JP2009114662A - Concrete solid permanent sub-substructural column - Google Patents

Concrete solid permanent sub-substructural column Download PDF

Info

Publication number
JP2009114662A
JP2009114662A JP2007286246A JP2007286246A JP2009114662A JP 2009114662 A JP2009114662 A JP 2009114662A JP 2007286246 A JP2007286246 A JP 2007286246A JP 2007286246 A JP2007286246 A JP 2007286246A JP 2009114662 A JP2009114662 A JP 2009114662A
Authority
JP
Japan
Prior art keywords
concrete
length
column
section
pillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007286246A
Other languages
Japanese (ja)
Other versions
JP4833949B2 (en
Inventor
Kenichi Shimizu
健一 清水
Hiroyuki Tanaka
宏幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2007286246A priority Critical patent/JP4833949B2/en
Publication of JP2009114662A publication Critical patent/JP2009114662A/en
Application granted granted Critical
Publication of JP4833949B2 publication Critical patent/JP4833949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent sub-substructural column with a capability by which the construction of a ground skeleton can be started by inserting the permanent sub-substructural column into a pile even if an underground skeleton is multistory when a function of suppressing the deformation of the permanent sub-substructural column during a process of inserting the column into the pile is provided to the permanent sub-substructural column used in an inverted construction method. <P>SOLUTION: The permanent sub-substructural column 1 comprises a core 2 having a length obtained by adding the length for fixing to the pile 4 to the length of the all stories of the underground skeleton and a concrete 3 surrounding the district near a lower story among the districts excluding the fixing length of the core 2. A length equal to or longer than that of one story near the lower story of the underground skeleton is given to the concrete 3. The upper end side district of the core 2 is exposed from the concrete 3 by an amount of one or more story. The shape and size of the cross section of the concrete 3 are same as those of the column when the underground skeleton is completed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は逆打ち工法で使用され、特に挿入過程での変形を抑制したコンクリート一体型構真柱に関するものである。   The present invention relates to a concrete-integrated structural column that is used in a reverse driving method and that suppresses deformation in the insertion process.

予め地中に構築された杭中に構真柱を挿入し、杭の硬化後、構真柱周りの土砂を排出し、地下躯体の構築と並行して地上躯体を構築する逆打ち工法では、構真柱を杭中に正確に挿入する上で、構真柱挿入中の構真柱の傾斜と変形を抑制することが課題の一つになる。   In the reverse striking method that inserts the construction pillar into the pile built in advance in the ground, discharges the earth and sand around the construction pillar after hardening the pile, and constructs the ground structure in parallel with the construction of the underground structure, In order to accurately insert the structural column into the pile, one of the problems is to suppress the inclination and deformation of the structural column during the insertion of the structural column.

構真柱の鉛直性は地上に設置される架台に挿入用のガイドを付加することにより確保されるが(特許文献1参照)、構真柱の全長が大きくなる程、捩じり剛性と曲げ剛性が低下し、変形し易くなるため、構真柱が鉄骨のみからなる場合には、1本の構真柱に与えられる長さに限界がある。   The verticality of the true pillar is ensured by adding a guide for insertion to a pedestal installed on the ground (see Patent Document 1), but as the full length of the true pillar increases, torsional rigidity and bending are increased. Since the rigidity is lowered and the structure is easily deformed, there is a limit to the length given to one structural column when the structural column is made of only a steel frame.

鉄骨の周りに予めコンクリートを一体化させれば、構真柱の剛性不足を補うことができるため(特許文献1〜5参照)、1本の構真柱の長さを鉄骨のみの場合より大きくすることは可能である。   If concrete is preliminarily integrated around the steel frame, it is possible to compensate for the lack of rigidity of the structural pillar (see Patent Documents 1 to 5). The length of one structural pillar is larger than that of the steel frame alone. It is possible to do.

特開平7−82892号公報(請求項1、段落0004、0009、図1)JP-A-7-82892 (Claim 1, paragraphs 0004 and 0009, FIG. 1) 特開昭62−86242号公報(請求項1、図1、図2)JP 62-86242 A (Claim 1, FIG. 1, FIG. 2) 特開平6−101244号公報(請求項1、図1、図2)JP-A-6-101244 (Claim 1, FIG. 1, FIG. 2) 特開平8−68057号公報(請求項1、段落0007〜0008、図2)JP-A-8-68057 (Claim 1, paragraphs 0007 to 0008, FIG. 2) 特開平8−296243号公報(請求項1、段落0013〜0023、図1、図2)JP-A-8-296243 (Claim 1, paragraphs 0013 to 0023, FIGS. 1 and 2)

但し、特許文献1のように複数層に亘る長さを持つコンクリート造構真柱の下端部に杭への挿入のための鉄骨を埋設し、上端部に地下躯体、もしくは地上躯体の梁との接合のための鉄骨を埋設した構造では、地下躯体の柱が鉄筋コンクリート造になるため、鉄骨の周りにコンクリートが一体化した構造(鉄骨鉄筋コンクリート造)と同等の耐力を持たせることができない。   However, as disclosed in Patent Document 1, a steel frame for insertion into a pile is embedded at the lower end of a concrete structural column having a length extending over multiple layers, and the upper end is connected to an underground frame or a ground frame beam. In a structure in which steel frames are embedded for joining, the pillars of the underground frame are reinforced concrete structures, so that it is not possible to have the same strength as a structure in which concrete is integrated around the steel frames (steel reinforced concrete structures).

特許文献2、3のように構真柱の全長が鉄骨とコンクリートからなる場合には、地下躯体の柱が鉄骨鉄筋コンクリート造になり、特許文献1より柱の耐力が向上するため、構真柱を杭中に挿入し、杭が強度を発現した時点から地上躯体の構築を開始することが可能である。反面、構真柱が複数層に亘る場合に構真柱の単位長さ当たりの質量が大きくなり、1本の構真柱の質量が大きくなるため、揚重機による吊り込みの関係で、構真柱に複数層に亘る長さを与えることが難しくなる。   When the total length of the timber is made of steel and concrete as in Patent Documents 2 and 3, the column of the underground frame is made of steel reinforced concrete, and the proof strength of the column is improved from Patent Document 1, so It is possible to start the construction of the ground frame from the point when the pile is inserted and the strength of the pile is developed. On the other hand, since the mass per unit length of the structural pillar increases when the structural pillar spans multiple layers, the mass of a single structural pillar increases. It becomes difficult to give the column a length extending over a plurality of layers.

同様のことは鉄骨として鋼管を用い、鋼管の内部にコンクリートを充填した特許文献4、5にも言える。これらの構真柱では、地下躯体が2〜3層以上に亘る場合に、1本の構真柱の挿入のみでは地下躯体の柱を構成することが難しいため、構真柱を継ぎ足すことが必要になる。   The same applies to Patent Documents 4 and 5 in which a steel pipe is used as a steel frame and concrete is filled in the steel pipe. In these structural pillars, when the underground structure has two or more layers, it is difficult to construct the underground structural pillar by inserting only one structural pillar. I need it.

このように構真柱の全長を鉄骨鉄筋コンクリート造にすれば、地下躯体の柱の耐力が上がることで、構真柱を杭中に挿入し、杭が硬化した時点から地上躯体の構築を開始できる利点があるが、地下躯体が複数層に亘る場合に、構真柱を継ぎ足さなければならない不都合がある。   In this way, if the total length of the structural column is made of steel-framed reinforced concrete, the strength of the column of the underground frame will increase, so that the structural column can be inserted into the pile and the construction of the ground frame can be started from the point when the pile is cured Although there is an advantage, there is an inconvenience that a structural pillar must be added when the underground structure spans multiple layers.

本発明は上記背景より、地下躯体が複数層に亘る場合にも杭への構真柱の挿入によって地上躯体の構築を開始できる能力を有するコンクリート一体型構真柱を提案するものである。   In view of the above background, the present invention proposes a concrete-integrated concrete column having the ability to start construction of a ground frame by inserting a frame column into a pile even when the underground frame spans multiple layers.

請求項1に記載の発明は、予め構築された杭への構真柱の挿入後、その構真柱周りの土砂を排出しながら、地下躯体を構築する逆打ち工法で使用される構真柱であり、
前記地下躯体の全層分の長さに、前記杭への定着長を加えた長さを有する芯材と、
前記芯材の前記定着長分を除いた区間の内、下層寄りの区間を包囲するコンクリートとを備え、
前記コンクリートは前記地下躯体の下層寄りの1層分以上の長さを有し、
前記芯材の上端側の区間は前記コンクリートから1層分以上、露出していることを構成要件とする。
The invention according to claim 1 is a built-up column used in a reverse driving method for building an underground frame while discharging the earth and sand around the built-up column after inserting the built-up column into a pre-built pile. And
A core material having a length obtained by adding a fixing length to the pile to the length of all layers of the underground frame;
Of the section excluding the fixing length of the core material, comprising concrete surrounding the section closer to the lower layer,
The concrete has a length of one layer or more near the lower layer of the underground frame,
The section on the upper end side of the core material is exposed to one layer or more from the concrete.

芯材には鉄骨が単体で、もしくは複数本組み合わせられて使用され、コンクリートは構真柱が地中に挿入される以前に、芯材の周りに組み立てられた型枠内にプレキャストコンクリートとして打設(充填)される。構真柱の全長は下層寄りの鉄骨鉄筋コンクリート造(SRC造)の区間(コンクリート区間)と、その上の鉄骨造の区間(芯材露出区間)に区分される。   The core material is a single steel frame or a combination of multiple steel frames, and the concrete is cast as precast concrete in a formwork assembled around the core material before the structural pillar is inserted into the ground. (Filled). The total length of the structural pillar is divided into a steel-framed reinforced concrete (SRC) section (concrete section) closer to the lower layer, and a steel-framed section (core exposed section) above it.

杭の構造、形態、施工方法は問われないが、現場造成杭や地盤改良杭のように現場で掘削孔を形成しながら構築され、構築直後に材料が流動性を有する杭が施工される。杭は構真柱の下端、すなわちコンクリートの下端から突出した鉄骨が杭中に挿入されるまでの間、硬化を完了せず、その後に硬化して支持力を発揮する。   The structure, form, and construction method of the piles are not limited, but they are constructed while forming excavation holes at the site, such as on-site creation piles and ground improvement piles, and piles with material fluidity are constructed immediately after construction. The pile does not complete the hardening until the steel frame protruding from the lower end of the structural pillar, that is, the lower end of the concrete, is inserted into the pile, and then hardens and exhibits a supporting force.

芯材が地下躯体の全層分の長さを有し、コンクリートが1層分以上の長さを有し、芯材がコンクリートから1層分以上、露出していることから、構真柱は少なくとも2層分以上の深さを有する地下躯体に対応する。地下躯体と地上躯体の各層の高さ(階高)は同一とは限らず、例えば地下躯体の各層(各階)の階高がそれぞれの深度や用途に応じて異なることもある。   Since the core material has the length of all layers of the underground frame, the concrete has a length of one layer or more, and the core material is exposed from the concrete by one layer or more, Corresponds to underground structures with a depth of at least two layers. The height (floor height) of each layer of the underground frame and the ground frame is not necessarily the same. For example, the floor height of each layer (each floor) of the underground frame may differ depending on the depth and usage.

構真柱の下層寄りの区間(コンクリート区間)が芯材とコンクリートからなるSRC造であることで、構真柱の先端部分の芯材が杭中に挿入され、杭が硬化した時点で、コンクリート区間がSRC造の柱として機能するため、それより上の地下躯体及び地上躯体の鉛直荷重を負担することが可能である。コンクリート区間に対しては、構真柱が鉄骨のみの場合のように、構真柱挿入後にその周りにコンクリートを打設する作業を必要としない。   Since the section (concrete section) near the lower layer of the structural pillar is an SRC structure made of core material and concrete, the core material at the tip of the structural pillar is inserted into the pile, and the pile is cured. Since the section functions as a pillar of SRC structure, it is possible to bear the vertical load of the underground structure and the ground structure above it. For the concrete section, as in the case where the structural pillar is only a steel frame, the work of placing concrete around the structural pillar is not required after insertion.

構真柱の全長の内、芯材が露出した区間(芯材露出区間)は鉄骨造になるものの、構真柱の下端部が杭に支持されることで、芯材露出区間も芯材が負担可能な範囲で鉛直荷重を負担する能力を有するため、構真柱を杭中に挿入し、杭が硬化した時点から芯材より上の地上躯体の構築を開始することが可能である。従って芯材周りへのコンクリートの打設が完了するまで必ずしも地上躯体の構築を待つ必要がない。芯材露出区間の芯材周りに現場でコンクリートが打設されるまでの間、構真柱のコンクリートはその区間の芯材を拘束するため、芯材の座屈長さを芯材の露出区間に短縮し、芯材が圧縮荷重により曲げ変形や座屈する事態を防止する機能を有する。   Although the section where the core material is exposed (core material exposed section) of the total length of the structural pillar is a steel frame, the core material is also exposed in the core material exposed section because the lower end of the structural pillar is supported by the pile. Since it has the ability to bear a vertical load within the loadable range, it is possible to start construction of the ground frame above the core material from the time when the built-up column is inserted into the pile and the pile is hardened. Therefore, it is not always necessary to wait for the construction of the ground frame until the concrete has been placed around the core. Until the concrete is placed around the core in the exposed area of the core material, the concrete of the structural pillar constrains the core material in that area, so the buckling length of the core material is set to the exposed area of the core material. The core material has a function of preventing the core material from bending and buckling due to the compressive load.

構真柱のコンクリート区間と芯材露出区間のいずれも、一定の鉛直荷重負担能力を有することで、構真柱は杭が硬化により支持力を発現した時点で、地上躯体の、少なくとも低層階分の荷重を負担する能力を発揮する。地上躯体の低層階分は、杭の硬化後に、地上での地上躯体の構築を開始し、構真柱のコンクリート区間より上の芯材露出区間にコンクリートが打設され、構真柱の全区間がSRC造になるまでの間、構真柱が負担できる地上躯体の荷重分の階を指す(図3−(b)、(c))。   Both the concrete section of the concrete pillar and the exposed section of the core have a certain vertical load bearing capacity, so that the structural pillar is at least the lower floor part of the ground frame when the pile develops bearing capacity due to hardening. Demonstrate the ability to bear the load of. For the lower floors of the ground frame, after the piles are hardened, construction of the ground frame on the ground starts, and concrete is placed in the core exposed section above the concrete section of the structural pillar. Until SRC is built, it refers to the floor of the ground frame that can be borne by the structural pillar (Figs. 3- (b) and (c)).

地上躯体の構築と並行して芯材露出区間の芯材周りにコンクリートを打設すれば、地下躯体の柱を完成させることができ、その後には地下躯体の柱が地上躯体の全荷重を負担することが可能になるため(図3−(e))、地上躯体の完成に至るまで地上躯体の構築を中断させることがない。地下躯体の柱の完成後は地下躯体の柱がSRC造になるため、地下躯体の柱は高層の地上躯体を支持する能力を有する。   If concrete is placed around the core in the exposed section of the core in parallel with the construction of the ground frame, the column of the underground frame can be completed, and then the column of the underground frame bears the total load of the ground frame Since it becomes possible (FIG. 3- (e)), construction of the ground frame is not interrupted until the ground frame is completed. After the underground pillars are completed, the underground pillars will be SRC, so the underground pillars have the ability to support high-rise ground.

コンクリートが芯材の下層寄りの1層分以上の長さを有するものの、構真柱の上層寄りでは芯材がコンクリートから露出することで、全長がSRC造の場合より1本の構真柱の質量が軽減されるため、構真柱が地下躯体の全層分の長さを有しながらも、質量を揚重機の揚重能力以内に抑えることが可能になる。地中には地下躯体の1本の柱当たり、1本の構真柱を挿入するのみで、挿入作業が終了するため、構真柱の継ぎ足しの必要がなく、継ぎ足す場合より施工の効率化が図られる。   Although the concrete has a length of one layer or more near the lower layer of the core material, the core material is exposed from the concrete near the upper layer of the structural pillar, so that the total length of one structural pillar is longer than that of the SRC structure. Since the mass is reduced, it is possible to keep the mass within the lifting capacity of the hoisting machine while the structural column has the length of all layers of the underground frame. Inserting only one structural pillar per underground pillar into the underground will complete the insertion work, so there is no need to add the structural pillar, making construction more efficient than adding it. Is planned.

前記のように地下躯体の柱は構真柱の芯材露出区間の芯材周りにコンクリートが打設されることにより完成する。ここで、請求項2に記載のようにコンクリートの断面の形状と大きさが地下躯体完成時の柱の断面の形状と大きさと同一であれば、芯材周りのコンクリートを下層側のコンクリート(構真柱のコンクリート)に突き当たるまで打設することのみで、地下躯体の柱を完成させることが可能である。   As described above, the column of the underground frame is completed by placing concrete around the core material in the core material exposed section of the built-up column. Here, as described in claim 2, if the shape and size of the cross section of the concrete is the same as the shape and size of the cross section of the column when the underground frame is completed, the concrete around the core material is made to be concrete on the lower layer side (structure). It is possible to complete the pillar of the underground frame only by placing it until it hits the true pillar (concrete).

請求項2では構真柱のコンクリート区間がそのまま地下躯体の柱を構成することから、コンクリート区間に重ねてコンクリートを打設する必要がないため、芯材露出区間の芯材周りへのコンクリートの打設のみによって地下躯体の柱を完成させることができる。   In claim 2, since the concrete section of the structural pillar constitutes the pillar of the underground frame as it is, there is no need to lay concrete on the concrete section, so the concrete is placed around the core in the exposed core section. The pillar of the underground frame can be completed only by the installation.

請求項2ではまた、芯材露出区間における芯材周りへのコンクリートがコンクリート区間のコンクリートとは独立し、地下躯体の構築時に打設されることで、構真柱の上層寄りの区間(芯材露出区間)の柱に、コンクリート区間におけるコンクリートの断面とは異なる断面を与えることができるため、地下躯体の下層階の柱の断面と上層階の柱の断面を相違させたい要請に対応することが可能である。   Further, in the second aspect, the concrete around the core material in the core material exposed section is independent of the concrete in the concrete section and is placed at the time of construction of the underground frame, so that the section closer to the upper layer of the construction pillar (core material) Since the section of the exposed section) can be given a section different from the concrete section in the concrete section, it is possible to meet the demand to make the section of the lower floor pillar of the underground frame different from the section of the upper floor pillar. Is possible.

構真柱が地下躯体の全層分の長さに、杭への定着長を加えた長さを有することと、全長の内、下層寄りの1層分以上の区間がSRC造で、それより上の1層分以上の区間が鉄骨の芯材であることで、全長がSRC造の場合より構真柱の質量を軽減しながら、鉄骨造の区間が圧縮力を負担できる範囲で、地上躯体の構築を開始することができる。   The structure column has a length that is the length of all layers of the underground frame plus the anchoring length to the pile, and the section of one layer or more closer to the lower layer of the total length is made of SRC. The upper section of one layer or more is a steel core, so that the total length of the steel frame is less than the SRC structure, while the steel structure section can bear the compressive force while reducing the mass of the column. You can start building.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は地下躯体の全層分の長さに、予め構築された杭4への定着長を加えた長さを有する芯材2と、芯材2の前記定着長分を除いた区間の内、下層寄りの区間を包囲するコンクリート3とを備え、コンクリート3が地下躯体の下層寄りの1層分以上の長さを有し、芯材2の上端側の区間がコンクリート3から1層分以上、露出しているコンクリート一体型構真柱(以下、構真柱と言う)1の構成例とその施工状態を示す。   FIG. 1 shows a core material 2 having a length obtained by adding a fixed length to a pile 4 constructed in advance to the length of all layers of the underground frame, and a section excluding the fixed length of the core material 2. And a concrete 3 surrounding a section near the lower layer, the concrete 3 has a length of one layer or more near the lower layer of the underground frame, and a section on the upper end side of the core material 2 is one layer or more from the concrete 3 The construction example of the exposed concrete-integrated structural pillar (hereinafter referred to as the structural pillar) 1 and its construction state are shown.

図1以降では地下躯体が4層(4階)の例を記載しているが、構真柱1はコンクリート3が地下躯体の1層分以上の長さを有し、芯材2が1層分以上、コンクリート3から露出すればよいため、地下躯体は2層以上であれば、層数を問わない。図面では特にコンクリート3が2層分の長さを有し、芯材2が2層分、コンクリート3から露出し、コンクリート3の区間と芯材2の露出区間の層数が等しい場合を示している。   In FIG. 1 and subsequent figures, an example in which the underground frame has four layers (fourth floor) is described. However, the concrete pillar 1 has a length of concrete 3 longer than one layer of the underground frame, and the core material 2 has one layer. Since it is only necessary to be exposed from the concrete 3 or more minutes, the number of layers is not limited as long as the underground structure has two or more layers. In the drawing, concrete 3 has a length corresponding to two layers, core 2 is exposed from concrete 3 for two layers, and the number of layers in the section of concrete 3 and the exposed section of core 2 is equal. Yes.

地下躯体の各層の階高は必ずしも同一とは限らない。図面では地下3〜4階と1〜2階の用途が異なることに対応し、地下3〜4階(コンクリート3の区間)の階高が地下1〜2階(芯材2の露出区間)の階高より小さくなっているが、全階の階高が同一の場合もあれば、逆に地下3〜4階の階高が地下1〜2階の階高より大きいこともある。図示する場合には、コンクリート3の区間が芯材2の露出区間より短いことで、コンクリート3区間と芯材2露出区間が等しい場合より構真柱1が軽量化されている。   The floor height of each layer of the underground building is not necessarily the same. Corresponding to the usage of the 3rd to 4th floors and the 1st to 2nd floors in the drawing, the floor height of the 3rd to 4th basement (section of concrete 3) is 1st to 2nd floor (exposed section of core material 2). Although the floor height is smaller than the floor height, the floor heights of all the floors may be the same, or conversely, the floor heights of the third to fourth basements may be larger than the floor heights of the first and second basements. In the case shown in the drawing, the concrete pillar 1 is lighter than the case where the concrete 3 section and the core material 2 exposed section are equal because the section of the concrete 3 is shorter than the exposed section of the core material 2.

芯材2は杭4に定着され、支持されるために必要な定着長に、地下躯体の全層分の長さを加えた長さを有する。コンクリート3は図1に示すように地下躯体の最下層の床、もしくは基礎(底版)のレベル、あるいはその近傍から、1層以上、上の階の床レベル、もしくはその近傍までの区間の長さを有する。芯材2は見かけ上、構真柱1の挿入時に架台5に支持されるために必要な支持長を加えた長さを有するが、この支持長は後述のアタッチメント21によって確保される。   The core material 2 is fixed to the pile 4 and has a length obtained by adding the length of all layers of the underground frame to the fixing length necessary to be supported. As shown in FIG. 1, the concrete 3 is the lowermost floor of the underground frame or the level of the foundation (bottom slab), or the vicinity thereof, and the length of the section from the vicinity to the floor level of the first floor or higher, or the vicinity thereof. Have The core material 2 apparently has a length to which a support length necessary for being supported by the gantry 5 at the time of inserting the structural pillar 1 is added, and this support length is secured by an attachment 21 described later.

芯材2の、杭4に定着される区間には杭4との付着のための突起2aが形成、あるいは突設される。突起2aには鉄筋、ジベル等が使用される。芯材2の上端には構真柱1全体が吊り支持されるためのアタッチメント21が着脱自在に接続され、アタッチメント21の、架台5に支持される部分には架台5に係止する受け部21aが形成、あるいは突設される。芯材2の露出区間における長さ方向の中間部には地下躯体の梁、もしくはスラブ等との接合のための接合部材2bが形成、あるいは突設され、上端部には地上躯体の梁、もしくはスラブ等との接合のための接合部材2bが形成、あるいは突設される。   A protrusion 2 a for adhering to the pile 4 is formed or provided in a section of the core material 2 fixed to the pile 4. A rebar, a gibber, or the like is used for the protrusion 2a. An attachment 21 for suspending and supporting the entire construction pillar 1 is detachably connected to the upper end of the core material 2, and a receiving portion 21 a that is engaged with the gantry 5 is attached to a portion of the attachment 21 that is supported by the gantry 5. Is formed or protruded. An intermediate member in the lengthwise direction in the exposed section of the core material 2 is formed or protruded with a beam of an underground frame or a slab or the like, and a beam of the ground frame is formed at the upper end, or A joining member 2b for joining with a slab or the like is formed or provided.

図面ではコンクリート3に最下層の床、もしくは基礎の天端から2層上の床、または梁、もしくはキャピタル(支版)までの長さを与えている。コンクリート3の下端からは最下層の床、もしくは梁(キャピタル)、または基礎等への定着のために柱主筋3aが突出する。柱主筋3aの上端部は地下躯体の中間階の床や梁(キャピタル)への定着分、コンクリート3の上端から突出する。あるいは芯材2周りに打設され、地下躯体の上階側の柱91、92を構成するコンクリートへの定着分、コンクリート3の上端から突出する。図面では地下躯体を柱とスラブからなるフラットスラブ構造で構築しているが、地下躯体の構造形式は問われない。   In the drawing, the concrete 3 is given the length from the lowermost floor, or the top of the foundation to the upper floor, the beam, or the capital (branch). From the lower end of the concrete 3, the column main reinforcement 3 a protrudes for fixing to the floor, the beam (capital), the foundation or the like of the lowermost layer. The upper end of the column main reinforcement 3a protrudes from the upper end of the concrete 3 due to the anchorage to the floor and beams (capital) of the intermediate floor of the underground frame. Alternatively, it is placed around the core material 2 and protrudes from the upper end of the concrete 3, which is fixed to the concrete constituting the columns 91 and 92 on the upper floor side of the underground frame. In the drawing, the underground structure is constructed with a flat slab structure consisting of columns and slabs, but the structure form of the underground structure is not limited.

図2−(a)〜(e)により構真柱1の地中への挿入手順を説明する。構真柱1の挿入に先立ち、構真柱1の下端部を支持するための杭4が構築される。杭4は例えばアースドリル工法、深層混合処理工法等により掘削孔6の形成と共に、排土しながら、または土砂を掘削孔6の周辺地盤に圧密させながら地盤を掘削し、その掘削孔6の先端部にコンクリートやモルタル、固化材等を供給することにより構築される。コンクリートやモルタル等の供給前に、掘削孔6下端部の杭4の構築位置に引張抵抗材である鉄筋籠等を挿入することもある。   2- (a)-(e) demonstrates the insertion procedure to the underground of the stem pillar 1 in the ground. Prior to insertion of the true pillar 1, a pile 4 for supporting the lower end of the true pillar 1 is constructed. The pile 4 is formed by excavating the ground while excavating the earth 6 while forming the excavation hole 6 by earth drilling method, deep mixing processing method, etc., or by compacting the earth and sand to the surrounding ground of the excavation hole 6. It is constructed by supplying concrete, mortar, solidified material, etc. to the section. Before supplying concrete, mortar, or the like, a reinforcing bar, which is a tensile resistance material, may be inserted into the construction position of the pile 4 at the lower end of the excavation hole 6.

図2−(a)は杭4の構築後、杭4が硬化する前の段階での構真柱1挿入時の様子を示している。構真柱1の挿入時には地上(地盤面上)の掘削孔6の周辺に構真柱1を支持する架台5が設置される。架台5は図4−(a)、(b)に示すように基本的に地上に、あるいはベースプレート50上に水平2方向に組み立てられる下部支持部材51と、その上に2方向に架設される中間支持部材52と、その上に架設される上部支持部材53等から構成される。   FIG. 2- (a) shows a state when the construction pillar 1 is inserted after the pile 4 is constructed and before the pile 4 is hardened. When inserting the true pillar 1, a gantry 5 that supports the true pillar 1 is installed around the excavation hole 6 on the ground (on the ground surface). As shown in FIGS. 4A and 4B, the gantry 5 basically has a lower support member 51 assembled in the horizontal two directions on the ground or on the base plate 50, and an intermediate laid in two directions on the lower support member 51. It comprises a support member 52 and an upper support member 53 laid on the support member 52.

下部支持部材51と中間部支持部材52との間、または中間部支持部材52と上部支持部材53との間には、上部支持部材53の水平性を確保し、構真柱1の鉛直性を確保するための複数個のジャッキ54が設置される。ジャッキ54と中間部支持部材52は地表面からアタッチメント21の受け部21aまでの距離を確保することで、構真柱1の挿入時に地表面からのアタッチメント21の突出長さを稼ぎ、目視による芯材2の鉛直性の確認を容易にする役目も持つ。   Between the lower support member 51 and the intermediate support member 52, or between the intermediate support member 52 and the upper support member 53, the level of the upper support member 53 is secured, and the verticality of the structural pillar 1 is increased. A plurality of jacks 54 for securing are installed. The jack 54 and the intermediate part supporting member 52 secure the distance from the ground surface to the receiving part 21a of the attachment 21 so that the protruding length of the attachment 21 from the ground surface can be obtained when the stem column 1 is inserted, and the core is visually observed. It also has the role of making it easy to check the verticality of the material 2.

構真柱1は図2−(a)に示すように図示しない揚重機により吊り支持された状態で、架台5の中心部に落とし込まれ、そのまま(b)〜(d)に示すように鉛直性を保持しながら徐々に降下させられる。ここで、図4−(b)に示すように2方向の上部支持部材53の内周の寸法をコンクリート3を丁度包囲する大きさにしておけば、上部支持部材53を構真柱1のガイドとして利用することができるため、構真柱1降下時の位置決め作業を容易にし、降下中の鉛直性を確保し易くなる。   As shown in FIG. 2- (a), the structural pillar 1 is suspended and supported by a lifting machine (not shown) and dropped into the center portion of the gantry 5 and is left as it is as shown in (b) to (d). It is gradually lowered while maintaining sex. Here, as shown in FIG. 4- (b), if the dimension of the inner periphery of the upper support member 53 in the two directions is set so as to enclose the concrete 3 exactly, the upper support member 53 is guided by the guide pillar 1. Therefore, the positioning work when the structural pillar 1 is lowered is facilitated, and the verticality during the descent is easily secured.

前記のアタッチメント21の長さと受け部21aの突設位置は図2−(e)に示すように構真柱1下端部のコンクリート3から下方へ突出した芯材2が杭4中への定着に必要な区間、挿入されたときに、受け部21aが架台5の上部支持部材53に係止するように設定される。   The length of the attachment 21 and the protruding position of the receiving portion 21a are as shown in FIG. 2- (e). The core 2 protruding downward from the concrete 3 at the lower end of the construction pillar 1 is fixed in the pile 4. When the necessary section is inserted, the receiving portion 21 a is set to be locked to the upper support member 53 of the gantry 5.

構真柱1は芯材2が杭4中に挿入された図2−(e)の状態で、杭4が硬化するまで架台5に支持(係止)された状態に保たれる。杭4が硬化し、支持力を発揮した後の施工は図3−(a)〜(g)の手順で行われる。杭4が支持力を発揮した後は、構真柱1が架台5の支持から解放される。図3−(a)は構真柱1が架台5から切り離され、アタッチメント21が構真柱1から取り外された状態を示している。   The structural pillar 1 is maintained in a state of being supported (locked) on the gantry 5 until the pile 4 is cured in the state of FIG. 2E in which the core material 2 is inserted into the pile 4. The construction after the pile 4 has hardened and exhibits the supporting force is performed according to the procedure shown in FIGS. After the pile 4 exhibits the supporting force, the structural pillar 1 is released from the support of the gantry 5. FIG. 3A shows a state in which the frame pillar 1 is separated from the gantry 5 and the attachment 21 is detached from the frame pillar 1.

図3−(a)の状態では、芯材2の上端部が地盤面より突出し、その部分の接合部材2bが露出している。ここからは、(b)に示すように地上躯体の構築が開始され、その進行に伴い、地下躯体の構築が下層側へ向けて行われる。地盤面より突出した芯材2の接合部材2bにはまず、地上躯体の最下層(1階分)の柱や梁(キャピタル)が接合され、続いてその階のスラブ71が構築される。   In the state of FIG. 3- (a), the upper end part of the core material 2 protrudes from the ground surface, and the joining member 2b of the part is exposed. From here, as shown in (b), construction of the ground frame is started, and as the progress proceeds, construction of the underground frame is performed toward the lower layer side. First, the bottom layer (for the first floor) pillars and beams (capital) of the ground frame are joined to the joining member 2b of the core member 2 protruding from the ground surface, and then the slab 71 of the floor is constructed.

地上躯体最下層のスラブ71の構築後、または構築と並行して(c)、(d)に示すようにスラブ71上に柱81等が構築される。スラブ71の下では地下1階のスラブ101のレベルまで掘削した後、スラブ101と地下躯体の柱91等が構築される。地上躯体の柱81等の構築と地下躯体の構築は並行して、または前後して行われる。掘削土砂の排出時には地上躯体最下層のスラブ71が切梁の役目を果たす。図3では構真柱1の鉛直荷重支持能力に応じ、地上躯体の2層分の長さを有する柱81を構築し、一度に地上3階のスラブ73まで構築しているが、必ずしもその必要はなく、1階分ずつ、柱81とスラブ72(73)を上方へ向けて構築することもある。   After the construction of the slab 71 at the bottom of the ground frame, or in parallel with the construction, pillars 81 and the like are constructed on the slab 71 as shown in (c) and (d). Under the slab 71, after excavating to the level of the slab 101 on the first basement floor, the slab 101 and the column 91 of the underground frame are constructed. The construction of the ground frame pillar 81 and the like and the construction of the underground frame are performed in parallel or before and after. At the time of discharging excavated soil, the slab 71 at the lowest layer on the ground frame serves as a cutting beam. In FIG. 3, a column 81 having a length corresponding to two layers of the ground frame is constructed according to the vertical load supporting ability of the structural pillar 1, and the slab 73 on the third floor is constructed at a time. There is also a case where the pillar 81 and the slab 72 (73) are constructed upward one floor at a time.

地下躯体側ではスラブ101の構築に続いて(e)に示すように地下1階の柱91の構築、地下2階のスラブ102の構築、地下2階の柱92の構築が行われる。地上躯体側では上層側への、または柱81周りの躯体の構築が並行して進められる。前記のように図面では構真柱1のコンクリート3が地下躯体の3〜4階の柱を構成していることから、地下2階の柱92の構築が完了したところで、地下躯体の柱の構築が終了する。   On the basement side, following the construction of the slab 101, as shown in (e), construction of the pillar 91 on the first basement floor, construction of the slab 102 on the second basement floor, and construction of the pillar 92 on the second basement floor are performed. On the ground frame side, the building of the frame toward the upper layer side or around the pillar 81 is advanced in parallel. As described above, the concrete 3 of the structural pillar 1 in the drawing constitutes the 3rd to 4th floor pillars of the underground structure, so when the construction of the pillar 92 on the 2nd floor is completed, the construction of the pillars of the underground structure is completed. Ends.

その後、地下躯体側では(f)、(g)に示すように地下3階のスラブ103の構築と地下4階のスラブ104の構築が行われる。図面では地下4階が最下階になるため、最下階のスラブ104は杭4の頭部上に他の階のスラブ101〜103より厚い底版として構築される。最下階のスラブ104は杭4から露出した芯材2の周りに、杭4と一体となるように構築される。   Thereafter, as shown in (f) and (g), the construction of the slab 103 on the third basement floor and the construction of the slab 104 on the fourth basement floor are performed on the underground building side. In the drawing, since the 4th basement floor is the lowest floor, the slab 104 on the bottom floor is constructed on the head of the pile 4 as a bottom plate thicker than the slabs 101 to 103 on the other floors. The slab 104 on the lowermost floor is constructed so as to be integrated with the pile 4 around the core material 2 exposed from the pile 4.

地上躯体側では地上3階のスラブ73の構築後、それより上階の柱82の構築が行われ、更に上層側へ向けて構築が進められる。図面では地下躯体の構築開始前に地盤面上に搬入される掘削機の高さの関係から、地上3階のスラブ73の構築を先行させている。この場合、地上2階のスラブ72構築の時期は地下4階のスラブ104面までの掘削が終了し、掘削機が不在になった後になる。   On the ground frame side, after the construction of the slab 73 on the third floor above the ground, the pillar 82 on the upper floor is constructed, and the construction is further advanced toward the upper layer side. In the drawing, the construction of the slab 73 on the third floor is preceded by the height of the excavator carried on the ground surface before the construction of the underground structure is started. In this case, the construction of the slab 72 on the second floor is after the excavation to the surface of the slab 104 on the fourth floor is completed and the excavator is absent.

(a)は本発明の構真柱とその杭への挿入時の様子を示した立面図、(b)は(a)のA−A線断面図である。(A) is the elevation which showed the mode at the time of insertion to the true pillar of this invention, and its pile, (b) is the sectional view on the AA line of (a). (a)〜(e)は構真柱が杭に挿入されるまでの様子を示した立面図である。(A)-(e) is an elevation view which showed a mode until a stem pillar was inserted in a pile. (a)〜(g)は構真柱を杭に挿入し、杭が硬化した後の地下躯体と地上躯体の構築の手順例を示した立面図である。(A)-(g) is the elevation which showed the example of the procedure of the construction of an underground frame and a ground frame after inserting a stem pillar in a pile and hardening a pile. (a)は架台の構成例を示した立面図、(b)は(a)の平面図である。(A) is the elevation which showed the structural example of the mount frame, (b) is the top view of (a).

符号の説明Explanation of symbols

1……コンクリート一体型構真柱
2……芯材、2a……突起、2b……接合部材
21…アタッチメント、21a…受け部
3……コンクリート、3a……柱主筋
4……杭
5……架台、51……下部支持部材、52……中間部支持部材、53……上部支持部材、54……ジャッキ、50……ベースプレート
6……掘削孔
71〜73……地上躯体のスラブ
81、82……地上躯体の柱
91、92……地下躯体の柱
101〜104……地下躯体のスラブ
DESCRIPTION OF SYMBOLS 1 ... Concrete-integrated structure pillar 2 ... Core material, 2a ... Protrusion, 2b ... Joining member 21 ... Attachment, 21a ... Receiving part 3 ... Concrete, 3a ... Column main reinforcement 4 ... Pile 5 ... Base: 51 ... Lower support member, 52 ... Intermediate support member, 53 ... Upper support member, 54 ... Jack, 50 ... Base plate 6 ... Drilling holes 71-73 ... Slab 81, 82 for ground frame …… Ground pillars 91, 92 …… Underground pillars 101-104 …… Underground slabs

Claims (2)

予め構築された杭への構真柱の挿入後、その構真柱周りの土砂を排出しながら、地下躯体を構築する逆打ち工法で使用される構真柱であり、
前記地下躯体の全層分の長さに、前記杭への定着長を加えた長さを有する芯材と、
前記芯材の前記定着長分を除いた区間の内、下層寄りの区間を包囲するコンクリートとを備え、
前記コンクリートは前記地下躯体の下層寄りの1層分以上の長さを有し、
前記芯材の上端側の区間は前記コンクリートから1層分以上、露出していることを特徴とするコンクリート一体型構真柱。
After inserting the structural pillar into the pile built in advance, it is a structural pillar used in the reverse driving method to construct the underground frame while discharging the earth and sand around the structural pillar,
A core material having a length obtained by adding a fixing length to the pile to the length of all layers of the underground frame;
Of the section excluding the fixing length of the core material, comprising concrete surrounding the section closer to the lower layer,
The concrete has a length of one layer or more near the lower layer of the underground frame,
A section of the upper end side of the core material is exposed from the concrete for one layer or more.
前記コンクリートの断面の形状と大きさは前記地下躯体完成時の柱の断面の形状と大きさと同一であることを特徴とする請求項1に記載のコンクリート一体型構真柱。
2. The concrete-integrated built-up column according to claim 1, wherein a shape and a size of a cross section of the concrete are the same as a shape and a size of a cross section of the column when the underground frame is completed.
JP2007286246A 2007-11-02 2007-11-02 Concrete integrated structure pillar Expired - Fee Related JP4833949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286246A JP4833949B2 (en) 2007-11-02 2007-11-02 Concrete integrated structure pillar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286246A JP4833949B2 (en) 2007-11-02 2007-11-02 Concrete integrated structure pillar

Publications (2)

Publication Number Publication Date
JP2009114662A true JP2009114662A (en) 2009-05-28
JP4833949B2 JP4833949B2 (en) 2011-12-07

Family

ID=40782106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286246A Expired - Fee Related JP4833949B2 (en) 2007-11-02 2007-11-02 Concrete integrated structure pillar

Country Status (1)

Country Link
JP (1) JP4833949B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046950A (en) * 2010-08-26 2012-03-08 Taisei Corp Structure construction method and structure under construction
JP2013122149A (en) * 2011-12-12 2013-06-20 Ohbayashi Corp Column construction method
CN104005414A (en) * 2014-06-12 2014-08-27 广州市城市规划勘测设计研究院 Method for constructing large-diameter reinforced concrete cast-in-place pile supporting stand column

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286242A (en) * 1985-10-09 1987-04-20 株式会社フジタ Reverse casting consttructin method
JPH059945A (en) * 1991-07-01 1993-01-19 Fujita Corp Underground skeleton constructing method
JPH06101244A (en) * 1992-09-21 1994-04-12 Taisei Corp Inverted construction method for structure
JPH0782892A (en) * 1993-09-13 1995-03-28 Takenaka Komuten Co Ltd Build-in method of temporary steel column for reverse placing construction method
JPH1130053A (en) * 1997-07-10 1999-02-02 Shimizu Corp Construction method of base isolation building
JP2000355941A (en) * 1999-06-16 2000-12-26 Shimizu Corp Building and its construction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286242A (en) * 1985-10-09 1987-04-20 株式会社フジタ Reverse casting consttructin method
JPH059945A (en) * 1991-07-01 1993-01-19 Fujita Corp Underground skeleton constructing method
JPH06101244A (en) * 1992-09-21 1994-04-12 Taisei Corp Inverted construction method for structure
JPH0782892A (en) * 1993-09-13 1995-03-28 Takenaka Komuten Co Ltd Build-in method of temporary steel column for reverse placing construction method
JPH1130053A (en) * 1997-07-10 1999-02-02 Shimizu Corp Construction method of base isolation building
JP2000355941A (en) * 1999-06-16 2000-12-26 Shimizu Corp Building and its construction method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046950A (en) * 2010-08-26 2012-03-08 Taisei Corp Structure construction method and structure under construction
JP2013122149A (en) * 2011-12-12 2013-06-20 Ohbayashi Corp Column construction method
CN104005414A (en) * 2014-06-12 2014-08-27 广州市城市规划勘测设计研究院 Method for constructing large-diameter reinforced concrete cast-in-place pile supporting stand column
CN104005414B (en) * 2014-06-12 2016-06-08 广州市城市规划勘测设计研究院 Large-size rebar cast in place concrete pile supports the constructional method of column

Also Published As

Publication number Publication date
JP4833949B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
KR20060092552A (en) The non-strut down framework construction method of having used cast in place concrete pile
JP2013136921A (en) Earth retaining wall supporting method, earth retaining wall supporting structure, and underground skeleton constructing method
JP2015025292A (en) Building construction method and building
JP5854506B2 (en) How to change the basic form of an existing building
JP4833949B2 (en) Concrete integrated structure pillar
JP3761323B2 (en) How to rebuild a building
JP5865567B2 (en) Connecting slab and its construction method
JP2005105531A (en) Foundation structure of building and its construction method
JP7085464B2 (en) How to build a retaining wall structure in the reverse striking method
JP2015183366A (en) Structure and construction method for banking structure
KR101383817B1 (en) Top down method
JP7028728B2 (en) Joint structure of foundation pile and foundation slab
JP5228862B2 (en) Underground structure, construction method of underground structure
JP7338119B2 (en) Floating control structure and reversed construction method
KR20090043625A (en) Method for constructing underground slabs using asymmetric girder
KR100625115B1 (en) downward reinforced-concrete underground structure using temporary assistant columns
JP2023011057A (en) Foundation structure and foundation construction method
JP4329068B2 (en) Yamauchi composite wall and method for constructing Yamauchi composite wall
KR20210090100A (en) In a building where the underground structure is a wall structure, the shortened construction type top down construction method and structure that enables early ground frame start using temporary transfer structures
JP7106305B2 (en) Structural columns and seismically isolated buildings
JP5686414B2 (en) True pillar
JP5201719B2 (en) Column construction method and column structure
JP5027752B2 (en) Construction method of underground floor pillar and underground floor pillar
KR102264595B1 (en) Self supporting type phc pile and construction method for the same
JP7193065B2 (en) Reverse construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

R150 Certificate of patent or registration of utility model

Ref document number: 4833949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees