JPH0549805A - Low temperature trap for vacuum equipment - Google Patents

Low temperature trap for vacuum equipment

Info

Publication number
JPH0549805A
JPH0549805A JP20290291A JP20290291A JPH0549805A JP H0549805 A JPH0549805 A JP H0549805A JP 20290291 A JP20290291 A JP 20290291A JP 20290291 A JP20290291 A JP 20290291A JP H0549805 A JPH0549805 A JP H0549805A
Authority
JP
Japan
Prior art keywords
low temperature
refrigerator
cooled
small
trap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20290291A
Other languages
Japanese (ja)
Inventor
Hidetoshi Morimoto
秀敏 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP20290291A priority Critical patent/JPH0549805A/en
Publication of JPH0549805A publication Critical patent/JPH0549805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To provide the subject equipment in which plural low temp. traps are cooled by one refrigerator to make the installation small-sized and low- priced one and little vibration is transmitted to the vacuum equipment and there is no danger of environmental disruption. CONSTITUTION:In a low temp. trap 6 equipped with a low temp. part 5 for condensing steam, etc., in a vacuum chamber 2 and its exhaust passage 1, a heat pipe 8 cooled at one end by a small-size helium refrigerator 6 is connected with the low temp. part 5 at the other end to cool it. Plural heat pipes are cooled at one side ends by one small-size refrigerator and the low temp. traps connected with the heat pipes at the other side ends are simultaneously cooled. Thereby, the vibration by the small-size refrigerator is hardly transmitted to the low temp. part of the low temp. trap to decrease the vibration of the vacuum equipment, and since plural low temp. traps are cooled by one small-size refrigerator 6, a safe, small-size, low temp. trap which is low-priced and does not disrupt environment is obtained and liquid nitrogen does not need replenishing and running cost is decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空装置の真空室内の
水蒸気や、真空室から真空ポンプへ連なる排気通路の油
蒸気等を凝縮捕集する真空装置用低温トラップに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum device low temperature trap for condensing and collecting water vapor in a vacuum chamber of a vacuum device, oil vapor in an exhaust passage extending from the vacuum chamber to a vacuum pump, and the like.

【0002】[0002]

【従来の技術】油拡散ポンプやターボ分子ポンプは、ク
ライオポンプのように低温部に気体分子を凝縮捕集する
ことにより真空状態を作り出すものではなく、気体分子
を移動排除することにより真空状態を作り出すものであ
るから、クライオポンプに比べて水に対する排気速度が
大きく劣る。また、油拡散ポンプで真空室の真空排気を
行なう場合、油蒸気が真空室へ逆流して真空室内を汚染
することがある。そのため、油拡散ポンプやターボ分子
ポンプにより真空排気を行なう場合、その吸気口に液体
窒素、小型ヘリウム冷凍機或いはフレオン冷凍機で冷却
された低温部を有する低温トラップを設け、水蒸気や油
蒸気を該低温トラップに凝縮捕集し、クライオポンプ並
みに水に対する排気速度を向上させ、油蒸気の逆流を防
止している。液体窒素を使用した低温トラップの例は図
1に示す如くであり、この場合、低温トラップgは、真
空室aに接続された油拡散ポンプbへの排気通路cに、
タンクdの液体窒素eで冷却されたバッフルから成る低
温部fで構成され、真空室a内の水蒸気を該低温部fに
凝縮させて水蒸気が油拡散ポンプbへ流れ込むことを防
止し、また、油拡散ポンプbで発生する油蒸気が真空室
a内へ逆流しないように該低温部fに凝縮させている。
また、小型ヘリウム冷凍機を使用する場合には、図2に
示すように、G−Mサイクル、ソルベイサイクル等の小
型ヘリウム冷凍機hの第1段ステージiで低温部fを冷
却し、小型ヘリウム冷凍機hの代わりに設けたフレオン
冷凍機で低温部fを冷却する場合もある。更に、水蒸気
除去の効果を高めるため、図3に見られるように、真空
室a内にフレオン冷凍機jから延びるコイル状の銅パイ
プの低温部fを設けることも行なわれている。これらの
場合、低温トラップgを150K(−123℃)以下に
冷却すると、その低温部fに凝縮する水の蒸気圧は10
-8Torr以下となり、水を排気する作動を行なえると同時
に油蒸気も排気できるようになる。
2. Description of the Related Art An oil diffusion pump or a turbo molecular pump does not create a vacuum state by condensing and collecting gas molecules in a low temperature part like a cryopump, but moves by eliminating gas molecules to create a vacuum state. Because it is produced, the pumping speed for water is much inferior to the cryopump. Further, when the vacuum chamber is evacuated by the oil diffusion pump, oil vapor may flow back into the vacuum chamber and contaminate the vacuum chamber. Therefore, when vacuum evacuation is performed by an oil diffusion pump or a turbo molecular pump, a low temperature trap having a low temperature part cooled by liquid nitrogen, a small helium refrigerator or a Freon refrigerator is provided at its intake port, and water vapor or oil vapor is It condenses and collects in a low temperature trap to improve the exhaust speed for water as much as a cryopump and prevent the backflow of oil vapor. An example of a low temperature trap using liquid nitrogen is as shown in FIG. 1, and in this case, the low temperature trap g is in an exhaust passage c to an oil diffusion pump b connected to a vacuum chamber a,
It is composed of a low temperature part f made of a baffle cooled by liquid nitrogen e in the tank d, prevents the steam in the vacuum chamber a from condensing in the low temperature part f, and prevents the steam from flowing into the oil diffusion pump b. The oil vapor generated by the oil diffusion pump b is condensed in the low temperature part f so as not to flow back into the vacuum chamber a.
When a small helium refrigerator is used, as shown in FIG. 2, the low temperature part f is cooled in the first stage i of the small helium refrigerator h such as the GM cycle and the Solvay cycle to cool the small helium refrigerator. The low temperature part f may be cooled by a Freon refrigerator provided in place of the refrigerator h. Further, in order to enhance the effect of removing water vapor, as shown in FIG. 3, a low temperature portion f of a coiled copper pipe extending from the Freon refrigerator j is also provided in the vacuum chamber a. In these cases, when the low temperature trap g is cooled to 150 K (-123 ° C.) or less, the vapor pressure of water condensed in the low temperature part f is 10
It becomes -8 Torr or less, and the operation of exhausting water can be performed and at the same time the oil vapor can be exhausted.

【0003】[0003]

【発明が解決しようとする課題】上記のように液体窒素
で冷却された低温トラップを設けたものは、液体窒素が
消耗するために運転コストが高くなり、液体窒素の補給
の手間が掛かるのでその保守が煩わしい。また、小型ヘ
リウム冷凍機で低温部を冷却したものは、低温部を小型
ヘリウム冷凍機が直接冷却するので、複数の低温部を冷
却する場合には複数台の小型ヘリウム冷凍機を設けるを
要し、設備費用が高くなる欠点があり、振動の大きい冷
凍機が真空装置に直接取り付けられるので、その振動が
真空装置に伝わって好ましくない。更に、フレオン冷凍
機は地球環境の破壊防止の見地から使用を規制すべきで
あり、この冷凍機で150K程度の温度を得るために
は、2段圧縮又は3段圧縮が必要で冷凍機が大型化する
欠点があり、10-9Torr以下の高真空には向かない。
A device provided with a low temperature trap cooled with liquid nitrogen as described above consumes liquid nitrogen, resulting in high operating cost and labor for replenishing liquid nitrogen. Maintenance is troublesome. Also, in the case of cooling the low temperature part with a small helium refrigerator, the small helium refrigerator directly cools the low temperature part.Therefore, when cooling multiple low temperature parts, it is necessary to provide multiple small helium refrigerators. However, there is a drawback that the equipment cost is high, and since a refrigerator with large vibration is directly attached to the vacuum device, the vibration is transmitted to the vacuum device, which is not preferable. Furthermore, the use of the Freon refrigerator should be restricted from the viewpoint of preventing the destruction of the global environment, and in order to obtain a temperature of about 150 K with this refrigerator, two-stage compression or three-stage compression is necessary, and the refrigerator is large. However, it is not suitable for high vacuum below 10-9 Torr.

【0004】本発明は、複数の低温トラップが1台の冷
凍機で冷却可能で設備を小型安価となし得られ、真空装
置に振動の伝達が少なく環境破壊のおそれのない真空装
置用の低温トラップを提供することを目的とするもので
ある。
According to the present invention, a plurality of low temperature traps can be cooled by one refrigerator, the equipment can be made small and inexpensive, and the low temperature traps for a vacuum device are small in vibration transmission to the vacuum device and there is no fear of environmental damage. It is intended to provide.

【0005】[0005]

【課題を解決するための手段】本発明では、真空室やそ
の排気通路の水蒸気等を凝縮する低温部を備えた低温ト
ラップに於いて、小型ヘリウム冷凍機で一端が冷却され
たヒートパイプの他端に該低温部を接続してこれを冷却
することにより、上記の目的を達成するようにした。
According to the present invention, in a low temperature trap having a low temperature portion for condensing water vapor or the like in a vacuum chamber or its exhaust passage, a heat pipe whose one end is cooled by a small helium refrigerator is provided. The above-mentioned object was achieved by connecting the low temperature part to the end and cooling it.

【0006】[0006]

【作用】真空室内を排気通路を介して接続した油拡散ポ
ンプやターボ分子ポンプで真空に排気する場合、これら
のポンプは水蒸気や油蒸気の排気速度が劣り、低温トラ
ップを設ける必要があるが、本発明の場合、真空室内や
排気通路に設けた低温トラップの低温部はヒートパイプ
を介して小型ヘリウム冷凍機に接続されており、該小型
ヘリウム冷凍機の70〜150Kの低温が該低温トラッ
プの低温部に伝達され、該低温部に真空室内や排気通路
の水蒸気や蒸気ポンプから真空室内へ逆流する油蒸気を
凝縮するので、低温トラップが複数個設けられていて
も、1台の小型ヘリウム冷凍機に各低温トラップを夫々
ヒートパイプを介して接続して同時に冷却することがで
きる。また、小型ヘリウム冷凍機は振動が大きいが、比
較的フレキシブルなヒートパイプを介して低温部から離
れた遠隔位置に該小型ヘリウム冷凍機を設け得るので、
低温トラップが設けられる真空室や排気通路の振動が少
なくなって真空装置での安定した処理作業が行なえる。
When a vacuum chamber is evacuated to a vacuum by an oil diffusion pump or a turbo molecular pump connected through an exhaust passage, these pumps are inferior in the exhaust rate of water vapor and oil vapor, and a low temperature trap must be provided. In the case of the present invention, the low temperature portion of the low temperature trap provided in the vacuum chamber or the exhaust passage is connected to the small helium refrigerator via a heat pipe, and the low temperature of 70 to 150 K of the small helium refrigerator is the low temperature trap. Even if there are multiple low temperature traps, one small helium refrigerating unit can be used because it condenses water vapor in the vacuum chamber or exhaust passage and oil vapor that flows back into the vacuum chamber from the steam pump to the low temperature unit. Each cold trap can be connected to the machine via a heat pipe to cool them simultaneously. Further, the small helium refrigerator has a large vibration, but since the small helium refrigerator can be provided at a remote position apart from the low temperature portion via a relatively flexible heat pipe,
Vibration of the vacuum chamber provided with the low temperature trap and the exhaust passage is reduced, and stable processing work can be performed in the vacuum device.

【0007】[0007]

【実施例】本発明の実施例を図4に基づき説明すると、
同図に於いて、符号1はスパッタリング装置等の真空装
置の真空室2の内部を真空に排気すべく油拡散ポンプや
ターボ分子ポンプの真空ポンプ3に接続された排気通路
を示し、該排気通路1には低温トラップ4のバッフルか
ら成るアルミニウム製等の低温部5が設けられる。該低
温部5が低温トラップ4を構成するG−Mサイクルやソ
ルベーサイクルの小型ヘリウム冷凍機6により冷却され
ることは従来の低温トラップ4と同様であるが、本発明
の場合、該低温部5は小型ヘリウム冷凍機6の1段ステ
ージ7にヒートパイプ8を介して接続し、該ヒートパイ
プ8の一端を該1段ステージ7で例えば35〜150K
に冷却すると、その他端部が該低温部5から熱を奪い、
該低温部5を略同程度の温度に冷却する。該小型ヘリウ
ム冷凍機6は、適当な機枠に固定した真空容器9の内部
に1段ステージ7を収めるようにして取付けられ、これ
から延びるヒートパイプ8の周囲を可撓性の真空断熱チ
ューブ10で覆うようにした。11は該真空断熱チュー
ブ10の内部が真空容器9と排気通路1を連通しないよ
うに遮断する仕切である。また、12は1段ステージ7
に取付けた熱電対13と該1段ステージ7を加熱するヒ
ータ14を備えた温度調節器である。該ヒートパイプ8
は、例えば図5に見られるように、金属パイプ8aの内
壁面に金網や多孔質金属のウイック8bを設け、その内
部の空間8cに窒素ガス等の作動流体を充填し密封して
構成される。
EXAMPLE An example of the present invention will be described with reference to FIG.
In FIG. 1, reference numeral 1 denotes an exhaust passage connected to an oil diffusion pump or a vacuum pump 3 of a turbo molecular pump to exhaust the inside of a vacuum chamber 2 of a vacuum device such as a sputtering device. 1 is provided with a low temperature part 5 made of aluminum or the like, which comprises a baffle of a low temperature trap 4. It is the same as the conventional low temperature trap 4 that the low temperature part 5 is cooled by the small helium refrigerator 6 of the GM cycle or the solve cycle that constitutes the low temperature trap 4, but in the case of the present invention, the low temperature part 5 is used. Is connected to the first stage 7 of the small helium refrigerator 6 via a heat pipe 8, and one end of the heat pipe 8 is connected to the first stage 7 at, for example, 35 to 150K.
When cooled to the other end, the other end takes heat from the low temperature part 5,
The low temperature section 5 is cooled to a temperature of approximately the same level. The small helium refrigerator 6 is attached so that the first stage 7 is housed inside a vacuum container 9 fixed to an appropriate machine frame, and a flexible vacuum heat insulating tube 10 is provided around a heat pipe 8 extending from the vacuum container 9. I tried to cover it. Reference numeral 11 is a partition that shuts off the inside of the vacuum heat insulating tube 10 so that the vacuum container 9 and the exhaust passage 1 do not communicate with each other. Also, 12 is the first stage 7
It is a temperature controller equipped with a thermocouple 13 attached to and a heater 14 for heating the first stage 7. The heat pipe 8
5, the metal pipe 8a is provided with a wire net or a porous metal wick 8b on its inner wall surface, and a space 8c therein is filled with a working fluid such as nitrogen gas and hermetically sealed. ..

【0008】図4及び図5に示す実施例の作動を説明す
ると、真空室2及び真空容器9の内部が真空状態にあ
り、全体が室温状態にあるときに、小型ヘリウム冷凍機
6の運転を開始し、1段ステージ7が110K程度まで
冷却されると、ヒートパイプ8の該1段ステージ7に接
触する端部A側も同温に冷却され、その内部の窒素ガス
は該端部A側で液化を始める。そして、生成した液体窒
素は図5に示すウイック8b内を表面張力により反対側
の端部B側に向かって流れ、途中の温度の高い部分で蒸
発し、その蒸気は空間8cを通ってA側で再液化するこ
とを繰り返す。生成した液体窒素が該ヒートパイプ8の
B側に達するようになると、該B側に接触する低温トラ
ップ4の低温部5が冷却されるようになる。該低温部5
の熱負荷によりB側に於いて蒸発した窒素は空間8cを
通りA側に於いて再液化され、これの繰り返しで低温部
5が70〜80K程度に冷却される。該低温部5が冷却
されると、これに排気通路1を通る水蒸気やポンプ3か
ら真空室2へ逆流する油蒸気が凝縮するようになる。ヒ
ートパイプ8のA側の温度が70K以下まで下がると、
窒素は固化してしまい、B側に液体窒素が枯渇し、ヒー
トパイプ8内が真空状態になって伝熱能力がなくなる。
これを防止するために、1段ステージ7の温度が70K
以下に下がったら、温度調節器12はヒータ14に通電
し、該1段ステージ7の温度を70〜110Kにコント
ロールする。
The operation of the embodiment shown in FIGS. 4 and 5 will be described. When the insides of the vacuum chamber 2 and the vacuum container 9 are in a vacuum state and the whole is at room temperature, the operation of the small helium refrigerator 6 is performed. After the start, when the first stage 7 is cooled to about 110K, the end A side of the heat pipe 8 that contacts the first stage 7 is also cooled to the same temperature, and the nitrogen gas inside the end A side. Liquefaction begins with. Then, the generated liquid nitrogen flows in the wick 8b shown in FIG. 5 toward the opposite end B side due to surface tension, evaporates at a high temperature portion in the middle, and the vapor passes through the space 8c to the A side. Repeat liquefaction with. When the generated liquid nitrogen reaches the B side of the heat pipe 8, the low temperature portion 5 of the low temperature trap 4 that contacts the B side is cooled. The low temperature section 5
Due to the heat load, the nitrogen evaporated on the B side passes through the space 8c and is reliquefied on the A side, and the low temperature part 5 is cooled to about 70 to 80K by repeating this. When the low temperature part 5 is cooled, water vapor passing through the exhaust passage 1 and oil vapor flowing back from the pump 3 to the vacuum chamber 2 are condensed on the low temperature part 5. When the temperature on the A side of the heat pipe 8 drops below 70K,
Nitrogen is solidified, liquid nitrogen is exhausted on the B side, the inside of the heat pipe 8 becomes a vacuum state, and the heat transfer capability is lost.
To prevent this, the temperature of the first stage 7 is 70K.
When the temperature falls below, the temperature controller 12 energizes the heater 14 and controls the temperature of the first stage 7 to 70 to 110K.

【0009】図6に示すように、夫々に排気通路1を有
する複数の真空室2を備えた真空装置に於いては、各排
気通路1に夫々設けた低温トラップ4を1台の小型ヘリ
ウム冷凍機6で同時に冷却することができる。この場
合、低温トラップ4の数と同数のヒートパイプ8が用意
され、各ヒートパイプ8の一方の端部は全て1台の小型
ヘリウム冷凍機6の1段ステージ7に熱的に接続され
る。
As shown in FIG. 6, in a vacuum apparatus having a plurality of vacuum chambers 2 each having an exhaust passage 1, a low temperature trap 4 provided in each exhaust passage 1 is provided as one small helium refrigerator. It can be cooled at the same time by the machine 6. In this case, the same number of heat pipes 8 as the low temperature traps 4 are prepared, and one end of each heat pipe 8 is thermally connected to the first stage 7 of one small helium refrigerator 6.

【0010】また、真空室1や真空容器の内部に於いて
低温トラップ4により水蒸気を除去するために、図7に
示すように、真空室1等の内部に銅やアルミニウム等の
高熱伝導率の金属板15の低温部を設け、該金属板15
に、前記低温トラップの場合と同様に、ヒートパイプ8
を介して小型ヘリウム冷凍機6を接続することも可能で
ある。この場合、該真空室1内で発生する水蒸気や油蒸
気を該金属板15に於いて凝縮することができるので、
該真空室1等の内部がクリーンに維持される。該小型ヘ
リウム冷凍機6の1段ステージ7の内部には、往復動す
るピストンが設けられており、運転中の振動が比較的大
きいが、低温部5に小型ヘリウム冷凍機6が直接取付け
られることがなく、遠隔位置に隔離して該冷凍機6を設
け得るので、その振動は低温部5や真空装置に伝達され
にくくなる。
In order to remove water vapor by the low temperature trap 4 inside the vacuum chamber 1 and the vacuum container, as shown in FIG. A low temperature portion of the metal plate 15 is provided, and the metal plate 15
As in the case of the low temperature trap, the heat pipe 8
It is also possible to connect the small helium refrigerator 6 via. In this case, since water vapor or oil vapor generated in the vacuum chamber 1 can be condensed in the metal plate 15,
The inside of the vacuum chamber 1 and the like is kept clean. Inside the first stage 7 of the small helium refrigerator 6, a reciprocating piston is provided, and vibration during operation is relatively large, but the small helium refrigerator 6 is directly attached to the low temperature section 5. However, since the refrigerator 6 can be provided in a remote location, it is difficult for the vibration to be transmitted to the low temperature section 5 and the vacuum device.

【0011】[0011]

【発明の効果】以上のように本発明に於いては、低温ト
ラップの低温部を、小型ヘリウム冷凍機で一端が冷却さ
れたヒートパイプの他端に接続して冷却するようにした
ので、該小型ヘリウム冷凍機の振動が低温トラップの低
温部に伝達されにくくなり、真空装置の振動を減少で
き、複数個の低温トラップを1台の小型ヘリウム冷凍機
で冷却できるので、安価でしかも環境を損なわない安全
な小型の低温トラップが得られ、液体窒素の補充が不要
であるからランニングコストも安価になる等の効果があ
る。
As described above, according to the present invention, the low temperature portion of the low temperature trap is connected to the other end of the heat pipe whose one end is cooled by the small helium refrigerator to cool it. The vibration of the small helium refrigerator is less likely to be transmitted to the low temperature part of the low temperature trap, the vibration of the vacuum device can be reduced, and multiple low temperature traps can be cooled by one small helium refrigerator, which is inexpensive and damages the environment. It is possible to obtain a safe, small-sized, low-temperature trap, and it is unnecessary to replenish liquid nitrogen.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の液体窒素を使用した低温トラップの截
断側面図
FIG. 1 is a cutaway side view of a conventional low temperature trap using liquid nitrogen.

【図2】 従来の小型ヘリウム冷凍機を使用した低温ト
ラップの截断側面図
FIG. 2 is a cutaway side view of a low temperature trap using a conventional small helium refrigerator.

【図3】 従来のフレオン冷凍機を使用した低温トラッ
プの截断側面図
FIG. 3 is a cutaway side view of a low temperature trap using a conventional Freon refrigerator.

【図4】 本発明の実施例の截断側面図FIG. 4 is a cutaway side view of an embodiment of the present invention.

【図5】 ヒートパイプの拡大断面図FIG. 5 is an enlarged sectional view of the heat pipe.

【図6】 本発明の他の実施例の截断側面図FIG. 6 is a cutaway side view of another embodiment of the present invention.

【図7】 本発明の更に他の実施例の截断側面図FIG. 7 is a cutaway side view of still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 排気通路 2 真空室 3 真空ポンプ 4 低温トラップ 5 低温部 6 小型ヘリウム冷凍機 8 ヒートパイプ 1 Exhaust Passage 2 Vacuum Chamber 3 Vacuum Pump 4 Low Temperature Trap 5 Low Temperature Section 6 Small Helium Refrigerator 8 Heat Pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空室やその排気通路の水蒸気等を凝縮
する低温部を備えた低温トラップに於いて、小型ヘリウ
ム冷凍機で一端が冷却されたヒートパイプの他端に該低
温部を接続してこれを冷却することを特徴とする真空装
置用低温トラップ。
1. A low temperature trap having a low temperature part for condensing water vapor or the like in a vacuum chamber or its exhaust passage, wherein the low temperature part is connected to the other end of a heat pipe whose one end is cooled by a small helium refrigerator. A low temperature trap for a vacuum device, characterized by cooling it.
【請求項2】1台の小型ヘリウム冷凍機で複数本のヒー
トパイプの端部を冷却し、各ヒートパイプの他端部に夫
々接続した低温トラップを同時に冷却することを特徴と
する請求項1に記載の真空装置用低温トラップ。
2. A small helium refrigerator cools the ends of a plurality of heat pipes, and simultaneously cools the low temperature traps connected to the other ends of the heat pipes. A low temperature trap for a vacuum device as described in.
JP20290291A 1991-08-13 1991-08-13 Low temperature trap for vacuum equipment Pending JPH0549805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20290291A JPH0549805A (en) 1991-08-13 1991-08-13 Low temperature trap for vacuum equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20290291A JPH0549805A (en) 1991-08-13 1991-08-13 Low temperature trap for vacuum equipment

Publications (1)

Publication Number Publication Date
JPH0549805A true JPH0549805A (en) 1993-03-02

Family

ID=16465090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20290291A Pending JPH0549805A (en) 1991-08-13 1991-08-13 Low temperature trap for vacuum equipment

Country Status (1)

Country Link
JP (1) JPH0549805A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125672A (en) * 2007-11-22 2009-06-11 Tokyo Electron Ltd Gas-liquid separating apparatus
KR101037784B1 (en) * 2010-12-10 2011-05-27 이정욱 Assemble type sidewalk block with a heating wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125672A (en) * 2007-11-22 2009-06-11 Tokyo Electron Ltd Gas-liquid separating apparatus
JP4688223B2 (en) * 2007-11-22 2011-05-25 東京エレクトロン株式会社 Gas-liquid separator
KR101037784B1 (en) * 2010-12-10 2011-05-27 이정욱 Assemble type sidewalk block with a heating wire

Similar Documents

Publication Publication Date Title
US4926648A (en) Turbomolecular pump and method of operating the same
US5156007A (en) Cryopump with improved second stage passageway
JP4084418B2 (en) Throttle cycle cryopump system for the first group gas
EP0079960A1 (en) Improved cryopump.
WO1996034669A1 (en) Shielded cryogenic trap
JP2000516317A (en) Cryopump
JPH0549805A (en) Low temperature trap for vacuum equipment
US3252291A (en) Cryo-pumps
JP3238099B2 (en) Evacuation system
JP2763524B2 (en) Secondary pump device
JP3062706B2 (en) Cryopump with low temperature trap
JP2002071237A (en) Stirling cooling system and cooling compartment
JP6376866B2 (en) Vegetable vacuum cooling system and vacuum cooling method
Welty et al. Energy efficient freezer installation using natural working fluids and a free piston Stirling cooler
JPH0642459A (en) Cryopump
JP2002089983A (en) Cold storage type refrigerating machine and liquefied gas receiving device employing the same
JPH0711762Y2 (en) Vacuum generator cold trap
JPH11257817A (en) Cooling system
EP0819856B1 (en) Vacuum pump
KR101461956B1 (en) A A method for making vaccumm state of a refrigerant cycle
TWI655365B (en) Cryopump
US6550256B1 (en) Alternative backing up pump for turbomolecular pumps
SU1277441A1 (en) Device for cooling electronic equipment
SU1019103A1 (en) Method of evacuating cavity
RU2156413C1 (en) Refrigerating plant