JP2004085169A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004085169A
JP2004085169A JP2003009662A JP2003009662A JP2004085169A JP 2004085169 A JP2004085169 A JP 2004085169A JP 2003009662 A JP2003009662 A JP 2003009662A JP 2003009662 A JP2003009662 A JP 2003009662A JP 2004085169 A JP2004085169 A JP 2004085169A
Authority
JP
Japan
Prior art keywords
fins
fin
heat exchanger
water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003009662A
Other languages
Japanese (ja)
Inventor
Cheol-Soo Ko
コ チョル−ソー
Se-Yoon Oh
オー セ−ヨーン
Sai-Kee Oh
オー サイ−ケー
Yong-Cheol Sa
サ ヨン−チョル
Dong-Yeon Jang
ジャン ドン−ヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2004085169A publication Critical patent/JP2004085169A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger having a similar heat exchange performance and reducing a size by enhancing a heat transfer performance to reduce a distance between fins by coating the surfaces of the respective fins with a predetermined substance and more smoothly discharging condensate deposited on the surfaces of the fins. <P>SOLUTION: The heat exchanger includes fins 10 arranged with a predetermined gap and passed with air; and a tube 6 installed between the fins and passing the fluid. The heat exchanger is constituted such that the fins 10 are arranged with one side surface subjected to a surface treatment by a hydrophilic substance and the other side surface subjected to a surface treatment by a water repellent substance opposed to each other with a predetermined gap. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、熱交換器に係るもので、詳しくは、熱交換作用時に発生される凝縮水の排出を円滑にして熱交換性能を向上し得る熱交換器に関するものである。
【0002】
【従来の技術】
一般に、熱交換器は、相互相違な二つの流体を直接又は間接的に接触させて熱交換させる装置であって、加熱器、冷却機、蒸発器及び凝縮器等に主に使われる。
前記熱交換器において、冷凍機及び空調機に主に使われる熱交換器は、フィンアンドチューブ式が主に使われる。
従来の熱交換器は、図5及び図6に示したように、所定間隔を置いて配列される複数のフィン102と、それらフィン102間を貫通して設置されて流体が通過するチューブ104と、を包含して構成されていた。
【0003】
前記各フィン102は、所定長さ及び幅を有する板タイプで、前記チューブ104が通過する複数の貫通ホール108が形成され、その伝熱面積を広げるために所定角に折曲されるルーバー106が形成される。
又、前記チューブ104は、一方側の端部が流体が流入される流入管110に連結され、他方側の端部は、熱交換を完了した流体が排出される排出管112に連結され、前記フィン102の貫通ホール108をジグザグに通過するように複数回折曲される形態を有する。
【0004】
このように構成された従来の熱交換器は、前記流入管110を通して流体が流入されると、ジグザグ状に折曲された前記チューブ104を通過しながら前記フィン102間を通過する空気との熱交換が行われる。この時、前記フィン102により前記チューブ104の外部を通過する空気と前記チューブ104の内部を通過する流体間の熱交換が円滑に行われる。
このような熱交換作用中、前記チューブ104の内外側温度差によって空気中に含まれていた水分が前記チューブ104の表面及びフィン102の表面に付着され、該付着された水分は、重力により下方向に移動してドレインパン(図示されず)に集められて外部に排出される。
【0005】
【発明が解決しようとする課題】
然るに、このような従来の熱交換器においては、前記熱交換作用中、発生された凝縮水がフィン102の表面に表面張力により残留する現象が発生するため、フィン102間を通過する空気の流動を妨害し、前記フィン102の表面に凝縮水が付着されることで、空気と流体間の熱交換性能が低下するという不都合な点があった。
また、前記フィン102間の空気が通過する空間に凝縮水が停滞される現象を防止するためにフィン間の距離が所定以上に維持されなければならないため、熱交換器の大きさが大きくなるという不都合な点があった。
【0006】
本発明は、このような従来の課題に鑑みてなされたもので、各フィンの表面を所定物質によりコーティング処理して各フィンの表面に付着された凝縮水が一層円滑に排出されるため、熱伝逹性能を向上させてフィン間の距離を低減し得ることで、同様な熱交換性能を有すると共に、大きさを低減し得る熱交換器を提供することを目的とする。
【0007】
【課題を解決するための手段】
このような目的を達成するため、本発明に係る熱交換器においては、所定間隔を置いて配列されて空気が通過する各フィンと、それらフィン間を通過するように設置されて流体が通過するチューブと、を包含して構成され、前記各フィンは、親水性物質が表面処理された一方側面と撥水性物質が表面処理された他方側面とが夫々所定間隔を置いて対向して配列されることを特徴とする。
【0008】
又、本発明に係る熱交換器においては、前記各フィンは、両方側の表面が夫々撥水性物質により表面処理された第1フィンと、該第1フィンと対向されるように配置されてその両方側の表面に夫々親水性物質により表面処理された第2フィンと、が夫々順次配列されることを特徴とする。
又、前記熱交換器の前記第1フィンの両方側の表面には、夫々撥水性物質が塗布されて第1コーティング層が形成され、前記第2フィンの両方側の表面には、夫々親水性物質が塗布されて第2コーティング層が形成されることを特徴とする。
【0009】
又、前記熱交換器の前記各フィンは、一方側の表面が撥水性物質により表面処理され、他方側の表面は、親水性物質により表面処理され、前記撥水性物質が表面処理された一方側の表面と前記親水性物質が表面処理された他方側の表面が所定間隔を置いて夫々対向するように配列されることを特徴とする。
又、前記熱交換器の前記各フィンの一方側の表面は、撥水性物質が塗布されて第1コーティング層が形成され、他方側の表面は、親水性物質が塗布されて第2コーティング層が形成されることを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態に対し、図面を用いて説明する。
本発明に係る熱交換器においては、図1に示したように、一方側に流体が流入する流入管2が連結され、他方側に熱交換が完了された流体が排出される吐出管4が連結されて所定間隔を置いてジグザグに折曲されて流体が通過するチューブ6と、該チューブ6が通過するように複数の貫通ホール8が形成されて所定間隔を置いて複数に配列されて空気との接触面積を拡張させるフィン10と、を包含して構成されている。
【0011】
又、前記フィン10は、所定長さ及び幅を有する板状に形成され、その両方側の側面に夫々通過する空気との接触面積を拡張するために所定角度に突出されるルーバー12が形成され、その両方側の表面には、夫々凝縮水を一層容易に排出させるために、撥水性物質及び親水性物質が夫々表面処理される。
即ち、前記フィン10は、図2に示したように、その両方側の表面に夫々撥水性物質により表面処理されて第1コーティング層26を形成した第1フィン20と、該第1フィン20と対向されるように配置されてその両方側の表面に夫々親水性物質により表面処理されて第2コーティング層28を形成した第2フィン22と、が夫々順次的に配列される。
【0012】
又、前記親水性物質は、一般的に前記水との親和性が強い物質であって、前記フィン10の表面に凝縮水を一層容易に吸着させる機能をする。前記撥水性物質は、水と反発する物質であって、前記フィン10の表面に凝縮水が吸着されないようにする機能をする。
又、前記撥水性物質及び親水性物質は、夫々フィン10の表面にコーティング方法により表面処理することが好ましい。
【0013】
以下、上記のように構成される本発明に係る熱交換器の動作に対し、説明する。
前記流入管2に流入された流体は、ジグザグ状に折曲された前記チューブ6を通過して排出管4を通して排出される。又、前記フィン10間に空気が通過する。この時、前記チューブ6を通過する流体と前記フィン10間を通過する空気が相互直交して流れながら相互熱交換が行われる。
このような熱交換作用を実施する時、前記チューブ6を通過する流体とフィン6間を通過する空気との温度差により空気中に含まれていた水分がチューブ6の表面及びフィン10の表面に付着される。
【0014】
以下、前記凝縮水が前記フィン10の表面に付着されて排出される過程に対し、図3を用いて説明する。
熱交換が実施されると、撥水性物質が表面処理されて第1コーティング層26が形成された第1フィン20の両方側の表面に夫々凝縮水が水滴粒子L状に凝縮され、該水滴粒子L状の凝縮水は、時間が経過することで、他の水滴粒子と結合されて順次的に大きくなり、前記水滴粒子Lが所定以上大きくなると、前記第1フィン22と所定間隔を置いて配列された親水性材料が表面処理されて第2コーティング層が形成された第2フィン22の表面に接すると、瞬間的に前記第2フィン22の表面に沿って広がりながら下方向に流れる。この時、前記水滴粒子Lの重さが重いため、前記凝縮水が第2フィン22の表面に流れる速度が速くなることで、凝縮水を迅速に除去することができる。
【0015】
又、前記第1フィン20の表面で生成される凝縮水が第2フィン22の表面に接すると、直ちに排出されるため、水滴粒子Lの大きさに関係無く、排出が行われるため、前記第1フィン20と第2フィン22間の距離を狭めることで、熱交換器の全体的な大きさが低減する。
【0016】
又、本発明に係る熱交換器の他の実施形態においては、図4の如く、所定間隔を置いてジグザグに折曲されるように形成されて流体が通過するチューブ6と、該チューブ6が通過するように複数の貫通ホール8が形成されて所定間隔を置いて複数配列されて空気との接触面積を拡張させる各フィン30と、を包含して構成され、それらフィン30は、夫々その一方側面に撥水性物質が表面処理されて第1コーティング層32を形成し、他側面は、親水性物質が表面処理されて第2コーティング層34を形成して所定間隔を置いて複数配列される。
【0017】
この時、前記フィン30は、前記撥水性物質が表面処理されて第1コーティング層32が形成された側面と親水性材料が表面処理されて第2コーティング層34が形成された他側面とが対向するように配列される。
【0018】
上記のように構成される本発明に係る熱交換器の他の実施形態の凝縮水排出過程は、先ず、撥水性物質が表面処理されて第1コーティング層32が形成されたフィン30の一方側の表面に夫々凝縮水が水滴粒子状に凝縮され、該水滴粒子状の凝縮水は、時間が経過することで、他の水滴粒子と結合しながら順次的に大きくなり、前記水滴粒子が所定以上大きくなると、親水性材料が表面処理されて第2コーティング層34が形成された前記フィン30の他方側の表面に接すると、瞬間的に前記フィン30の他方側の表面を沿って広がりながら下方向に速く流れる。
【0019】
【発明の効果】
以上説明したように、本発明に係る熱交換器においては、熱交換器のフィンの両方側の表面に夫々撥水性材料及び親水性材料を表面処理し、撥水性材料が表面処理された面と親水性材料が表面処理された面とを対向するように配置して熱交換作用時に発生される凝縮水が前記撥水性材料が表面処理されたフィンの一方側の表面に水滴粒子状に生成されて前記親水性材料が表面処理されたフィンの他方側の表面に接すると、瞬間的に下方向に排出されることで、凝縮水の重さにより凝縮水の排出速度は速くなり凝縮水を迅速に排出させることで、フィン間を通過する空気の流動を円滑にし得るし、前記フィンの表面に付着される凝縮水の時間を低減し得ることで、熱交換性能を向上し得るという効果がある。
また、前記水滴粒子状の大きさに関係なく、凝縮水の排出が容易に行われるため、前記フィン間の距離を狭めて全体熱交換器の大きさを低減し得るという効果がある。
【図面の簡単な説明】
【図1】本発明に係る熱交換器を示した斜視図である。
【図2】図1のIII−III線の断面図である。
【図3】本発明に係る熱交換器の凝縮水排出過程を示した部分断面図である。
【図4】本発明に係る熱交換器の他の実施形態を示した斜視図である。
【図5】従来の熱交換器を示した斜視図である。
【図6】従来の熱交換器のフィンを示した平面図である。
【符号の説明】
2…流入管
4…吐出管
6…チューブ
8…貫通ホール
10…フィン
12…ルーバー
20…第1フィン
22…第2フィン
26…第1コーティング層
28…第2コーティング層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger, and more particularly, to a heat exchanger capable of improving heat exchange performance by smoothly discharging condensed water generated during a heat exchange operation.
[0002]
[Prior art]
2. Description of the Related Art Generally, a heat exchanger is a device for exchanging heat by directly or indirectly contacting two different fluids, and is mainly used for a heater, a cooler, an evaporator, a condenser, and the like.
In the heat exchanger, a fin and tube type heat exchanger is mainly used for a refrigerator and an air conditioner.
As shown in FIGS. 5 and 6, a conventional heat exchanger includes a plurality of fins 102 arranged at a predetermined interval, and a tube 104 which is disposed between the fins 102 and through which a fluid passes. , And was comprised.
[0003]
Each of the fins 102 is a plate type having a predetermined length and width, and has a plurality of through holes 108 through which the tubes 104 pass, and a louver 106 which is bent at a predetermined angle in order to increase the heat transfer area. It is formed.
The tube 104 has one end connected to an inflow pipe 110 through which a fluid flows, and the other end connected to an exhaust pipe 112 through which a heat-exchanged fluid is discharged. The fin 102 is bent a plurality of times so as to pass through the through hole 108 of the fin 102 in a zigzag manner.
[0004]
In the conventional heat exchanger configured as described above, when the fluid flows through the inflow pipe 110, the heat exchange with the air passing between the fins 102 while passing through the zigzag bent tube 104 is performed. An exchange takes place. At this time, heat exchange between the air passing through the outside of the tube 104 and the fluid passing through the inside of the tube 104 is smoothly performed by the fins 102.
During such a heat exchange operation, the moisture contained in the air is attached to the surface of the tube 104 and the surface of the fins 102 due to the temperature difference between the inside and outside of the tube 104, and the attached moisture is reduced by gravity. And is collected in a drain pan (not shown) and discharged to the outside.
[0005]
[Problems to be solved by the invention]
However, in such a conventional heat exchanger, during the heat exchange operation, the generated condensed water remains on the surface of the fins 102 due to surface tension. And the condensed water adheres to the surface of the fin 102, thereby deteriorating the heat exchange performance between the air and the fluid.
In addition, the distance between the fins must be maintained at a predetermined value or more in order to prevent the condensed water from stagnating in the space through which the air passes between the fins 102, so that the size of the heat exchanger increases. There were disadvantages.
[0006]
The present invention has been made in view of such a conventional problem, and since the surface of each fin is coated with a predetermined substance and condensed water adhered to the surface of each fin is more smoothly discharged, heat It is an object of the present invention to provide a heat exchanger having the same heat exchange performance and a reduced size by improving the transfer performance and reducing the distance between the fins.
[0007]
[Means for Solving the Problems]
In order to achieve such an object, in the heat exchanger according to the present invention, the fins are arranged at predetermined intervals through which air passes, and the fins are installed so as to pass between the fins and the fluid passes therethrough. A tube, and the fins are arranged such that one side surface of which the hydrophilic material is surface-treated and the other side surface of which the water-repellent material is surface-treated are opposed to each other at a predetermined interval. It is characterized by the following.
[0008]
Further, in the heat exchanger according to the present invention, each of the fins is disposed so that both surfaces thereof are first fins each of which is surface-treated with a water-repellent substance, and are disposed so as to face the first fins. The second fins, each of which is surface-treated with a hydrophilic substance, are sequentially arranged on both surfaces.
Further, a water-repellent material is applied to both surfaces of the first fin of the heat exchanger to form a first coating layer, and hydrophilic surfaces are formed on both surfaces of the second fin. The material may be applied to form a second coating layer.
[0009]
Further, each of the fins of the heat exchanger has one surface subjected to a surface treatment with a water repellent material, the other surface treated with a hydrophilic material, and one surface treated with the water repellent material. And the other surface on which the hydrophilic substance is surface-treated is arranged so as to face each other at a predetermined interval.
A surface of one side of each fin of the heat exchanger is coated with a water-repellent substance to form a first coating layer, and a surface of the other side is coated with a hydrophilic substance to form a second coating layer. It is characterized by being formed.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the heat exchanger according to the present invention, as shown in FIG. 1, the inflow pipe 2 into which fluid flows in is connected to one side, and the discharge pipe 4 from which the heat-exchanged fluid is discharged is connected to the other side. A tube 6 that is connected and bent in a zigzag manner at a predetermined interval through which a fluid passes, and a plurality of through holes 8 are formed so that the tube 6 passes therethrough, and a plurality of air holes are arranged at a predetermined interval and air And a fin 10 for extending a contact area with the fin 10.
[0011]
Further, the fin 10 is formed in a plate shape having a predetermined length and width, and a louver 12 protruding at a predetermined angle is formed on both side surfaces of the fin 10 in order to expand a contact area with air passing therethrough. The surfaces on both sides are respectively treated with a water-repellent substance and a hydrophilic substance in order to discharge condensed water more easily.
That is, as shown in FIG. 2, the fin 10 has a first coating layer 26 formed on both surfaces thereof by a surface treatment with a water-repellent substance, The second fins 22 which are arranged so as to face each other and whose both surfaces are surface-treated with a hydrophilic substance to form the second coating layer 28 are sequentially arranged.
[0012]
In addition, the hydrophilic substance generally has a strong affinity for the water, and functions to more easily adsorb condensed water on the surface of the fin 10. The water repellent material is a material that repels water and functions to prevent condensed water from adsorbing on the surface of the fin 10.
It is preferable that the surface of the fin 10 is subjected to a surface treatment by a coating method with respect to the water repellent substance and the hydrophilic substance.
[0013]
Hereinafter, the operation of the heat exchanger according to the present invention configured as described above will be described.
The fluid flowing into the inflow pipe 2 passes through the zigzag bent tube 6 and is discharged through the discharge pipe 4. Air passes between the fins 10. At this time, mutual heat exchange is performed while the fluid passing through the tube 6 and the air passing between the fins 10 flow orthogonally.
When such a heat exchange action is performed, moisture contained in the air due to the temperature difference between the fluid passing through the tube 6 and the air passing between the fins 6 is deposited on the surface of the tube 6 and the surface of the fin 10. Is attached.
[0014]
Hereinafter, a process in which the condensed water adheres to the surface of the fin 10 and is discharged will be described with reference to FIG.
When the heat exchange is performed, the condensed water is condensed into water droplet particles L on both surfaces of the first fin 20 on which the water repellent material is subjected to the surface treatment and the first coating layer 26 is formed. As the time elapses, the L-shaped condensed water is combined with other water droplet particles and sequentially increases in size. When the water droplet particles L become larger than a predetermined size, they are arranged at a predetermined distance from the first fin 22. When the treated hydrophilic material comes into contact with the surface of the second fin 22 on which the second coating layer is formed by the surface treatment, the hydrophilic material instantaneously spreads along the surface of the second fin 22 and flows downward. At this time, since the weight of the water droplet particles L is heavy, the speed at which the condensed water flows on the surface of the second fin 22 is increased, so that the condensed water can be quickly removed.
[0015]
In addition, the condensed water generated on the surface of the first fin 20 is immediately discharged when it comes into contact with the surface of the second fin 22, and is discharged regardless of the size of the water droplet particles L. Reducing the distance between the first fin 20 and the second fin 22 reduces the overall size of the heat exchanger.
[0016]
Further, in another embodiment of the heat exchanger according to the present invention, as shown in FIG. 4, a tube 6 formed so as to be bent in a zigzag manner at a predetermined interval and through which a fluid passes, A plurality of through holes 8 formed so as to pass therethrough, and a plurality of fins 30 arranged at predetermined intervals to extend the contact area with the air. The first coating layer 32 is formed by treating the surface of the water-repellent material on the side surface, and the second coating layer 34 is formed on the other side surface by treating the surface of the hydrophilic material with a hydrophilic material.
[0017]
At this time, the side of the fin 30 on which the first coating layer 32 is formed by the surface treatment of the water-repellent substance is opposed to the other side of the fin 30 on which the second coating layer 34 is formed by the surface treatment of the hydrophilic material. It is arranged to be.
[0018]
The condensed water discharging process of another embodiment of the heat exchanger according to the present invention configured as described above is performed by first treating one side of the fin 30 on which the water-repellent substance is surface-treated to form the first coating layer 32. The condensed water is condensed in the form of water droplets on the surface of each of the water droplets, and the condensed water in the form of water droplets gradually becomes larger while being combined with other water droplet particles over time, and the water droplet particles become larger than a predetermined amount. When it becomes large, when the hydrophilic material is surface-treated and comes into contact with the other surface of the fin 30 on which the second coating layer 34 is formed, the fin 30 instantaneously spreads along the other surface of the fin 30 in the downward direction. Flows fast.
[0019]
【The invention's effect】
As described above, in the heat exchanger according to the present invention, the surfaces of both sides of the fins of the heat exchanger are subjected to the surface treatment with the water-repellent material and the hydrophilic material, respectively, and the surface of the water-repellent material is subjected to the surface treatment. Condensed water generated at the time of heat exchange by arranging the surface on which the hydrophilic material has been subjected to the surface treatment is generated in the form of water droplets on one surface of the fin on which the water-repellent material has been surface-treated. When the hydrophilic material comes in contact with the surface of the other side of the surface-treated fins, the fin is instantaneously discharged downward. By discharging the air to the fins, the flow of air passing between the fins can be smoothed, and the time of condensed water attached to the surface of the fins can be reduced, thereby improving heat exchange performance. .
In addition, since the condensed water is easily discharged irrespective of the size of the water droplet particles, the distance between the fins can be reduced to reduce the size of the entire heat exchanger.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a heat exchanger according to the present invention.
FIG. 2 is a sectional view taken along line III-III in FIG.
FIG. 3 is a partial cross-sectional view illustrating a condensed water discharging process of the heat exchanger according to the present invention.
FIG. 4 is a perspective view showing another embodiment of the heat exchanger according to the present invention.
FIG. 5 is a perspective view showing a conventional heat exchanger.
FIG. 6 is a plan view showing fins of a conventional heat exchanger.
[Explanation of symbols]
2 inflow pipe 4 discharge pipe 6 tube 8 through hole 10 fin 12 louver 20 first fin 22 second fin 26 first coating layer 28 second coating layer

Claims (5)

所定間隔を置いて配列されて空気が通過する各フィンと、
それらフィン間を通過するように設置されて流体が通過するチューブと、を包含して構成され、
前記各フィンは、親水性物質が表面処理された一方側面と撥水性物質が表面処理された他側面とが夫々所定間隔を置いて対向するように配列されることを特徴とする熱交換器。
Each fin that is arranged at a predetermined interval and through which air passes,
A tube installed to pass between the fins and through which fluid passes,
The heat exchanger according to claim 1, wherein each of the fins is arranged such that one side surface of the fin treated with the hydrophilic material and the other side surface of the fin treated with the water repellent material face each other at a predetermined interval.
前記各フィンは、その両方側の表面が夫々撥水性物質により表面処理された第1フィンと、該第1フィンと対向されるように配置されてその両方側の表面に夫々親水性物質により表面処理された第2フィンと、が夫々順次的に配列されることを特徴とする請求項1記載の熱交換器。Each of the fins has a first fin whose both surfaces are surface-treated with a water-repellent material, and a fin which is disposed so as to face the first fin and has a hydrophilic material on both surfaces thereof. 2. The heat exchanger according to claim 1, wherein the processed second fins are sequentially arranged. 前記第1フィンの両方側の表面には、夫々撥水性物質が塗布されて第1コーティング層が形成され、前記第2フィンの両方側の表面には、夫々親水性物質が塗布されて第2コーティング層が形成されることを特徴とする請求項2記載の熱交換器。A water repellent material is applied to both surfaces of the first fin to form a first coating layer, and a hydrophilic material is applied to both surfaces of the second fin to form a second coating layer. The heat exchanger according to claim 2, wherein a coating layer is formed. 前記各フィンは、その一方側の表面が撥水性物質により表面処理され、その他方側の表面は、親水性物質により表面処理されて、前記撥水性物質が表面処理された一方側の表面と前記親水性物質が表面処理された他方側の表面とが所定間隔を置いて夫々対向するように配列されることを特徴とする請求項1記載の熱交換器。Each of the fins has one surface thereof surface-treated with a water-repellent material, and the other surface thereof is surface-treated with a hydrophilic material. 2. The heat exchanger according to claim 1, wherein the hydrophilic material is arranged so as to face each other at a predetermined interval with respect to the other surface of the heat treated surface. 前記各フィンの一方側の表面は、撥水性物質が塗布されて第1コーティング層が形成され、他方側の表面は、親水性物質が塗布されて第2コーティング層が形成されることを特徴とする請求項4記載の熱交換器。One surface of each fin is coated with a water-repellent material to form a first coating layer, and the other surface is coated with a hydrophilic material to form a second coating layer. The heat exchanger according to claim 4, wherein
JP2003009662A 2002-08-23 2003-01-17 Heat exchanger Pending JP2004085169A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020050214A KR20040017768A (en) 2002-08-23 2002-08-23 Exhauster for condensate of heat exchanger

Publications (1)

Publication Number Publication Date
JP2004085169A true JP2004085169A (en) 2004-03-18

Family

ID=31884982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009662A Pending JP2004085169A (en) 2002-08-23 2003-01-17 Heat exchanger

Country Status (4)

Country Link
US (1) US20040035561A1 (en)
JP (1) JP2004085169A (en)
KR (1) KR20040017768A (en)
CN (1) CN1307400C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040017768A (en) * 2002-08-23 2004-02-27 엘지전자 주식회사 Exhauster for condensate of heat exchanger
KR20140096706A (en) * 2013-01-29 2014-08-06 한라비스테온공조 주식회사 Evaporator
JP2020139690A (en) * 2019-02-28 2020-09-03 株式会社富士通ゼネラル Heat exchanger for air conditioner

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1562018A1 (en) * 2004-02-03 2005-08-10 Siemens Aktiengesellschaft Heat exchanger tube, heat exchanger and its use
US20120037348A1 (en) * 2010-08-13 2012-02-16 Chu Su Hua Heat sink structure
KR20120054321A (en) * 2010-11-19 2012-05-30 엘지전자 주식회사 Heat pump
KR20150106230A (en) * 2014-03-11 2015-09-21 삼성전자주식회사 Heat exchanger and method for manufacturing the same, and outdoor unit for air-conditioner having the heat exchanger
CN105485971A (en) * 2016-01-12 2016-04-13 广东美的制冷设备有限公司 Finned tube heat exchanger and air conditioner
WO2017163127A1 (en) * 2016-03-24 2017-09-28 The Hong Kong University Of Science And Technology Enhanced condensed water capture by alternate arrangement of heterogeneous wetting surfaces
DK3415852T3 (en) * 2016-08-05 2024-02-05 Obshestvo S Ogranichennoi Otvetstvennostu Reinnolts Lab SHELL AND TUBE CONDENSER AND HEAT EXCHANGE TUBES FOR A SHELL AND TUBE CONDENSER (VARIANTS)
CN115388481A (en) * 2017-01-12 2022-11-25 尼蓝宝股份有限公司 Control system for controlling temperature and relative humidity
WO2018169245A1 (en) * 2017-03-17 2018-09-20 엘지전자 주식회사 Heat exchanger
KR102023994B1 (en) * 2017-03-17 2019-09-23 엘지전자 주식회사 Heat exchanger
KR101987699B1 (en) * 2017-03-17 2019-06-11 엘지전자 주식회사 Heat exchanger
US11828477B2 (en) * 2017-03-31 2023-11-28 Daikin Industries, Ltd. Heat exchanger and air conditioner
JP2019020006A (en) * 2017-07-13 2019-02-07 パナソニックIpマネジメント株式会社 Heat exchanger and air conditioner using the same
CN110822962B (en) * 2017-08-03 2021-05-07 山东大学 Design method for fin distance of loop heat pipe
CN108168358B (en) * 2017-12-27 2020-06-16 青岛海尔智能技术研发有限公司 Finned tube type heat exchanger
JP7159806B2 (en) * 2018-11-21 2022-10-25 トヨタ自動車株式会社 Heat exchanger

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949498A (en) * 1982-09-13 1984-03-22 Mitsubishi Electric Corp Plate fin type heat exchanger
JP2730908B2 (en) * 1988-06-09 1998-03-25 三洋電機株式会社 Heat exchanger and air conditioner incorporating this heat exchanger
JPS6338890A (en) * 1986-08-01 1988-02-19 Matsushita Refrig Co Heat exchanger
CA2162051A1 (en) * 1994-03-03 1995-09-08 Detlev Gustav Kroger Finned tube heat exchanger
JPH08152287A (en) * 1994-11-29 1996-06-11 Sanyo Electric Co Ltd Heat exchanger
JP2000074588A (en) * 1998-08-31 2000-03-14 Toshiba Corp Fin tube type heat exchanger for air conditioner
CN1246605A (en) * 1998-09-01 2000-03-08 三星电子株式会社 Heat exchanger
CA2391077A1 (en) * 2001-06-28 2002-12-28 York International Corporation High-v plate fin for a heat exchanger and a method of manufacturing
KR20040017768A (en) * 2002-08-23 2004-02-27 엘지전자 주식회사 Exhauster for condensate of heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040017768A (en) * 2002-08-23 2004-02-27 엘지전자 주식회사 Exhauster for condensate of heat exchanger
KR20140096706A (en) * 2013-01-29 2014-08-06 한라비스테온공조 주식회사 Evaporator
JP2020139690A (en) * 2019-02-28 2020-09-03 株式会社富士通ゼネラル Heat exchanger for air conditioner

Also Published As

Publication number Publication date
KR20040017768A (en) 2004-02-27
CN1307400C (en) 2007-03-28
CN1477366A (en) 2004-02-25
US20040035561A1 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP2004085169A (en) Heat exchanger
JP2004085170A (en) Heat exchanger
JP2007532855A (en) Thermal mass exchange machine
US20060283581A1 (en) Louver fin type heat exchanger having improved heat exchange efficiency by controlling water blockage
CN107782194A (en) A kind of hydrophobic heat abstractor of part
JPS61153498A (en) Finned heat exchanger
JP2004085168A (en) Heat exchanger
JPH10197173A (en) Flat tube for heat exchanger and heat exchanger
JPH10274493A (en) Heat-exchanger
KR101303565B1 (en) Conductible Fin for Evaporator
JP2007192513A (en) Air-conditioner and heat exchanger cleaning method
JPH04136690A (en) Heat exchanger
JP2004036938A (en) Heat exchanger and air conditioner comprising the same
JP2009097833A (en) Air heat exchanger
JPH08152287A (en) Heat exchanger
JPH1123179A (en) Heat exchanger with fin
KR100349944B1 (en) Method for coating cooling fins of heat exchanger
JPH10238897A (en) Heat exchanger for evaporator
JP2008241184A (en) Heat exchanger
JPH07127991A (en) Heat exchanger
CN106556280B (en) The fin combined method of fin for air-conditioning condenser
JPH05322477A (en) Boiling heat transfer surface
CN207600287U (en) A kind of hydrophobic radiator in part
JP3378785B2 (en) Absorption chiller absorber
JPS6338890A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603