後
、との液滴を含む流体を冷却器を通して液滴を冷却器に
付着させて除去するようにした。(1) The gas to be cleaned and the condensable gas are mixed, the condensable gas in the mixed fluid is condensed to generate droplets, and then the droplets are charged and exposed to an electric field and/or magnetic field. (2) After mixing the gas to be cleaned and a condensable gas and condensing the condensable gas in this mixed fluid to generate droplets, The fluid containing the liquid was passed through a cooler, and droplets were attached to the cooler and removed.
上記(1)の本発明は、被り9−y気体と凝縮性気体と
を混合し、この混合流体中の凝縮性気体を凝縮すると、
被クリーン気体中に含まれるダストを凝縮核とした凝縮
性気体の滴状凝縮を起こしダストが発生した凝縮性気体
の液滴に捕獲される。その後、この発生した液滴を帯電
させ、電場及び/又は磁場域を通過させると、帯電した
液滴は電場及び/又は磁場域において電気力及び/又は
磁気力を受けて被クリーン気体から分離される。これに
よりて被クリーン気体中のダストが液滴と共に除去され
、クリーンな気体が得られる。また、本発明における上
記の凝縮性気体の滴状凝縮では、直径が数1OA以上の
ダスト(微粒子)が凝縮核として作用し、発生した液滴
の径は、数μm〜数10μms度となる。この発生した
液滴な上記のように電場又は磁場域で捕集することによ
り、空気中から、数10A11度の微細なダストまで容
易に取り除くことができる。The present invention described in (1) above mixes the overlapped 9-y gas and the condensable gas, and when the condensable gas in this mixed fluid is condensed,
The condensable gas is condensed in droplets using the dust contained in the gas to be cleaned as condensation nuclei, and the dust is captured by the generated droplets of the condensable gas. Thereafter, the generated droplets are charged and passed through an electric field and/or magnetic field, and the charged droplets are separated from the gas to be cleaned by receiving electric and/or magnetic forces in the electric field and/or magnetic field. Ru. As a result, dust in the gas to be cleaned is removed together with the droplets, and clean gas is obtained. Further, in the droplet condensation of the condensable gas in the present invention, dust (fine particles) having a diameter of several 1 OA or more act as condensation nuclei, and the diameter of the generated droplets ranges from several micrometers to several tens of microseconds. By collecting the generated droplets in an electric or magnetic field as described above, even fine dust particles of several tens of A11 degrees can be easily removed from the air.
また、上記(2)の本発明においては、上記(IJの発
明と同様に微細カダストまでが凝縮性気体の液滴に捕集
される。この液滴を含む混合流体を冷却器を通すことに
よって、液滴が冷却器に付着されて除去される。このよ
うにして微細なダストまで除去されたクリーンな気体が
得られる。Furthermore, in the present invention (2) above, as in the invention of IJ, even the fine particles are collected in droplets of condensable gas. By passing the mixed fluid containing these droplets through a cooler, , the droplets are attached to the cooler and removed. In this way, a clean gas from which even the fine dust has been removed is obtained.
本発明の第一の実施例を第1図ないし第4図によって説
明する。A first embodiment of the present invention will be explained with reference to FIGS. 1 to 4.
被クリーン気体である原料空気1を送風機2から冷却機
9を通して冷却し、蒸気発生器3からの蒸気(例えば水
蒸気)とを、矩形断面の滴状凝縮発生器4内で混合させ
る。この冷却された空気と蒸気との混合によって、冷却
された原料空気中に含まれる直径が数1OA以上の微細
なダストを凝縮核とする蒸気の滴状凝縮がおこり液滴が
凝縮開始領域13において発生するにの液滴は飽和蒸気
中を流れるため、下流へ流れるに従って液滴成長領域1
4において成長し、数μm〜数10μmになる。このよ
うにして、空気中の数10A程度の微細なダストが液滴
中に捕集される。Raw air 1, which is a gas to be cleaned, is cooled from a blower 2 through a cooler 9, and mixed with steam (for example, water vapor) from a steam generator 3 in a droplet condensation generator 4 with a rectangular cross section. This mixing of the cooled air and steam causes droplet condensation of the steam using fine dust particles with a diameter of several 1 OA or more contained in the cooled raw air as condensation nuclei, and the droplets form in the condensation start region 13. Since the generated droplets flow in saturated steam, the droplets grow in the droplet growth region 1 as they flow downstream.
4, it grows to several micrometers to several tens of micrometers. In this way, fine dust particles on the order of tens of amperes in air are collected in the droplets.
この状態で矩形断面流路の対向する2面に取付けたコ四
す放電用正(利電極5と間食(ハ)電極6との間に上記
液滴を含む空気を通過させて、′3pす放電領域15に
おいて液滴を正又は負に帯電させる。In this state, the air containing the droplets is passed between the discharge positive electrode 5 and the snacking electrode 6, which are attached to the two opposing sides of the rectangular cross-sectional flow path. The droplet is charged positively or negatively in the discharge region 15.
帯電した液滴は次の液滴分離領域16へ入る。この分離
領域には、同分離領域を横切る電場、もしくは磁場又は
これら電場と磁場を組合せた電磁場を与える装置7,8
(第1図では電場を与える電極を示す)があり、以下説
明するように帯電した液滴を引き付ける。これによって
、帯電した液滴は上記画電極5,6の側の壁に付着し、
液滴を含む空気は、上記液滴分離領域に続くそれぞれの
外方の流路17.18へ落下してゆき、排出管10かも
排出される。上記液滴分離領域16に続く中央の流路1
9へは液滴及びダストを含まないクリーンな空気が入り
、コンデンサ謳で蒸気が取除かれたクリーンな乾燥空気
11が出てゆく。The charged droplet enters the next droplet separation region 16. This separation area is provided with devices 7 and 8 that apply an electric field or a magnetic field or a combination of these electric and magnetic fields across the separation area.
(Figure 1 shows electrodes providing an electric field) which attract charged droplets as explained below. As a result, the charged droplets adhere to the wall on the side of the picture electrodes 5 and 6,
The air containing the droplets falls into the respective outer channels 17, 18 following the droplet separation area and is also discharged through the discharge pipe 10. Central channel 1 following the droplet separation area 16
9 enters clean air free of droplets and dust, and exits as clean dry air 11 from which steam has been removed by a condenser.
以下に上記分離領域16における液滴の分離について説
明する。第2図、第3図及び第4図中の面ABODと面
A’ B’ C’ D’は、それぞれ、第1図に示す液
滴分離領域16の装置7と装置8が設けられた面に相当
する。Separation of droplets in the separation region 16 will be described below. The plane ABOD and the plane A'B'C'D' in FIGS. 2, 3, and 4 are the planes where the device 7 and the device 8 of the droplet separation area 16 shown in FIG. 1 are provided, respectively. corresponds to
第2図は、液滴分離領域16に直流高電圧、直流パルス
高電圧等によって、電場を加えた場合である。この場合
帯電液滴には、同図矢印方向のクーロン力Fが働く。例
えば上面加を■電極、下面21をe電極とすると、負に
帯電した液滴4は■電極加の方向へ引き寄せられ、正に
帯電した液滴はe電極21方向へ引き寄せられる。これ
によりて液滴は面ABCD及び面A’ B’ C’ D
’に付着して、空気から分離される。FIG. 2 shows a case where an electric field is applied to the droplet separation region 16 using a DC high voltage, a DC pulse high voltage, or the like. In this case, a Coulomb force F in the direction of the arrow in the figure acts on the charged droplet. For example, if the upper surface is used as the ■electrode and the lower surface 21 is used as the e-electrode, the negatively charged droplets 4 will be attracted toward the ■electrode, and the positively charged droplets will be attracted toward the e-electrode 21. As a result, the droplet forms planes ABCD and A'B'C' D
' and is separated from the air.
第3図は、液滴分離領域16に磁石冴、25によって磁
場を加えた場合である。この場合、帯電液滴には、同図
矢印方向にローレンツ77Fが働く。第3図のように磁
場を加えた場合、液滴は流速Vをもっているため、負に
帯電した液滴nは上面ABCD方向へ引き宥せられ、正
に帯電した液滴は下面A′B′C′D′へ引き寄せられ
、面ABOD及び面A′B’C’D’に付着して空気か
ら分離される。FIG. 3 shows a case where a magnetic field is applied to the droplet separation region 16 by a magnet 25. In this case, the Lorentz 77F acts on the charged droplet in the direction of the arrow in the figure. When a magnetic field is applied as shown in Figure 3, the droplet has a flow velocity V, so the negatively charged droplet n is pulled toward the upper surface ABCD, and the positively charged droplet is attracted to the lower surface A'B'. It is attracted to C'D', adheres to the surfaces ABOD and A'B'C'D', and is separated from the air.
次に第4図は分離領域に電磁場を加えた場合で、第2図
の電場と第3図の磁場を組合せたものである。帯電液滴
には、クーロン力及びローレンツ力が働く、この場合、
負に帯電しだ液滴ηは上面ABGD方向へ引き寄せられ
、正に帯電した液滴は下面A’B’C’D’へ引き寄せ
られて、面ABCD及び面A′B′C′D′に付着して
空気から分離される。Next, FIG. 4 shows a case where an electromagnetic field is applied to the separation region, which is a combination of the electric field in FIG. 2 and the magnetic field in FIG. 3. Coulomb force and Lorentz force act on the charged droplet, in this case,
The negatively charged droplet η is attracted toward the upper surface ABGD, and the positively charged droplet is attracted toward the lower surface A'B'C'D' and forms a surface on the surfaces ABCD and A'B'C'D'. It adheres and is separated from the air.
なお、第3図、第4図の出場を加える場合の磁石には、
永久磁石、電磁石、超電導磁石などを用いる。In addition, when adding the participants in Figures 3 and 4, the magnets are:
Permanent magnets, electromagnets, superconducting magnets, etc. are used.
本発明の第二の実施例を第5図によって説明する。A second embodiment of the present invention will be explained with reference to FIG.
原料空気1をコンプレッサ2で圧縮し、次に、この空気
1に加湿器3から供給される水蒸気(純水)を加えて加
湿する。この加湿された空気を二次元超音速ノズル4へ
送り断熱膨張させる。このとき、ノズル内では、断熱膨
張によって空気が冷却され、原料空気中に含まれる微細
なダスト(数10A以上)を凝縮核とする水蒸気の滴状
凝縮が起こり、凝縮開始領域13において液滴が発生す
る。Raw air 1 is compressed by a compressor 2, and then water vapor (pure water) supplied from a humidifier 3 is added to this air 1 to humidify it. This humidified air is sent to the two-dimensional supersonic nozzle 4 for adiabatic expansion. At this time, inside the nozzle, the air is cooled by adiabatic expansion, and droplet condensation of water vapor occurs using fine dust (several tens of amperes or more) contained in the raw air as condensation nuclei, and droplets form in the condensation start region 13. Occur.
発生した液滴は、液滴成長領域14において飽和蒸気中
を流れるために下流へ流れるに従って成長し、数μm〜
数10μmになる。この状態で、コロナ放電によって成
長した液滴を、上記第一実施例と同様に、コロナ放電領
域で正もしくは負に帯電させ、下流の液滴分離領域16
へ流す。液滴分離領域16にも、上記第一実施例と同様
に帯電した液滴に電場もしくは、磁場又は電磁場を加え
、捕集した水滴は流路17 、18より若干の空気と共
に排出され、ダストと水滴が除去されたクリーンな空気
が中央の流路19に流入する。The generated droplets grow as they flow downstream because they flow in saturated steam in the droplet growth region 14, and the size of the droplets ranges from several μm to
It becomes several tens of micrometers. In this state, droplets grown by corona discharge are charged positively or negatively in the corona discharge region, as in the first embodiment, and the droplets grown by corona discharge are charged in the droplet separation region 16 downstream.
flow to An electric field, a magnetic field, or an electromagnetic field is applied to the charged droplets in the droplet separation region 16 in the same manner as in the first embodiment, and the collected water droplets are discharged together with some air from the channels 17 and 18, and are separated from dust. Clean air from which water droplets have been removed flows into the central channel 19.
なお、上記コロナ放電領域15.分離領域16及び通路
17,18.19は、上記第一の実施例と同様な構成を
有しており、かつ同様な作用を奏するものであるので、
同一の部分は第5図において第1図におけると同一の符
号で表示し、その説明を省略する本発明の第三の実施例
を第6図によって説明する。Note that the corona discharge area 15. The separation region 16 and the passages 17, 18, 19 have the same configuration as the first embodiment and perform the same function.
The same parts in FIG. 5 are designated by the same reference numerals as in FIG. 1, and a description thereof will be omitted. A third embodiment of the present invention will be described with reference to FIG. 6.
微粒子を含む原料空気31は、送風機部で原料空気冷却
機おへ速られて冷却された上、滴状凝縮発生容器あへ送
られる。また例えば水蒸気などの凝縮性気体の発生装置
あからは飽和状態に近い未飽和の凝縮性気体が容器あへ
送られ、容器関門では。The raw air 31 containing fine particles is blown to the raw air cooler in the blower section, cooled, and then sent to the droplet condensation generating container A. In addition, for example, from a condensable gas generator such as water vapor, an unsaturated condensable gas that is close to a saturated state is sent to a container A, and at the container barrier.
混合ノズルIによって凝縮性気体と冷却された原料空気
が混合され、上記第−及び第二の実施例におけると同様
に、滴状凝縮発生領域37原料空気中の微粒子を凝縮核
とする液滴42が発生し、噴霧流が形成される。The condensable gas and the cooled raw material air are mixed by the mixing nozzle I, and as in the above-mentioned first and second embodiments, droplet condensation generation area 37 and droplets 42 whose condensation nuclei are fine particles in the raw material air are formed. is generated and a spray stream is formed.
この噴霧流は、容器あの滴状凝縮発生領域37の下流の
液滴分離領域間に段けた復水器(冷却器)器へ流れ込み
、含まれる液滴は復水器の伝熱面39へ壁面凝縮し、こ
れによって噴霧流は復水器39で除湿される。This spray stream flows into a condenser (cooler) device arranged between the droplet separation regions downstream of the droplet condensation generation region 37 in the container, and the contained droplets are transferred to the wall surface 39 of the condenser. Condensation occurs, whereby the spray stream is dehumidified in the condenser 39.
このよ5に、原料空気中から原料空気中の微粒子をもつ
液滴が取り除かれ、乾燥したクリーンエア41が製造さ
れる。復水器39で取り除かれた微粒子を含む液体は復
水器の排出口40から排出される。In step 5, droplets containing fine particles in the raw air are removed from the raw air, and dry clean air 41 is produced. The liquid containing the particulates removed by the condenser 39 is discharged from the condenser outlet 40.
なお1本実施例においては、原料空気冷却器あ、凝縮性
気体発生装置あの一部及び復水器39は、一つのヒート
ポンプで構成するようにすることもできる。Note that in this embodiment, the raw material air cooler, part of the condensable gas generator, and the condenser 39 may be configured by one heat pump.
以上説明したように、本発明では、被クリーン気体と凝
縮性気体とを混合した混合流体中の凝縮性気体を凝縮さ
せることによって、被クリーン気体のサブミクロン以下
の直径のダストを核として凝縮性気体の液滴を発生させ
、この液滴を電場及び/又は磁場、もしくは冷却器によ
って除去することによって、従来は不可能であった直径
がサブミクロン以下の微細粒子の除去を行な5ことがで
き、微細粒子を含まないクリーンな気体とすることがで
きる。As explained above, in the present invention, by condensing the condensable gas in the mixed fluid of the gas to be cleaned and the condensable gas, the dust particles with a diameter of submicron or less of the gas to be cleaned are used as nuclei to become condensable. By generating gas droplets and removing these droplets using an electric field and/or magnetic field, or a cooler, it is possible to remove fine particles with a diameter of submicron or less, which was previously impossible. It can be made into a clean gas that does not contain fine particles.
第1図は本発明の第一の実施例に用いられる装置の説明
図、第2図、第3図及び第4図はそれぞれ同装置におけ
る電場、磁場及び電磁場において帯電液滴の受ける力の
説明図、第5図は本発明の第二の実施例に用いられる装
置の説明図、第6図は本発明の第三の実施例に用いられ
る装置の説明図である。
1・・・原料空気、2・・・送風機又はコンプレッサー
3・・・蒸気発生器又は加湿器、4・・・滴状凝縮発生
器又は二次元超音速ノズル、5・・・コロナ放電用正電
極、6・・・コロナ放電用負電極、7.訃・・電場、a
場又は電磁場を加える装置、9・・・原料空気冷却器。
10・・・ダストを含む空気、 11・・・乾燥クリー
ンエア。
12・・・滴状凝縮で発生した液滴、13・・・凝縮開
始領域。
14・・・液滴成長領域、15・・・コロナ放電領域、
16・・・液滴分離領域、 17.18・・・ダストを
含む空気用通路。
19・・・クリーンエア用通路、20・・・正電極、2
1・・・負電極、22・・・負に帯電した液滴、23・
・・流れ方向、25・・・磁石S極、26・・・クリー
ンエアの水分除去装置。
31・・・塵埃を含む原料空気、32・・・原料空気用
送風機。
羽・・・原料空気用冷却装置、34・・・凝縮性気体発
生装置、35・・・滴状凝縮発生容器、36・・・原料
空気と凝縮性気体の混合ノズル、37・・・滴状凝縮発
生領域。
あ・・・液滴分離領域、39・・・復水器、39′−・
・復水器の伝熱面、40・・・微粒子を含む凝縮液体、
41・・・クリーンエア、42・・・微粒子を凝縮核と
する液滴。FIG. 1 is an explanatory diagram of the device used in the first embodiment of the present invention, and FIGS. 2, 3, and 4 are illustrations of the forces that a charged droplet receives in the electric field, magnetic field, and electromagnetic field, respectively, in the same device. FIG. 5 is an explanatory diagram of the apparatus used in the second embodiment of the present invention, and FIG. 6 is an explanatory diagram of the apparatus used in the third embodiment of the present invention. 1... Raw air, 2... Blower or compressor, 3... Steam generator or humidifier, 4... Droplet condensation generator or two-dimensional supersonic nozzle, 5... Positive electrode for corona discharge. , 6... negative electrode for corona discharge, 7. Death... electric field, a
Device for applying field or electromagnetic field, 9... Raw air cooler. 10... Air containing dust, 11... Dry clean air. 12... Droplet generated by droplet condensation, 13... Condensation start region. 14... Droplet growth region, 15... Corona discharge region,
16...Droplet separation area, 17.18...Air passage containing dust. 19...Clean air passage, 20...Positive electrode, 2
1... Negative electrode, 22... Negatively charged droplet, 23.
...Flow direction, 25...Magnet S pole, 26...Clean air moisture removal device. 31... Raw air containing dust, 32... Raw air blower. Wings: Cooling device for raw air, 34: Condensable gas generator, 35: Droplet-like condensation generating container, 36: Mixing nozzle for raw air and condensable gas, 37: Droplet-like Condensation generation area. Ah...droplet separation area, 39...condenser, 39'-...
・Heat transfer surface of condenser, 40... Condensed liquid containing fine particles,
41...Clean air, 42...Droplets with fine particles as condensation nuclei.
Claims (2)
合流体中の凝縮性気体を凝縮して液滴を発生せしめた後
、この液滴を帯電させて電場及び/又は磁場域に通して
液滴を除去することを特徴とするクリーン気体の製造方
法。(1) Mix the gas to be cleaned and a condensable gas, condense the condensable gas in the mixed fluid to generate droplets, and then charge the droplets and pass them through an electric field and/or magnetic field. A method for producing a clean gas, characterized in that droplets are removed using a method of producing clean gas.
合流体中の凝縮性気体を凝縮して液滴を発生せしめた後
、この液滴を含む流体を冷却器を通して液滴を冷却器に
付着させて除去することを特徴とするクリーン気体の製
造方法。(2) Mix the gas to be cleaned with a condensable gas, condense the condensable gas in the mixed fluid to generate droplets, and then pass the fluid containing the droplets through a cooler. A method for producing clean gas, the method comprising: adhering to and removing clean gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63276171A JPH02218412A (en) | 1988-11-02 | 1988-11-02 | Production of clean gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63276171A JPH02218412A (en) | 1988-11-02 | 1988-11-02 | Production of clean gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02218412A true JPH02218412A (en) | 1990-08-31 |
Family
ID=17565717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63276171A Pending JPH02218412A (en) | 1988-11-02 | 1988-11-02 | Production of clean gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02218412A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006043500A (en) * | 2004-07-30 | 2006-02-16 | Canon Inc | Particle screening and sampling apparatus and its acquiring method |
US7935175B2 (en) * | 2006-08-10 | 2011-05-03 | Semes Co., Ltd. | Apparatus for trapping carbon nanotube and system and method for producing the carbon nanotube |
CN103949344A (en) * | 2014-05-14 | 2014-07-30 | 武汉永磁科技有限公司 | Magnetic-deflection high-voltage pulse dust removal purifier |
CN104984827A (en) * | 2015-07-15 | 2015-10-21 | 苏州市丹纺纺织研发有限公司 | Electrostatic rotary deduster |
CN105797524A (en) * | 2016-05-06 | 2016-07-27 | 江苏大学 | Heteropolar electric charge fogdrop coalescence dust-removing device and method thereof |
CN107262280A (en) * | 2016-09-13 | 2017-10-20 | 成都创慧科达科技有限公司 | A kind of high-efficiency electromagnetic cleaner pipeline |
CN111495097A (en) * | 2020-04-16 | 2020-08-07 | 东南大学 | Dust removal pretreatment device and method for water-vapor phase change coupling gradient magnetic field |
-
1988
- 1988-11-02 JP JP63276171A patent/JPH02218412A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006043500A (en) * | 2004-07-30 | 2006-02-16 | Canon Inc | Particle screening and sampling apparatus and its acquiring method |
US7935175B2 (en) * | 2006-08-10 | 2011-05-03 | Semes Co., Ltd. | Apparatus for trapping carbon nanotube and system and method for producing the carbon nanotube |
CN103949344A (en) * | 2014-05-14 | 2014-07-30 | 武汉永磁科技有限公司 | Magnetic-deflection high-voltage pulse dust removal purifier |
CN104984827A (en) * | 2015-07-15 | 2015-10-21 | 苏州市丹纺纺织研发有限公司 | Electrostatic rotary deduster |
CN105797524A (en) * | 2016-05-06 | 2016-07-27 | 江苏大学 | Heteropolar electric charge fogdrop coalescence dust-removing device and method thereof |
CN105797524B (en) * | 2016-05-06 | 2017-10-20 | 江苏大学 | A kind of heteropolarity charged droplets coalescence dust arrester and method |
CN107262280A (en) * | 2016-09-13 | 2017-10-20 | 成都创慧科达科技有限公司 | A kind of high-efficiency electromagnetic cleaner pipeline |
CN111495097A (en) * | 2020-04-16 | 2020-08-07 | 东南大学 | Dust removal pretreatment device and method for water-vapor phase change coupling gradient magnetic field |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4897142B2 (en) | Method and apparatus for separating substances in the form of particles and / or droplets from a gas stream | |
US2357354A (en) | Electrified liquid spray dust precipitator | |
JP2001170514A (en) | Apparatus and method for collecting dust using ultrafine particles | |
US4073265A (en) | Electrostatic powder coating apparatus | |
JP2001513440A (en) | Combination of filter and electrostatic separator | |
US20040011196A1 (en) | Particle concentrator | |
JPH02218412A (en) | Production of clean gas | |
Jaworek et al. | Dust particles precipitation in AC/DC electrostatic precipitator | |
US20100011960A1 (en) | Electrostatic Air Filter | |
JPH0456646B2 (en) | ||
US3818678A (en) | Methods of and apparatus for separating solid and liquid particles from air and other gases | |
Hoenig | New applications of electrostatic technology to control of dust, fumes, smokes, and aerosols | |
JPH0439367B2 (en) | ||
Schmidt et al. | Investigations on fine particle separation using an electrostatic nozzle scrubber | |
JPS6283019A (en) | Dust collector | |
GB1428183A (en) | Process and apparatus for the treatment of a vapour or a gas containing a very finely divided solid or liquid | |
GB2346821A (en) | Apparatus for concentrating gasborne particles in a portion of a gas stream | |
US11833527B2 (en) | Apparatus for capturing bioaerosols | |
JP2596973B2 (en) | Clean air production equipment | |
JPS6287261A (en) | Dehumidifier | |
JPS6138642A (en) | Dust collector | |
JPH039765B2 (en) | ||
JPS61120651A (en) | Classification and collection of fine particle | |
JPH04334516A (en) | Air purifier | |
JPH04193362A (en) | Electric dust collector |