JP2009117924A - 復号方法及び復調装置 - Google Patents

復号方法及び復調装置 Download PDF

Info

Publication number
JP2009117924A
JP2009117924A JP2007285584A JP2007285584A JP2009117924A JP 2009117924 A JP2009117924 A JP 2009117924A JP 2007285584 A JP2007285584 A JP 2007285584A JP 2007285584 A JP2007285584 A JP 2007285584A JP 2009117924 A JP2009117924 A JP 2009117924A
Authority
JP
Japan
Prior art keywords
data
vector
transmission
matrix
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007285584A
Other languages
English (en)
Inventor
Keiichiro Hayakawa
敬一郎 早川
Katsushi Mita
勝史 三田
Noburo Ito
修朗 伊藤
Yasunori Iwanami
保則 岩波
Eiji Okamoto
英二 岡本
Hirotake Ishigami
裕丈 石神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Toyota Central R&D Labs Inc
Original Assignee
Nagoya Institute of Technology NUC
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC, Toyota Central R&D Labs Inc filed Critical Nagoya Institute of Technology NUC
Priority to JP2007285584A priority Critical patent/JP2009117924A/ja
Publication of JP2009117924A publication Critical patent/JP2009117924A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】STBC通信方式において、復号判定を簡略化すること。
【解決手段】第1、第2送信アンテナで送信される2時刻でのデータ組を(a,b)、(−b* ,a* )とするとき、データ組(a,b)、(−b* ,a* )に対するn本の受信アンテナで受信されるデータを成分とするベクトルを受信データベクトルr(0)、r* (1)、その時の伝送路の伝送路行列をH(0)とし、データ組(a,b)から受信データベクトルr* (1)への変換行列をD* (1)とし、r(0)とr* (1)の成分との2n個を成分とする拡張受信ベクトルgとする。伝送路行列H(0)と変換行列D* (1)とで構成され、データ組(a,b)から拡張受信データベクトルgに変換する拡張伝送路行列Fを求める。この拡張伝送路行列Fと、拡張受信データベクトルgとから、復号データを求める。
【選択図】図2

Description

本発明は、アラモティ(Siavash M. Alamouti )が提案した時空間符号化伝送技術(以下、STBC(:Space Time Block Code)通信方式と言う。)を用いた復号方法及び復調装置に関する。
本発明は、例えば、車車間通信などの移動体通信における受信データの判定復号に有効である。
アラモティが提案した時空間符号化伝送技術(STBC通信方式)は、下記の非特許文献1などに記載されており、このSTBC通信方式を利用した通信技術としては、例えば下記の特許文献1に記載されているものなどが公知である。
STBC通信方式は、2つの連続した時刻での送信データを1組として取り扱っている。たとえば、2本の送信アンテナの場合に、ある時刻での送信データ(a,b)に対して、次の送信時刻での送信データは(−b* ,a* )(ただし、*は複素共役演算子)として、2つの送信時刻を用いてデータ(a,b)を、冗長性を持たせて送信する方式である。したがって、受信データも2つの時刻での受信データr(0)と、r(1)を1組として、データを復調する方式である。
復調に関しては、次の方式が採用されている。たとえば、送信アンテナ2本と受信アンテナ2本の場合のSTBC送信方式の場合に、伝送路行列は2行2列の行列で表現される。この伝送路行列は、受信側において、既知のパイロットデータを送信することで、そのパイロットデータの受信信号の位相変位や振幅変化を検出することで、伝送路行列を予測することができる。その他、このパイロットデータで予測された伝送路行列を初期値として、受信信号を判定復号した結果から、次の復調時刻における伝送路行列を順次補正して、伝送路行列を更新する方法がある。
ある受信時刻において、伝送路行列Hが予測されていると、その時刻での第1受信アンテナと第2受信アンテナによる受信データr1 (0)、r2 (0)と、次の受信時刻でのそれらの受信データr1 (1)、r2 (1)の4つのデータを用いて、送信データaと、送信データbとを、それそれの変換式を用いて推定している。その後、この推定された送信データaに関して、送信データのとり得る基準データの集合の中から、距離の最も近い基準データを決定することで、判定復号を行い、最終の真の復号データを得ている。同様に、推定された送信データbに対しても、判定復号が実行されている。
"A simple transmit diversity technique for wireless communications," IEEE journal on selective areas in communications, vol.16, no.8, pp.1451-1458, Oct. 1998. 特開2004−129082号公報
このように、非特許文献1において、アラモティが提案している判定は、各送信アンテナから送信されるデータa,b毎に、受信データを、それぞれの変換式を用いて、送信データに変換した上で、最尤推定を行って、復号している。このため、距離の演算を各送信アンテナの数だけ実行する必要があるという問題があり、判定復号が複雑であるという問題がある。
そこで、本発明は、STBC通信方式における判定復号を容易にすることを目的とする。
本発明は、2本の送信アンテナとn(nは2以上の整数))本の受信アンテナとを用いて、時空間ブロック復号処理を行うSTBC通信方式における復号方法において、第1送信アンテナと第2送信アンテナとからある送信時刻で送信されるデータ組を(a,b)、次の送信時刻で送信されるデータ組を(−b* ,a* )(ただし、*は複素共役演算子)とするとき、データ組(a,b)に対するn本の受信アンテナで受信されるデータを成分とするベクトルを受信データベクトルr(0)、その時の伝送路の伝送路行列をH(0)とし、データ組(−b* ,a* )に対するn本の受信アンテナで受信されるデータを成分とするベクトルを受信データベクトルr(1)とし、データ組(a,b)から受信データベクトルr* (1)への変換行列をD* (1)とし、受信データベクトルr(0)の成分と受信データベクトルr* (1)の成分との2n個を成分とする拡張受信ベクトルをgとするとき、伝送路行列H(0)と変換行列D* (1)とで構成され、データ組(a,b)から拡張受信データベクトルgに変換する拡張伝送路行列Fを求め、データ組(a,b)のとり得る値の組の集合の中の任意の要素である基準送信ベクトルuに対して、その基準送信ベクトルuを拡張伝送路行列Fで変換して得られる2n次元の拡張レプリカ受信ベクトルvと、拡張受信データベクトルgとの差のノルムが最小となる基準送信ベクトルqを、受信データベクトルr(0)、r(1)に対する求めるべき復号データとすることを特徴とする復号方法である。
また、第2の発明は、2本の送信アンテナとn(nは2以上の整数))本の受信アンテナとを用いて、時空間ブロック復号処理を行うSTBC通信方式における復調装置において、第1送信アンテナと第2送信アンテナとからある送信時刻で送信されるデータ組を(a,b)、次の送信時刻で送信されるデータ組を(−b* ,a* )(ただし、*は複素共役演算子)とするとき、データ組(a,b)に対するn本の受信アンテナで受信されるデータを成分とするベクトルを受信データベクトルr(0)、その時の伝送路の伝送路行列をH(0)とし、データ組(−b* ,a* )に対するn本の受信アンテナで受信されるデータを成分とするベクトルを受信データベクトルr(1)とし、データ組(a,b)から受信データベクトルr* (1)への変換行列をD* (1)とし、受信データベクトルr(0)の成分と受信データベクトルr* (1)の成分との2n個を成分とする拡張受信ベクトルをgとするとき、伝送路行列H(0)と変換行列D* (1)とで構成され、データ組(a,b)から拡張受信データベクトルgに変換する拡張伝送路行列Fを求め、データ組(a,b)のとり得る値の組の集合の中の任意の要素である基準送信ベクトルuに対して、その基準送信ベクトルuを拡張伝送路行列Fで変換して得られる2n次元の拡張レプリカ受信ベクトルvと、拡張受信データベクトルgとの差のノルムが最小となる基準送信ベクトルqを、受信データベクトルr(0)、r(1)に対する求めるべき復号データとすることを特徴とする復調装置である。
本発明は、STBC方式であれば、全てのディジタルの無線データ伝送方式に用いることができる。シングルキャリアでもマルチキャリアでも、何れでも良い。また、2つの時刻を1組とする代わりに、2つの周波数を1組とする送信方式であっても良い。送信アンテナは2本とするが、受信アンテナの数は2以上であれば、限定されない。
伝送路行列は、各送信アンテナと各受信アンテナ間の伝送路の伝達特性を成分とする行列を意味する。伝送路行列の更新タイミングは、各受信データの復調タイミングであっても良いし、この復調タイミングの周期よりは長い周期であっても良い。また、伝送路の伝達特性の推定誤差が、所定値以上となった時に、伝送路の伝達特性を更新するようにしても良い。
本発明での変調方式は、FSK、PSKなどのディジタル変調方式を用いることができるが、QPSK、QAM、64QAMなどのPSK変調方式が有効である。また、QPSKやQAMなどのPSKに、OFDM変調方式を組合せて周波数多重化した場合には、伝送路行列の各成分が、周波数特性を有するものとなる。各サブキャリア毎に、伝送路行列を考えればよい。
ディジタル変調方式であれば、送信データの値は、複素空間上の離散的な値として限定されているので、受信データを用いて、MLD(Maximum Likelihood Detection)等を用いて判定処理をして、真の送信データである真の復号データを推定することができる。
本発明は、STBCにおいて、2つの時刻で送信されるデータ(a,b)と(−b* ,a* )とにおいて、送信データ(−b* ,a* )の受信データベクトルr(1)に関して、送信データ(a,b)を受信データベクトルr* (1)に変換する変換行列D* (1)と、伝送路行列H(0)とから、拡張伝送路行列Fを求め、受信データベクトルr(0)とr* (1)とから拡張受信データベクトルgを求めることが特徴である。そして、基準送信データベクトルuが拡張伝送路行列Fによって変換される拡張レプリカ受信ベクトルvを求めて、その拡張レプリカ受信ベクトルvと拡張受信データベクトルgとの距離が最小となる基準送信データベクトルを判定後の復号データqとしている。したがって、1組のデータ単位で、一度に、判定処理を行うことができる。
まず、本発明の原理について説明する。通信方式は、説明を簡単にするために、単一搬送波を用いたQPSK変調方式で、送信アンテナ数が2、受信アンテナ数が2の2×2のSTBCとする。
伝送路行列Hは、2行2列であり、時刻tにおける伝送路行列H(t)を(1)式のように定義する。ただし、hijは、図1に示すように、送信アンテナjから受信アンテナiへの伝送路の伝達関数である。
Figure 2009117924
次に、各送信アンテナから送信される送信データの組を考える。すなわち、各送信アンテナの送信データを成分とするベクトルsを、時刻tにおける送信データベクトルs(t)として、(2)式のように定義する。ただし、s1 、s2 は、それぞれ、送信アンテナ1、2から送信される送信データである。s1 、s2 は、exp(π/4) 、exp(3 π/4) 、exp(5 π/4) 、exp(7 π/4) の4値の何れかをとる値である。この値が、受信装置側で復号する時の基準送信データとなり、この基準送信データ群の中から、最も確からしい基準送信データを確定することが、復号の目的である。
Figure 2009117924
同様に、各受信アンテナにより受信される受信データの組を考える。すなわち、各受信アンテナにより受信される受信データを成分とするベクトルrを、時刻tにおける受信データベクトルr(t)として、(3)式のように定義する。ただし、r1 、r2 は、それぞれ、受信アンテナ1、2により受信される受信データである。
Figure 2009117924
送信データベクトルs(t)と受信データベクトルr(t)と、伝送路行列H(t)とは、(4)、(5)式の関係が成立する。
Figure 2009117924
Figure 2009117924
送信データベクトルs(t)と、それに対応する受信データベクトルr(t)を、与えても、(4)又は(5)式では、4要素を有する伝送路行列H(t)を求めることができない。そこで、Δt時刻前、すなわち、時刻、t−Δtにおける送信データベクトルs(t−Δt))と、それに対応する受信データベクトルr(t−Δt)を考える。そして、2つの送信データベクトル(s(t) s(t−Δt))から成る送信データ行列S(t)を、(6)式で定義する。
Figure 2009117924
同様に、2つの受信データベクトル(r(t) r(t−Δt))から成る受信データ行列R(t)を、(7)式で定義する。
Figure 2009117924
以上の定義のように、行列は英文字の大文字、ベクトルは同一文字の小文字、行列、ベクトルの要素は、添字付きの小文字で表す。
受信データ行列R(t)、送信データ行列S(t)、伝送路行列H(t)との間には、(8)、(9)式の関係が成立する。
Figure 2009117924
Figure 2009117924
STBC通信方式では、時刻t−Δtと、時刻tとの連続した2時刻を1組として、データを送信する方式であり、この1組に注目すると、送信データ行列S(t)は、(10)式で表される。
Figure 2009117924
次に、時刻t−Δtでの送信データベクトルs(t−Δt)=(a,b)と、その時刻での受信データベクトルr(t−Δt)との関係は、(11)式の関係を満たす。ただし、ノイズ成分は、表現されていない。次に、時刻tでの送信データベクトルs(t)=(−b* ,a* )と、その時の受信データベクトルr(t)との関係は、(12)式を満たす。ただし、ノイズ成分は表現されていない。
Figure 2009117924
Figure 2009117924
(12)式において、両辺の複素共役をとり、送信データベクトルの1行と2行とを入れ換え、さらに、−bの負の符号を、伝送路行列の成分に含めて、送信データベクトル(a,b)に対する変換式に変形すると、(13)式のようになる。
Figure 2009117924
時刻t−Δtを、0で、tを1で表現すると、(11)式は、(15)式のように、受信データベクトルr(0)は、伝送路行列H(0)と送信データベクトル(a,b)の積で表される。同様に、(13)式は、(16)式のように、受信データベクトルr* (1)は、変換行列D* (1)と送信データベクトル(a,b)との積で表される。変換行列D* (1)は、(13)式の右辺の2行2列の行列で定義される。これらの関係が、請求項で表現した伝送路行列と変換行列の定義となる。
Figure 2009117924
Figure 2009117924
Figure 2009117924
Figure 2009117924
次に、受信データベクトルr(0)の2成分と、受信データベクトルr* (1)の2成分とからなる成分の受信データベクトルを拡張受信データベクトルgと定義する。また、伝送路行列H(0)と変換行列をD* (1)を行方向に並べて、4行2列にした行列を拡張伝送路行列Fと定義する。すると、送信データベクトル(a,b)と、拡張受信データベクトルgとは、拡張伝送路行列Fを用いて、(14)式で、関係付けられる。なお、ノイズ成分は表現されていない。(14)式の左辺が拡張受信データベクトルg、右辺の4行2列の行列が拡張伝送路行列Fである。(14)式を簡略化して表現すると(17)式のようになる。これらの行列、ベクトルは、請求項の表現を用いている。
次に、受信データベクトルr(0)とr* (1)から、送信データベクトルを求める判定復号処理について説明する。
送信データの種類は、予め既知である。2本の送信アンテナで送信されるデータ、すなわち、送信データベクトルも既知となる。この送信データベクトルを基準送信データベクトルuk と定義する。kは、ベクトルを区別するための変数である。また、基準送信データベクトルuk の成分を(uk,1 、uk,2 )と表記する。各基準送信データベクトルuk の拡張レプリカ受信データベクトルvk は、vk =F・uk となる。
そして、(18)式により、拡張受信データベクトルgと、拡張レプリカ受信データベクトルvk との距離が最小となる基準送信データベクトルqを求める。このベクトルqが、求めるべき判定後の真の復号データqとなる。したがって、2復調時刻での1組のデータに対して、1回の判定により、復号データを得ることができる。
Figure 2009117924
次の受信データの判定復号は、次の1組の送信データを受信した時である。このように、本発明は、1組の送信データを受信する毎に、1回の復号判定を行えば良いことになる。
次に、送信アンテナが2本で、受信アンテナがn本の場合について検討する。送信データは(a,b)の2つであり、受信データがn個生成されるので、伝送路行列H(0)は、2行n列の行列となる。また、(13)式に現れる複素共役をとった伝送路行列も、2行n列の行列になる。したがって、送信データベクトルと拡張受信データベクトルgとを関係付ける(14)式に対応する式は(19)式となる。
Figure 2009117924
この(19)式の右辺の2×n行列で定義される拡張伝送路行列Fを用いて、(18)式により、拡張受信データベクトルgに、基準送信データベクトルvK の拡張レプリカ受信データベクトルvK との距離が最も小さくなる基準送信データベクトルを復号ベクトルqとして求めることができる。
この場合にも、2復調時刻での1組の受信データを用いて、一度の判定演算ルーチンにより、判定復号をすることができる。
復調装置25は、図2のように構成されている。図1に示されているように、送信アンテナ11、12から受信アンテナ21、22への伝達関数が伝送路行列である。伝送路行列の各要素は、図1に図示されているように、h11は、送信アンテナ1から受信アンテナ1への伝達関数、h12は、送信アンテナ2から受信アンテナ1への伝達関数、h21は、送信アンテナ1から受信アンテナ2への伝達関数、h22は、送信アンテナ2から受信アンテナ2への伝達関数である。送信データs1 、s2 、受信データr1 、r2 、時刻mにおける送信データベクトル、受信データベクトル、送信データ行列、受信データ行列の定義は前述した通りである。
次に、受信装置20の復調装置25の構成について説明する。復調装置25は、受信アンテナ21、22で受信された高周波変調信号から搬送波を再生して、その搬送波を用いて高周波変調信号を同期復調して受信データを得るQPSK復調装置50を有している。このQPSK復調装置50から、受信データr1 、r2 が得られる。これらの受信データr1 、r2 は、一旦、バッファメモリに記憶れる。受信データr1 、r2 は複素空間にけおる任意の値exp(j θ) であり、まだ、exp(j (2k−1)π/4)(ただし、k=1,2,3,4)の離散値には判定されて復号されていない値である。本明細書では、この離散的な真の送信データを求めることを復号化と言う。
また、復調装置25は、受信データ判定部51と初期伝送路行列演算部52とSTBCデコード部53と伝送路行列更新部54、判定部55などから主に構成されている。これらは、アナログ回路、デジタル回路、コンピュータ・ハードウェア、またはコンピュータ・ソフトウェアなどによって実現することができ、それらの実現方式は任意でよく、特段限定されるものではない。
受信データ判定部51は、受信データr1 ,r2 がパイロットデータであるか否かを判定し、これらがパイロットデータである場合には、受信データr1 ,r2 を初期伝送路行列演算部52へ、そうでなければ受信データr1 ,r2 をSTBCデコード部53へ送出する。また、同時に、受信データr1 ,r2 がパイロットデータである場合には、スイッチsw1を接点aに接続し、そうでなければスイッチsw1を接点bに接続する。
初期伝送路行列演算部52は、入力されたパイロットデータに基づいて、送信局と当該受信局との間のマルチパスの各伝搬路特性を推定し、初期伝送路行列を演算する。その後、次の復調時刻までの移動による位相変化を補正して初期伝送路行列G0 を求め、接点aに出力する。
STBCデコード部53は、スイッチsw1から初期伝送路行列を入力する。次に、STBCデコード部53は、パイロットデータではない復号されるべき受信データr1 ,r2 を受信データ判定部51から入力する。そして、STBCデコード部53は、 (14)式の拡張伝送路行列Fを生成して、判定部55で、(18)式により判定復号されて、最初のデータの復号データを得る。
また、一般に、データの復調時刻mにおいては、受信データ判定部51から受信データベクトルr(m−1)、r(m)を入力して、伝送路行列更新部54からその時刻における位相補正された伝送路行列G(m)を入力して、そのG(m)を伝送路行列H(0)として、(12)式、(13)式の関係から(14)式で定義される拡張伝送路行列Fが演算される。次に、判定部55は、この拡張伝送路行列Fと、受信データ判定部51から出力される受信データから、(14)式の左辺で定義される拡張受信データベクトルgを求め、(14)式と(18)式により、拡張受信データベクトルgと、基準データベクトルuの拡張レプリカ受信データベクトルv=F・uとの差のノルムノルムLが最小となる候補送信データベクトルuを真の復号データベクトルq(m)として求める。
伝送路行列更新部54は、受信データ判定部51から既に入力されているパイロットデータブロックではない復調時刻m−1、mにおける受信データベクトルr(m−1)、r(m)から、受信データ行列R(m)を生成する。STBCでは、2時刻で1組のデータを送信する関係上、上記の時刻変数mは、偶数である。そして、m−1は、請求項での0、mは請求項での1に対応する。また、伝送路行列更新部54は、判定部55から、既に、入力されている復号データベクトルq(m)、q(m−1)から復号データ行列Q(m)を生成し、(8)式のSをこの復号データ行列Qとおいて、伝送路行列H(m)を求める。すなわち、(8)式において、受信データ行列R(m)に復号データ行列Q(m)の逆行列を掛け算すれば、復号結果に応じて、伝送路行列H(m)を更新することができる。この伝送路行列H(m)を、次の復調時刻m+2までの時間差による位相補正をした伝送路行列G(m+2)を求めて、伝送路行列を更新する。G(m+2)は、次の復調時刻m+1において、STBCデコード部53において、伝送路行列H(0)とされて、拡張伝送路行列Fが求められて、時刻mにおける復号処理が繰り返されて、復号データベクトルq(m+2)が求められる。
次に、復調装置25の動作手順について、図3に基づいて説明する。本実施例では、図3の装置は、コンピュータ装置で実現したもので、受信された高周波変調信号をサンプリングして、ディジタルデータにしてから、QPSK復調以下の処理を行うものである。バッファは、FIFO構造で構成されており、QPSK復調された受信データをリアルタイムで、一定の時間区間のデータを記憶するように構成されている。
複素空間のベースバンドの受信データrに変換されたデータに関して、以下の処理が実行される。図3の手順は、復調装置25が受信モードになった時に実行される。まず、ステップ100において、受信データベクトルrが読み取られ、ステップ102で、装置が受信モードに設定されてから、初めて受信するパイロットデータか否かが判定される。パイロットデータが受信されていない場合には、伝送路行列が、全く求まっていないので、受信データの復調処理をすることなく、ステップ100に戻る。このステップ100、102のループにより、最初のパイロットデータが受信されるまで、CPUは、待機することになる。
次に、初めてのパイロットデータが受信されると、初めて、受信データの処理が可能となる。パイロットデータであれば、ステップ104において、受信データベクトルr(m)として記憶し、時刻変数mを1だけ更新する。次に、ステップ106において、次の受信データベクトルrが読み込まれ、次のステップ106において、パイロットデータか否かが判定される。パイロットデータであれば、次のステップ110において、パイロットデータの先頭か否かが判定れる。先頭でない場合には、次のステップ112で、受信データベクトルr(m)を記憶し、復調時刻変数mを1だけ更新し、ステップ114へ移行して、パイロットデータの終了か否かが判定される。受信データがパイロットデータの最終でない場合には、ステップ106へ移行して、受信データの記憶を繰り返す。受信データがパイロットデータの最終である場合には、本実施例では、2シンボルの受信パイロットデータr(0)、r(1)の受信が完了したことになるので、ステップ116に移行して、初期伝送路行列H0 が演算される。ここで、送信データ行列Sは、パイロットデータs(0)、s(1)で構成されるので、受信装置において既知の値である。次に、ステップ118において、初期伝送路行列H0 の補正演算を行って、次の復調時刻2における補正された初期伝送路行列G0 が求められる。そして、次の受信データを読み取るべく、ステップ106に戻る。
ステップ108で、受信データがパイロットデータでないと判定された場合には、復号すべきデータであるから、ステップ120に移行して、受信データベクトルr(m)を記憶して、時刻変数mを2だけ更新して、ステップ122に移行する。なお、mは偶数である。ステップ122では、時刻mにおける伝送路行列H(m)、すなわち、H(0)を用いて、拡張伝送路行列Fを演算し、また、時刻m−1と時刻mにおける受信データベクトルr(0)と、r(1)とから、拡張受信データベクトルgを求め、拡張伝送路行列Fと、拡張受信データベクトルgとから、(14)式、(18)式により、復号テータベクトルqを求める。すなわち、候補送信データベクトルuの中から、ノルムLを最小とする復号データベクトルq(m)を求める。次に、ステップ124において、復号データ行列Q(m)、受信データ行列R(m)とから、伝送路行列H(m)を(8)式の関係式から求める。次に、次の復調時刻m+2での時刻差による位相補正された正確な伝送路行列G(m+2)を求める。そして、ステップ106に戻る。この処理の繰り返しにより、受信データベクトルr(m)は、精度高く、復号データベクトルq(m)を得ることができる。
また、このデータの復号の後に、次のパイロットデータが受信されると、ステップ108の判断がYes となるので、ステップ110で、パイロットデータの先頭か否かが判定されて、判定がYes であれば、ステップ128において、時刻変数mが0に初期設定され、次のステップ112で、受信データベクトルr(m)は、受信パイロットデータr(0)として記憶される。このような処理により、パイロットデータが受信される毎に、伝送路行列H、Gは、初期値にリセットされることになり、伝送路の推定誤差が伝搬することを防止することができる。
〔変形例〕
全実施例において、補正された伝送路行列Gを用いることなく、伝送路行列H(m)を次の復調時刻m+2でのデータの復号に用いる伝送路行列としても良い。また、パイロットデータは、2×2のSTBCの場合には、少なくとも2シンボルあれば良い。パイロットデータは、送信データ行列を正方行列とするために、少なくとも送信アンテナの数だけのシンボルを有すれば良い。パイロットデータを最低限のシンボル数以上とした場合には、複数の初期伝送路行列を求めることができるので、それらの平均値などを用いることで、さらに、正確な初期伝送路行列を得ることができると共に、伝送路の変化特性を予測することができる。
本発明は、移動体通信に用いることができる。
本発明の具体的な一実施例に係るSTBC伝送方式を示した説明図。 本発明の実施例1に係る装置の構成を示したブロック図。 本発明の実施例に係る装置のCPUの動作手順を示したフローチャート。
符号の説明
10…送信装置
15…多重化装置
20…受信装置
25…復調装置
50…QPSK復調装置
51…受信データ判定部
52…初期伝送行列演算部
53…MIMOデコード部
54…伝送行列更新部
55…判定部

Claims (2)

  1. 2本の送信アンテナとn(nは2以上の整数))本の受信アンテナとを用いて、時空間ブロック復号処理を行うSTBC通信方式における復号方法において、
    第1送信アンテナと第2送信アンテナとからある送信時刻で送信されるデータ組を(a,b)、次の送信時刻で送信されるデータ組を(−b* ,a* )(ただし、*は複素共役演算子)とするとき、データ組(a,b)に対するn本の受信アンテナで受信されるデータを成分とするベクトルを受信データベクトルr(0)、その時の伝送路の伝送路行列をH(0)とし、データ組(−b* ,a* )に対するn本の受信アンテナで受信されるデータを成分とするベクトルを受信データベクトルr(1)とし、
    データ組(a,b)から受信データベクトルr* (1)への変換行列をD* (1)とし、前記受信データベクトルr(0)の成分と前記受信データベクトルr* (1)の成分との2n個を成分とする拡張受信ベクトルをgとするとき、
    前記伝送路行列H(0)と前記変換行列D* (1)とで構成され、データ組(a,b)から前記拡張受信データベクトルgに変換する拡張伝送路行列Fを求め、
    前記データ組(a,b)のとり得る値の組の集合の中の任意の要素である基準送信ベクトルuに対して、その基準送信ベクトルuを前記拡張伝送路行列Fで変換して得られる2n次元の拡張レプリカ受信ベクトルvと、前記拡張受信データベクトルgとの差のノルムが最小となる基準送信ベクトルqを、前記受信データベクトルr(0)、r(1)に対する求めるべき復号データとすることを特徴とする復号方法。
  2. 2本の送信アンテナとn(nは2以上の整数))本の受信アンテナとを用いて、時空間ブロック復号処理を行うSTBC通信方式における復調装置において、
    第1送信アンテナと第2送信アンテナとからある送信時刻で送信されるデータ組を(a,b)、次の送信時刻で送信されるデータ組を(−b* ,a* )(ただし、*は複素共役演算子)とするとき、データ組(a,b)に対するn本の受信アンテナで受信されるデータを成分とするベクトルを受信データベクトルr(0)、その時の伝送路の伝送路行列をH(0)とし、データ組(−b* ,a* )に対するn本の受信アンテナで受信されるデータを成分とするベクトルを受信データベクトルr(1)とし、
    データ組(a,b)から受信データベクトルr* (1)への変換行列をD* (1)とし、前記受信データベクトルr(0)の成分と前記受信データベクトルr* (1)の成分との2n個を成分とする拡張受信ベクトルをgとするとき、
    前記伝送路行列H(0)と前記変換行列D* (1)とで構成され、データ組(a,b)から前記拡張受信データベクトルgに変換する拡張伝送路行列Fを求め、
    前記データ組(a,b)のとり得る値の組の集合の中の任意の要素である基準送信ベクトルuに対して、その基準送信ベクトルuを前記拡張伝送路行列Fで変換して得られる2n次元の拡張レプリカ受信ベクトルvと、前記拡張受信データベクトルgとの差のノルムが最小となる基準送信ベクトルqを、前記受信データベクトルr(0)、r(1)に対する求めるべき復号データとすることを特徴とする復調装置。
JP2007285584A 2007-11-01 2007-11-01 復号方法及び復調装置 Pending JP2009117924A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007285584A JP2009117924A (ja) 2007-11-01 2007-11-01 復号方法及び復調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007285584A JP2009117924A (ja) 2007-11-01 2007-11-01 復号方法及び復調装置

Publications (1)

Publication Number Publication Date
JP2009117924A true JP2009117924A (ja) 2009-05-28

Family

ID=40784603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285584A Pending JP2009117924A (ja) 2007-11-01 2007-11-01 復号方法及び復調装置

Country Status (1)

Country Link
JP (1) JP2009117924A (ja)

Similar Documents

Publication Publication Date Title
US8842756B2 (en) Adaptive one-dimensional channel interpolation
JP4431578B2 (ja) 複数の送信アンテナのofdmチャネル推定及びトラッキング
RU2404511C2 (ru) Система ofdm mimo с управляемой диаграммой направленности сниженной сложности
KR100842569B1 (ko) 다중 입출력 통신시스템에서 신호 수신 방법 및 장치
CN101958764B (zh) 发送装置、信号生成装置及发送方法
US20090201978A1 (en) System and Method for Processing Secure Transmissions
JP2010062944A (ja) 無線通信システム、無線受信装置および無線送信装置
KR101422980B1 (ko) 송신기 및 송신 방법
EP1570597B1 (en) A simplified decoder for a bit interleaved cofdm-mimo system
WO2016066030A1 (en) System and method for wireless communication using space-time block code encoding
JP4376941B2 (ja) 受信装置
KR20050005990A (ko) 직교 주파수 분할 다중 방식을 사용하는 이동 통신시스템에서 채널 추정 시스템 및 방법
KR100948258B1 (ko) 다중입력 다중출력 수신 장치와, 상기 다중입력 다중출력수신 장치에 이용되는 qr 분해 장치 및 방법과, 다차원검출 장치 및 방법
JP4680107B2 (ja) 受信装置及び受信方法
KR100806713B1 (ko) 다중안테나 직교주파수분할다중 시스템에서 크기가일정하지 않은 성상도를 위한차등시(주파수)공간블록부호의 복호, 동기화 장치 및 방법
JP2009117924A (ja) 復号方法及び復調装置
JP2008124818A (ja) 空間多重伝送復調方法及び空間多重伝送復調装置
KR102304930B1 (ko) 다중 입출력 통신 시스템의 격자 감소 방법
JP4290657B2 (ja) 空間分割多重信号検出回路および空間分割多重信号検出方法
JP2009117922A (ja) データ伝送方法
JP2009105847A (ja) 無線データ伝送における復調方法及び復調装置
KR101225649B1 (ko) 다중 안테나 통신시스템의 채널추정 장치 및 방법
KR100668659B1 (ko) 다중 송수신 시스템에서 시공간 부호 전송에 대한 복호방법 및 이를 이용한 수신 장치
KR101573827B1 (ko) 공간 변조 시스템의 활성 안테나 검파 방법
KR101351577B1 (ko) 다중 입력 다중 출력 통신 시스템의 심볼 검파 방법