JP2009108739A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2009108739A
JP2009108739A JP2007280562A JP2007280562A JP2009108739A JP 2009108739 A JP2009108739 A JP 2009108739A JP 2007280562 A JP2007280562 A JP 2007280562A JP 2007280562 A JP2007280562 A JP 2007280562A JP 2009108739 A JP2009108739 A JP 2009108739A
Authority
JP
Japan
Prior art keywords
suction
rotary compressor
accumulator
roller
suction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007280562A
Other languages
Japanese (ja)
Other versions
JP4991483B2 (en
Inventor
Atsushi Kubota
淳 久保田
Tetsuya Tadokoro
哲也 田所
Atsushi Onuma
敦 大沼
Kenichi Oshima
健一 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007280562A priority Critical patent/JP4991483B2/en
Priority to CN2008101708924A priority patent/CN101424267B/en
Priority to KR1020080105586A priority patent/KR101056857B1/en
Publication of JP2009108739A publication Critical patent/JP2009108739A/en
Application granted granted Critical
Publication of JP4991483B2 publication Critical patent/JP4991483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Abstract

<P>PROBLEM TO BE SOLVED: To make the effective use of a resonance phenomenon including the effect of shielding a suction port by a roller of a rotary compressor, and to operate efficiently the compressor within a wide range of the number of revolutions. <P>SOLUTION: A rotary compressor includes an electric motor 4 within a hermetically-sealed container, an eccentric section 5 connected to the electric motor, a suction chamber 30 formed of a roller 11 and a cylinder 10 provided at the outer circumference of the eccentric section, an accumulator 16 provided at the suction side of the suction chamber, and a suction pipe 18 which opens toward the accumulator. The length of a suction flow passage from the open end of the suction pipe 18 to the open end of the suction port is represented by L [m], the maximum number of revolutions of the compressor 1 by fm [Hz], and the sound velocity of a gas coolant by C [m/s]. As viewed from a vane which separated the suction side and the discharge side of the suction chamber 30 from each other when the suction of the suction chamber is completed, a rotation angle formed of line segments connecting the center of the rotation of the roller 11 and the center of the eccentric section 5 is represented by θs [rad]. A relationship of L=(π-θs)/(4π×fm) is satisfied. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷凍サイクルを備えた空気調和機に使用されるインバータ駆動のロータリ圧縮機および縦型2シリンダロータリ圧縮機に関する。   The present invention relates to an inverter-driven rotary compressor and a vertical two-cylinder rotary compressor used in an air conditioner having a refrigeration cycle.

従来、冷凍サイクルに使用されるロータリ圧縮機では、吸込流路長さL[m]に依存してある特定の回転数で、容積効率(体積効率、吸込充填率とも称する)が最大となる共振現象が知られる。ここで容積効率を最大とする回転数を、共振回転数fn[Hz]と呼ぶ。また吸込流路長さLは、吸込管の開放端から、吸込室の吸込口の開放端までの長さである。   Conventionally, in a rotary compressor used in a refrigeration cycle, resonance at which volumetric efficiency (also referred to as volumetric efficiency or suction filling rate) is maximized at a specific rotation speed depending on the suction flow path length L [m]. The phenomenon is known. Here, the rotational speed that maximizes the volumetric efficiency is referred to as the resonant rotational speed fn [Hz]. The suction flow path length L is the length from the open end of the suction pipe to the open end of the suction port of the suction chamber.

上述した共振現象に関して、例えば、特許文献1に開示された構造が知られている。図14に示すように従来の圧縮機では、回転数を低速側から増加するに伴い容積効率が増大し、ほぼ一定値に近づく。さらに回転数を共振回転数fnに近づけるにつれ容積効率が増大し、共振回転数fnで容積効率が最大となる。共振回転数fnより高い回転数では、容積効率が徐々に減少して、一定値に近づく。一般に圧縮機では、回転数の増加に伴い機械損失や騒音、振動が増大することが知られる。上記の共振現象を利用すれば、圧縮機の回転数を増加することなく空気調和機の能力を増大することができるという長所がある。   Regarding the above-described resonance phenomenon, for example, a structure disclosed in Patent Document 1 is known. As shown in FIG. 14, in the conventional compressor, the volumetric efficiency increases as the rotational speed is increased from the low speed side, and approaches a substantially constant value. Furthermore, the volumetric efficiency increases as the rotational speed approaches the resonant rotational speed fn, and the volumetric efficiency becomes maximum at the resonant rotational speed fn. At a rotational speed higher than the resonant rotational speed fn, the volumetric efficiency gradually decreases and approaches a constant value. In general, in a compressor, it is known that mechanical loss, noise, and vibration increase as the rotational speed increases. If the above resonance phenomenon is used, there is an advantage that the capacity of the air conditioner can be increased without increasing the rotational speed of the compressor.

このような共振現象を発生させる吸込流路長さLと共振回転数fnの関係が、例えば、特許文献1、特許文献2及び特許文献3に記載されている。   The relationship between the suction flow path length L that causes such a resonance phenomenon and the resonance rotational speed fn is described in, for example, Patent Document 1, Patent Document 2, and Patent Document 3.

特許文献2に記載された吸込流路長さL[m]は、吸込流路における気柱共鳴の1次共振を利用して、
L=λC/(2π・fn)…(1)
λ:π/2、である。ここで、Cは冷媒の音速(冷媒の圧力波が伝播する速さ)[m/s]である。λ=π/2を式(1)に代入すると、
L=C/(4・fn)…(2)
を得る。
The suction channel length L [m] described in Patent Document 2 uses the primary resonance of the air column resonance in the suction channel,
L = λC / (2π · fn) (1)
λ: π / 2. Here, C is the speed of sound of the refrigerant (the speed at which the pressure wave of the refrigerant propagates) [m / s]. Substituting λ = π / 2 into equation (1),
L = C / (4 · fn) (2)
Get.

特許文献1では、特許文献2に対して吸込室の押除量V[m]や、吸込管の流路断面積A[m]の影響を補正して、
fn=(2m−1)C/{4(L+V/A)}…(3)
m=1、2、3、…、である。容積効率への影響が大きい1次共振成分すなわちm=1について、式(3)を移項して整理すると、
L=C/(4・fn)−(V/A)…(4)
を得る。
In patent document 1, the influence of the pushing amount V [m 3 ] of the suction chamber and the flow passage cross-sectional area A [m 2 ] of the suction pipe is corrected with respect to patent document 2,
fn = (2m−1) C / {4 (L + V / A)} (3)
m = 1, 2, 3,... For the primary resonance component that has a large impact on volumetric efficiency, that is, m = 1, the equation (3) is transferred and rearranged.
L = C / (4 · fn) − (V / A) (4)
Get.

特許文献3では、特許文献2に対して実験による補正を行い、
L=T・C/4−0.2…(5)
である。ここでTは吸込行程周期[s]であり、T=1/fnを式(5)に代入すれば、
L=C/(4・fn)−0.2…(6)
を得る。
特開昭64−15489号公報(第3頁、式(1)、第5頁、図4) 特開平4−103971号公報(第2頁、式(1)) 特開昭57−122192号公報(第2頁、式(2))
In patent document 3, correction by experiment is performed with respect to patent document 2,
L = T · C / 4-0.2 (5)
It is. Here, T is the suction stroke cycle [s], and if T = 1 / fn is substituted into equation (5),
L = C / (4 · fn) −0.2 (6)
Get.
Japanese Patent Laid-Open No. 64-15489 (page 3, formula (1), page 5, FIG. 4) JP-A-4-103971 (page 2, formula (1)) JP-A-57-122192 (2nd page, formula (2))

しかしながら、従来のロータリ圧縮機では、主として吸込流路長さLの気柱共鳴に着目しており、ロータリ圧縮機特有のローラが吸込口を遮蔽する現象を考慮していない(ローラでの吸込口の遮蔽による冷媒圧力波の反射を考慮していない)。そのため式(2)、(4)、(6)に示したように共振回転数fnと吸込流路長さLの関係がそれぞれ異なり、実際の設計への適用が困難であるという課題があった。   However, the conventional rotary compressor mainly focuses on the air column resonance of the suction flow path length L, and does not consider the phenomenon that the roller unique to the rotary compressor shields the suction port (the suction port in the roller). Does not take into account the reflection of refrigerant pressure waves due to the shielding of Therefore, as shown in the equations (2), (4), and (6), the relationship between the resonance rotational speed fn and the suction flow path length L is different, and there is a problem that application to an actual design is difficult. .

本発明の目的は、ロータリ圧縮機特有のローラが吸込口を遮蔽する効果を理論的に考察して共振回転数fnと吸込流路長さLの関係を求め、共振現象をロータリ圧縮機や2シリンダロータリ圧縮機に有効活用することである。   The object of the present invention is to theoretically consider the effect of a roller specific to a rotary compressor to shield the suction port, to obtain the relationship between the resonance rotational speed fn and the suction flow path length L, and to determine the resonance phenomenon as a rotary compressor or 2 It is to make effective use of the cylinder rotary compressor.

前記課題を解決するために、本発明は主として次のような構成を採用する。
密閉容器内の上部に配置された電動機と、前記電動機に連結された回転軸を有する偏心部と、前記偏心部の外周に設けられたローラとシリンダとで形成される吸込室と、前記吸込室の吸込側に設けたアキュムレータと、前記アキュムレータ内に開口する吸込管と、前記吸込管と前記吸込室の吸込口を接続するシールサクションと、を備えたロータリ圧縮機であって、
前記吸込室の冷媒吸込充填率が最大となる共振現象を引き起こす前記ロータリ圧縮機の共振回転数を前記ロータリ圧縮機の最高回転数に限定し、前記吸込室の吸込終了時において前記吸込室の吸込側と吐出側とを隔てるベーンからみて前記ローラの回転中心と前記偏心部の中心とを結ぶ線分がなす回転角度を求め、前記吸込管の開放端から前記吸込口の開放端までの吸込流路長さは、前記限定したロータリ圧縮機の最高回転数と、前記回転角度とに基づいて決定する構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
An electric motor disposed in an upper part of the sealed container; an eccentric portion having a rotating shaft coupled to the electric motor; a suction chamber formed by a roller and a cylinder provided on an outer periphery of the eccentric portion; and the suction chamber A rotary compressor comprising: an accumulator provided on the suction side; a suction pipe that opens in the accumulator; and a seal suction that connects the suction pipe and a suction port of the suction chamber;
The resonance speed of the rotary compressor causing a resonance phenomenon that maximizes the refrigerant suction filling rate of the suction chamber is limited to the maximum speed of the rotary compressor, and the suction of the suction chamber at the end of the suction of the suction chamber A suction flow from the open end of the suction pipe to the open end of the suction port is obtained by obtaining a rotation angle formed by a line connecting the rotation center of the roller and the center of the eccentric part as seen from the vane separating the side and the discharge side The path length is determined based on the limited maximum rotational speed of the rotary compressor and the rotation angle.

また、密閉容器内の上部に配置された電動機と、前記電動機に連結された回転軸を有する偏心部と、前記偏心部の外周に設けられたローラとシリンダとで形成される吸込室と、前記吸込室の吸込側に設けたアキュムレータと、前記アキュムレータ内に開口する吸込管と、前記吸込管と前記吸込室の吸込口を接続するシールサクションと、を備えたロータリ圧縮機であって、
前記吸込管の開放端から前記吸込口の開放端までの吸込流路長さをL[m]とし、前記圧縮機の最高回転数をfm[Hz]とし、ガス冷媒の音速をC[m/s]とし、前記吸込室の吸込終了時において前記吸込室の吸込側と吐出側とを隔てるベーンからみて前記ローラの回転中心と前記偏心部の中心とを結ぶ線分がなす回転角度をθs[rad]とするとき、L=(π−θs)/(4π・fm)の関係が成立する構成とする。
An electric motor disposed in an upper part of the sealed container; an eccentric portion having a rotating shaft connected to the electric motor; a suction chamber formed by a roller and a cylinder provided on an outer periphery of the eccentric portion; A rotary compressor comprising an accumulator provided on the suction side of the suction chamber, a suction pipe that opens in the accumulator, and a seal suction that connects the suction pipe and a suction port of the suction chamber,
The suction flow path length from the open end of the suction pipe to the open end of the suction port is L [m], the maximum rotational speed of the compressor is fm [Hz], and the sound speed of the gas refrigerant is C [m / m s], and a rotation angle formed by a line segment connecting the rotation center of the roller and the center of the eccentric portion when viewed from the vane separating the suction side and the discharge side of the suction chamber at the end of the suction of the suction chamber is θs [ rad], the relationship of L = (π−θs) / (4π · fm) is established.

また、密閉容器内の上部に配置された電動機と、前記電動機に連結された回転軸を有する2つの偏心部と、前記回転軸が貫通する仕切板を介して設けられた前記2つの偏心部の外周にそれぞれ設けられたローラとシリンダとで形成される2つの吸込室と、前記2つの吸込室の吸込側に設けたアキュムレータと、前記アキュムレータ内に開口して曲げ部を有する略L字状の2つの吸込管と、前記2つの吸込管と前記2つの吸込室の吸込口を接続する2つのシールサクションと、を備えた縦型2シリンダロータリ圧縮機であって、
前記2つの吸込管はそれぞれ異なる経路を形成し、それぞれの吸込管の開放端からそれぞれの吸込口の開放端までの吸込流路長さを等しくしてそれぞれL[m]とし、前記圧縮機の最高回転数をfm[Hz]とし、ガス冷媒の音速をC[m/s]とし、前記2つの吸込室の吸込終了時においてそれぞれの吸込室の吸込側と吐出側とを隔てるベーンからみてそれぞれのローラの回転中心とそれぞれの偏心部の中心とを結ぶ線分がなす回転角度をθs[rad]とするとき、L=(π−θs)/(4π・fm)の関係が成立する構成とする。
In addition, an electric motor disposed in an upper portion of the sealed container, two eccentric portions having a rotating shaft connected to the electric motor, and the two eccentric portions provided via a partition plate through which the rotating shaft passes. Two suction chambers each formed by a roller and a cylinder respectively provided on the outer periphery, an accumulator provided on the suction side of the two suction chambers, and a substantially L-shape having a bent portion opened in the accumulator A vertical two-cylinder rotary compressor comprising two suction pipes, and two seal suctions connecting the two suction pipes and the suction ports of the two suction chambers,
The two suction pipes form different paths, and the suction flow path lengths from the open ends of the respective suction pipes to the open ends of the respective suction ports are made equal to L [m], respectively. The maximum number of revolutions is fm [Hz], the sound speed of the gas refrigerant is C [m / s], and each of the two suction chambers is viewed from the vane that separates the suction side and the discharge side at the end of the suction. When the rotation angle formed by the line segment connecting the rotation center of each roller and the center of each eccentric portion is θs [rad], the relationship L = (π−θs) / (4π · fm) is established. To do.

本発明によれば、ローラが吸込口を遮蔽する効果を含めて共振現象を有効活用するとともに、幅広い回転数範囲で圧縮機を効率的に運転することができる。   According to the present invention, it is possible to effectively utilize the resonance phenomenon including the effect that the roller shields the suction port, and to efficiently operate the compressor in a wide range of rotation speeds.

本発明の実施形態に係るロータリ圧縮機について図面を参照しながら以下詳細に説明する。第1の実施形態は図1〜図9を参照して、第2の実施形態は図10〜図12を参照して、第3の実施形態は図13を参照して説明する。   A rotary compressor according to an embodiment of the present invention will be described below in detail with reference to the drawings. The first embodiment will be described with reference to FIGS. 1 to 9, the second embodiment with reference to FIGS. 10 to 12, and the third embodiment with reference to FIG.

「第1の実施形態」
図1は本発明の第1の実施形態に係るロータリ圧縮機の縦断面図である。第1の実施形態は、冷媒R410Aを用いた空気調和機用の圧縮機である。圧縮機1は、底部6と蓋部7と胴部8からなる密閉容器3を備えている。密閉容器3内部の上方には、インバータで駆動されステータとロータを有する電動機4が設けられている。電動機4に連結された回転軸2は偏心部5を備え、端板部を備えた主軸受9と端板部を備えた凹状の副軸受19に軸支されている。その回転軸2に対して電動機4側から順に、主軸受9、略円筒状のシリンダ10、副軸受19、副軸受19の内部を密閉容器3の内部と隔壁するための略円板状の閉塞板20が積層され、ボルト等の締結要素(図示せず)で一体化されている。主軸受9は、胴部8の内壁に溶接によって固定されている。
“First Embodiment”
FIG. 1 is a longitudinal sectional view of a rotary compressor according to a first embodiment of the present invention. The first embodiment is a compressor for an air conditioner using a refrigerant R410A. The compressor 1 includes a sealed container 3 including a bottom part 6, a lid part 7, and a body part 8. An electric motor 4 driven by an inverter and having a stator and a rotor is provided above the inside of the sealed container 3. The rotating shaft 2 connected to the electric motor 4 includes an eccentric portion 5 and is pivotally supported by a main bearing 9 having an end plate portion and a concave sub-bearing 19 having an end plate portion. The main shaft 9, the substantially cylindrical cylinder 10, the sub-bearing 19, and the sub-bearing 19 are separated from the rotary shaft 2 in this order from the electric motor 4 side. The plates 20 are laminated and integrated with fastening elements (not shown) such as bolts. The main bearing 9 is fixed to the inner wall of the body portion 8 by welding.

吸込室30は、シリンダ10と、主軸受9の端板部と、偏心部5の外周に嵌め合わされた円筒状のローラ11と、副主軸受19の端板部とで構成される。また吸込室30は、図2から図6に示すように、コイルバネのような付勢力付与手段(図示せず)に連結された平板状のベーン28が、偏心部5の偏心運動に合わせて回転するローラ11の外周上を接触しながら進退運動することにより、吸込室30を吐出側の空間と隔壁している。   The suction chamber 30 includes a cylinder 10, an end plate portion of the main bearing 9, a cylindrical roller 11 fitted to the outer periphery of the eccentric portion 5, and an end plate portion of the sub main bearing 19. As shown in FIGS. 2 to 6, the suction chamber 30 has a flat vane 28 connected to an urging force applying means (not shown) such as a coil spring that rotates in accordance with the eccentric motion of the eccentric portion 5. The suction chamber 30 is separated from the discharge-side space by advancing and retreating while making contact with the outer periphery of the roller 11.

作動流体であるガス冷媒は、図1の矢印に示す通り、流入管25、アキュムレータ16内の網座22に設けられた流入穴24、吸込管18(流入管5に流入した冷媒は流入穴24を通して吸込管18に吸い込まれる)、シールサクション15、吸込口13を流れ、吸込室30へ吸い込まれる。吸込管18は、曲げ部32を有する略L字状である。また網座22の上流側には、冷媒中の異物を捕捉するための網21を設けている。網座22は、高さ方向に長いアキュムレータ16の容器17内に溶接されている。   As shown by the arrows in FIG. 1, the gas refrigerant that is a working fluid includes an inflow pipe 25, an inflow hole 24 provided in the mesh seat 22 in the accumulator 16, and a suction pipe 18 (the refrigerant that has flowed into the inflow pipe 5 flows into the inflow hole 24. And is sucked into the suction chamber 30 through the seal suction 15 and the suction port 13. The suction pipe 18 has a substantially L shape having a bent portion 32. Further, on the upstream side of the mesh seat 22, a mesh 21 for capturing foreign substances in the refrigerant is provided. The screen seat 22 is welded in the container 17 of the accumulator 16 that is long in the height direction.

さらにシリンダ10内で圧縮されたガス冷媒は、副軸受19と閉塞板20からなる内部空間14へ吐出され、貫通穴12と防音カバー27を通って密閉容器3内へ流れる。その後、電動機4の隙間を通って、流出管26から吐出される。   Further, the gas refrigerant compressed in the cylinder 10 is discharged into the internal space 14 including the auxiliary bearing 19 and the closing plate 20, and flows into the sealed container 3 through the through hole 12 and the soundproof cover 27. Thereafter, the liquid is discharged from the outflow pipe 26 through the gap of the electric motor 4.

次に、本実施形態の共振現象を、ローラ11と吸込流路における気柱共鳴の相互作用として図2から図6を用いて説明する。図2は第1の実施形態に係るロータリ圧縮機において時刻t=0のときの吸い込み状態を表す図である。図3は第1の実施形態に係るロータリ圧縮機において時刻t=L/Cのときの吸い込み状態を表す図である。図4は第1の実施形態に係るロータリ圧縮機において時刻t=2L/Cのときの吸い込み状態を表す図である。図5は第1の実施形態に係るロータリ圧縮機において時刻t=3L/Cのときの吸い込み状態を表す図である。図6は第1の実施形態に係るロータリ圧縮機において時刻t=4L/Cのときの吸い込み状態を表す図である。   Next, the resonance phenomenon of the present embodiment will be described with reference to FIGS. 2 to 6 as an interaction of air column resonance in the roller 11 and the suction flow path. FIG. 2 is a diagram illustrating a suction state at time t = 0 in the rotary compressor according to the first embodiment. FIG. 3 is a diagram illustrating a suction state at time t = L / C in the rotary compressor according to the first embodiment. FIG. 4 is a diagram illustrating a suction state at time t = 2L / C in the rotary compressor according to the first embodiment. FIG. 5 is a diagram illustrating a suction state at time t = 3 L / C in the rotary compressor according to the first embodiment. FIG. 6 is a diagram illustrating a suction state at time t = 4 L / C in the rotary compressor according to the first embodiment.

図2〜図6では簡略化のため、吸込流路内の圧力波(吸込配管内で発生している圧力変動波)を回転数に同期した周期的な矩形波で表す。さらに圧力波の位相に及ぼす影響が少ない曲げ部32や、アキュムレータ16は省略した。時間をt、吸込開始(片側は吸込終了)すなわちローラ11が吸込口13を遮蔽する偏心部5の回転角度をθsとする。ここで回転角度は、ベーン28の方向からのなす角である。換言すると、図2に示すθsは、吸込室の吸い込み終了時において、ベーン28からみてローラ11の回転中心と偏心部5の中心とを結ぶ線分がなす角度を云う(このθsを吸込室の吸い込み終了時における偏心部の回転角度と称する)。回転角度がθsで、時間tを0とする。また圧力波が伝播する方向は、吸込管18の開放端から吸込口13の開放端へ至る方向を正、逆方向を負とする。圧力波が伝播する速さは冷媒の音速Cであり、実施形態では173[m/s]である。   In FIG. 2 to FIG. 6, for simplification, the pressure wave in the suction channel (pressure fluctuation wave generated in the suction pipe) is represented by a periodic rectangular wave synchronized with the rotation speed. Furthermore, the bending part 32 and the accumulator 16 which have little influence on the phase of the pressure wave are omitted. Let time be t, and let the suction start (suction end on one side), that is, the rotation angle of the eccentric part 5 where the roller 11 shields the suction port 13 be θs. Here, the rotation angle is an angle formed from the direction of the vane 28. In other words, θs shown in FIG. 2 refers to an angle formed by a line segment connecting the rotation center of the roller 11 and the center of the eccentric portion 5 when viewed from the vane 28 at the end of the suction of the suction chamber (this θs is defined as the suction chamber). This is referred to as the rotation angle of the eccentric portion at the end of suction). The rotation angle is θs and the time t is 0. The direction in which the pressure wave propagates is positive in the direction from the open end of the suction pipe 18 to the open end of the suction port 13 and negative in the reverse direction. The speed at which the pressure wave propagates is the sonic speed C of the refrigerant, which is 173 [m / s] in the embodiment.

図2は回転角度がθs、時間tが0の状態を示す。このとき吸込室30の吸込体積はほぼ0である。吸込口13の閉塞端に至る正方向に伝播する圧力波の大きさを(+P)とする。ここで+の記号は、絶対圧力の時間平均値に対する圧力波の正負を表す。図2では圧力波(+P)がローラ11により同位相で反射され、負の方向(図2に示す開放端方向)へ伝播する。   FIG. 2 shows a state where the rotation angle is θs and the time t is zero. At this time, the suction volume of the suction chamber 30 is substantially zero. The magnitude of the pressure wave propagating in the positive direction reaching the closed end of the suction port 13 is defined as (+ P). Here, the symbol “+” represents the sign of the pressure wave with respect to the time average value of the absolute pressure. In FIG. 2, the pressure wave (+ P) is reflected in the same phase by the roller 11 and propagates in the negative direction (the open end direction shown in FIG. 2).

図3は、時間tがL/Cの状態を示す。ここで、θ=2πf・tで、t=L/Cとすると、回転角度はθs+(2πf)L/Cである。粘性で減衰した圧力波が吸込管18の開放端に至り、開放端側容量が大であるので逆位相で反射され負の圧力波が正の方向へ伝播する。ここで開放端ではアキュムレータ16の体積が吸込室30の吸込体積よりも十分大きいので、正味の圧力波が0である(開放端では図3に示す圧力波(+)と(−)が相殺されて0となる)。   FIG. 3 shows a state where the time t is L / C. Here, when θ = 2πf · t and t = L / C, the rotation angle is θs + (2πf) L / C. The pressure wave attenuated by viscosity reaches the open end of the suction pipe 18, and since the open end side capacity is large, it is reflected in an opposite phase and a negative pressure wave propagates in the positive direction. Here, since the volume of the accumulator 16 is sufficiently larger than the suction volume of the suction chamber 30 at the open end, the net pressure wave is 0 (the pressure waves (+) and (−) shown in FIG. 3 are canceled at the open end). 0).

図4は、時間tが2L/Cの状態を示す。回転角度は、θs+(4πf)L/Cである。減衰した圧力波(図2に示す圧力波(−)が、図4の点線で示すように減衰して吸込口13で実線の圧力波となる)が、吸込室30に至る。同時に圧力波がローラ11やシリンダ10により同位相で反射され、負の圧力波(図4に示す斜め斜線で示した圧力波成分)が負の方向へ伝播する。   FIG. 4 shows a state where the time t is 2 L / C. The rotation angle is θs + (4πf) L / C. The attenuated pressure wave (the pressure wave (−) shown in FIG. 2 attenuates as shown by the dotted line in FIG. 4 and becomes a solid pressure wave at the suction port 13) reaches the suction chamber 30. At the same time, the pressure wave is reflected in the same phase by the roller 11 and the cylinder 10, and the negative pressure wave (the pressure wave component indicated by the oblique line shown in FIG. 4) propagates in the negative direction.

一方、吸込体積の時間変化に伴い、図4に示す負の膨張波が発生し、上述した負の圧力波とともに負の方向へ伝播する。ここで、膨脹波というのは、図4に示すように回転角度が増加したときに吸込室30に負圧が発生するがこの負圧を膨脹波といい、圧力波の一種であると云える。   On the other hand, with the time change of the suction volume, the negative expansion wave shown in FIG. 4 is generated and propagates in the negative direction together with the negative pressure wave described above. Here, the expansion wave generates a negative pressure in the suction chamber 30 when the rotation angle is increased as shown in FIG. 4. This negative pressure is called an expansion wave, and can be said to be a kind of pressure wave. .

なお、後述する図7の説明で触れるが、ベーン28からの回転角度がπのときに、吸込室30の吸込体積の変化率は最大になるので、図4に示した回転角度がπと一致するときに共振現象が発生するのであり、図4の回転角度の例ではπからズレが発生しているがこのズレは圧縮機の回転数次第で決まるものである。換言すると、図2から図6に至る圧力波(+P)の周期は、吸込流路長さLと冷媒音速Cで決まるので、図4に示す状態が回転角度πになるか否かは圧縮機の回転数f次第である。   As will be described later with reference to FIG. 7, when the rotation angle from the vane 28 is π, the rate of change of the suction volume of the suction chamber 30 is maximized, so the rotation angle shown in FIG. In this example, a deviation occurs from π in the example of the rotation angle shown in FIG. 4, but this deviation is determined depending on the rotation speed of the compressor. In other words, since the period of the pressure wave (+ P) from FIG. 2 to FIG. 6 is determined by the suction flow path length L and the refrigerant sound speed C, whether or not the state shown in FIG. Depending on the rotation speed f.

図5は、時間tが3L/Cの状態を示す。このときの回転角度は、θs+(6πf)L/Cである。減衰した負の圧力波が吸込管18の開放端において逆位相で反射され、正の圧力波が正の方向へ伝播する。   FIG. 5 shows a state where the time t is 3 L / C. The rotation angle at this time is θs + (6πf) L / C. The attenuated negative pressure wave is reflected in the opposite phase at the open end of the suction pipe 18, and the positive pressure wave propagates in the positive direction.

図6は、時間tが4L/Cの吸込終了時の状態を示す。減衰した圧力波が吸込室端13に至る。圧力波は周期的に変動するので、図2と同じに回転角度がθs、圧力波の大きさが(+P)となる。   FIG. 6 shows a state at the end of the suction at time t of 4 L / C. The attenuated pressure wave reaches the suction chamber end 13. Since the pressure wave fluctuates periodically, the rotation angle is θs and the magnitude of the pressure wave is (+ P) as in FIG.

以上のことから、回転角度θsにおける吸込口13の圧力波(+P)が、吸込室30の吸込体積変化で発生する膨張波と圧力波の粘性減衰によりに定まることが分かる。通常、高回転数領域では粘性減衰が大きいため、その大きい減衰をもって吸込流路長さLで往復される圧力波に比べて、膨脹波の影響が支配的となる(圧力波(+P)にとって)。そのため膨張波の大きさに伴い圧力波(+P)が増大する。このように、膨脹波の大きさの影響を受けた圧力波(+P)が極大値のとき、冷媒の密度が増大して、吸込終了時の吸込室内の冷媒質量が極大となる。すなわち容積効率(吸い込み充填率)が最大となり、共振現象となる。   From the above, it can be seen that the pressure wave (+ P) at the suction port 13 at the rotation angle θs is determined by the expansion wave generated by the suction volume change of the suction chamber 30 and the viscous damping of the pressure wave. In general, since the viscous damping is large in the high rotation speed region, the influence of the expansion wave becomes dominant (for the pressure wave (+ P)) as compared with the pressure wave reciprocated by the suction flow path length L with the large damping. . Therefore, the pressure wave (+ P) increases with the magnitude of the expansion wave. Thus, when the pressure wave (+ P) affected by the magnitude of the expansion wave has a maximum value, the density of the refrigerant increases, and the refrigerant mass in the suction chamber at the end of the suction reaches a maximum. That is, the volumetric efficiency (suction filling rate) is maximized, resulting in a resonance phenomenon.

一方、膨張波の大きさは、運動量の保存則から、吸込体積の時間変化が極大のときに極大となる。図7は第1の実施形態に係るロータリ圧縮機の回転角度と吸込体積の時間変化率の関係を表す図である。図7に示すように回転角度がπのとき(ベーン28からの角度がπ)、吸込体積の時間変化率が極大となる。したがって、共振回転数fnと吸込流路長さLは、図4からπ=θs+(4π・fn)L/Cの関係が成り立つ。これを変形すれば、
L=(π−θs)/(4π・fn)…(7)
である。
On the other hand, the magnitude of the expansion wave becomes a maximum when the time change of the suction volume is a maximum from the law of conservation of momentum. FIG. 7 is a diagram showing the relationship between the rotation angle of the rotary compressor according to the first embodiment and the time change rate of the suction volume. As shown in FIG. 7, when the rotation angle is π (the angle from the vane 28 is π), the time change rate of the suction volume becomes a maximum. Therefore, the relationship of π = θs + (4π · fn) L / C is established between the resonance speed fn and the suction flow path length L from FIG. If this is transformed,
L = (π−θs) / (4π · fn) (7)
It is.

本実施形態の特徴を表す式(7)は、図8に示すように従来の式(2)、(4)、(6)のいずれともその特性が異なっている。本実施形態に係るロータリ圧縮機の実機は、図8に示す式(7)と良く一致しており、ロータリ圧縮機特有のローラ11が吸込口13を遮蔽する効果を生かした設計となっている。図8は第1の実施形態に係るロータリ圧縮機の共振回転数fnと吸込流路長さLの関係を表す図である。図8に示す実験では、押除量Vが13[mL]、吸込管18の内径が11[mm]、吸込流路長さLが0.37[m]、吸込圧力が0.61[MPa]、吸込温度が−5[℃]、吐出圧力が2.8[MPa]である。またシールサクション15の最小内径が10[mm]であり、吸込管18の内径に対して1[mm]程度の微小な差とした。したがってこの最小内径での流体損失や、音響インピーダンスの差は無視できる。曲げ部32の曲率半径は、25[mm]である。   As shown in FIG. 8, the characteristic of the present embodiment (7) is different from that of the conventional expressions (2), (4), and (6). The actual machine of the rotary compressor according to the present embodiment is in good agreement with the equation (7) shown in FIG. 8, and is designed to take advantage of the effect that the roller 11 unique to the rotary compressor shields the suction port 13. . FIG. 8 is a diagram illustrating the relationship between the resonance rotational speed fn and the suction flow path length L of the rotary compressor according to the first embodiment. In the experiment shown in FIG. 8, the pushing amount V is 13 [mL], the inner diameter of the suction pipe 18 is 11 [mm], the suction flow path length L is 0.37 [m], and the suction pressure is 0.61 [MPa. The suction temperature is −5 [° C.] and the discharge pressure is 2.8 [MPa]. Further, the minimum inner diameter of the seal suction 15 is 10 [mm], which is a minute difference of about 1 [mm] with respect to the inner diameter of the suction pipe 18. Therefore, the fluid loss at this minimum inner diameter and the difference in acoustic impedance are negligible. The radius of curvature of the bent portion 32 is 25 [mm].

次に、本実施形態の圧縮機の回転数と圧縮機の効率(全断熱効率×モータ効率)の関係を図9に示す。図9によると、回転数が共振回転数fn以上では全断熱効率(圧縮機エネルギ効率)が急激に低下する。すなわち回転数に対する全断熱効率の勾配が、共振回転数fnで変曲する。一般に全断熱効率は、冷媒の漏れ損失や流体損失、摺動部品間の摩擦損失に分けられる。共振回転数fnまでは回転数の増大に伴い容積効率が増大するから、摩擦損失の増大が相殺され、全断熱効率の低下が抑制される。回転数が共振回転数fn以上では、容積効率の低下に伴い摩擦損失の影響が顕著となるため、全断熱効率の勾配が大きくなる。   Next, FIG. 9 shows the relationship between the rotational speed of the compressor of this embodiment and the efficiency of the compressor (total adiabatic efficiency × motor efficiency). According to FIG. 9, the total adiabatic efficiency (compressor energy efficiency) sharply decreases when the rotational speed is equal to or higher than the resonant rotational speed fn. That is, the gradient of the total adiabatic efficiency with respect to the rotational speed is inflected at the resonant rotational speed fn. Generally, the total heat insulation efficiency is divided into refrigerant leakage loss, fluid loss, and friction loss between sliding parts. Since the volumetric efficiency increases as the rotational speed increases up to the resonance rotational speed fn, the increase in friction loss is offset and the decrease in the total adiabatic efficiency is suppressed. When the rotational speed is equal to or higher than the resonant rotational speed fn, the effect of friction loss becomes significant as the volumetric efficiency decreases, so the gradient of the total adiabatic efficiency increases.

本実施形態では、共振回転数fnを最高回転数fmとしたため、図9の勾配が緩やかで効率の高い領域で圧縮機を運転できる。ここで最高回転数fmは、起動時の過渡応答を除き安定して動作する最高回転数である。具体的には、空気調和機の低温暖房運転時の最高回転数である。低温暖房運転とは、外気の乾球温度が2[℃]、湿球温度が1[℃]、室内の乾球温度が20[℃]、湿球温度が10[℃]の条件である。   In this embodiment, since the resonance rotational speed fn is set to the maximum rotational speed fm, the compressor can be operated in a region where the gradient in FIG. 9 is gentle and the efficiency is high. Here, the maximum number of revolutions fm is the maximum number of revolutions that operates stably except for a transient response at the time of startup. Specifically, it is the maximum number of revolutions during the low-temperature heating operation of the air conditioner. The low temperature heating operation is a condition in which the dry bulb temperature of the outside air is 2 [° C.], the wet bulb temperature is 1 [° C.], the indoor dry bulb temperature is 20 [° C.], and the wet bulb temperature is 10 [° C.].

以上のことから本実施形態は、ロータリ圧縮機の最高回転数fmにおいて共振現象を発生する吸込流路長さLとしたため、より少ない回転数で、高い容積効率を得ることができる。   From the above, in this embodiment, since the suction flow path length L that generates a resonance phenomenon at the maximum rotational speed fm of the rotary compressor is set, high volumetric efficiency can be obtained with a smaller rotational speed.

「第2の実施形態」
本発明の第2の実施形態に係る縦型2シリンダロータリ圧縮機を、図10から図12を用いて説明する。図10は本発明の第2の実施形態に係る縦型2シリンダロータリ圧縮機の縦断面図である。第2の実施形態は、電動機3と逆側に第1の吸込室30a、電動機3側に第2の吸込室30bを備え、各吸込室30に第1の実施形態の構造を適用したものである。第1の吸込室30aは、シリンダ10aと、副軸受19の端板部と、偏心部5aの外周に嵌め合わされた円筒状のローラ11aと、仕切板31とで構成される。第2の吸込室30bは、シリンダ10bと、主軸受9の端板部と、偏心部5bの外周に嵌め合わされた円筒状のローラ11bと、仕切板31とで構成される。
“Second Embodiment”
A vertical two-cylinder rotary compressor according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 10 is a longitudinal sectional view of a vertical two-cylinder rotary compressor according to the second embodiment of the present invention. In the second embodiment, the first suction chamber 30a is provided on the opposite side of the motor 3 and the second suction chamber 30b is provided on the motor 3 side, and the structure of the first embodiment is applied to each suction chamber 30. is there. The first suction chamber 30a includes a cylinder 10a, an end plate portion of the auxiliary bearing 19, a cylindrical roller 11a fitted on the outer periphery of the eccentric portion 5a, and a partition plate 31. The second suction chamber 30b includes a cylinder 10b, an end plate portion of the main bearing 9, a cylindrical roller 11b fitted on the outer periphery of the eccentric portion 5b, and a partition plate 31.

第1の吸込室30aを構成するシリンダ10a、ローラ11a、偏心部5aは、第2の吸込室30bを構成するシリンダ10b、ローラ11b、偏心部5bと同形である。各吸込室30aと30bの吸込終了の回転角度θsや、吸込口13aと13bの内径や配置は、それぞれ同じ値とした。したがって同一の部材を、同一の加工器具で製作できる。ただし図10に示したように偏心部5aと偏心部5bは、吸込行程が180゜異なるように逆方向に偏心させた。このような構成は、圧縮行程において回転軸2にかかる負荷トルクを逆位相にして分散し、圧縮機の損失や振動を抑制するためである。   The cylinder 10a, the roller 11a, and the eccentric portion 5a that constitute the first suction chamber 30a have the same shape as the cylinder 10b, the roller 11b, and the eccentric portion 5b that constitute the second suction chamber 30b. The suction rotation angles θs of the suction chambers 30a and 30b and the inner diameters and arrangements of the suction ports 13a and 13b were set to the same value. Therefore, the same member can be manufactured with the same processing tool. However, as shown in FIG. 10, the eccentric part 5a and the eccentric part 5b were eccentric in opposite directions so that the suction strokes differed by 180 °. This is because the load torque applied to the rotary shaft 2 in the compression stroke is dispersed in the opposite phase to suppress the loss and vibration of the compressor.

各吸込室30は、それぞれ独立した2つの吸込管18に接続されている。第1の吸込室が第2の吸込室の下側にあり、かつ第1の吸込管18aが第2の吸込管18bよりも圧縮機の外周側に配置した。各吸込室30について、式(7)に基づき圧縮機の最高回転数fm[Hz]で共振が生じるように吸込流路長さLを設定した。本実施形態では、第1、第2の吸込室ともに吸込終了の回転角度θsが0.6[rad]、共振回転数fnが120[Hz]であるので、吸込流路長さLは式(7)に基づき0.3[m]とした。また吸込管18の曲げ部32の曲率半径は、それぞれ同じ値とした。それぞれ吸込流路長さLを同じとしたため、第1の吸込管18aにおける開放端の高さが、第2の吸込管18bにおける開放端の高さよりも低い。その差は約40[mm]であり、吸込管13の内径に対して約4倍と大きな値である。   Each suction chamber 30 is connected to two independent suction pipes 18. The first suction chamber was on the lower side of the second suction chamber, and the first suction pipe 18a was disposed on the outer peripheral side of the compressor with respect to the second suction pipe 18b. For each suction chamber 30, the suction flow path length L was set based on the formula (7) so that resonance occurred at the maximum compressor speed fm [Hz]. In the present embodiment, the suction end rotation angle θs is 0.6 [rad] and the resonance rotational speed fn is 120 [Hz] in both the first and second suction chambers. Based on 7), it was set to 0.3 [m]. Moreover, the curvature radius of the bending part 32 of the suction pipe 18 was made into the same value, respectively. Since the suction channel length L is the same, the open end height of the first suction pipe 18a is lower than the open end height of the second suction pipe 18b. The difference is about 40 [mm], which is about four times as large as the inner diameter of the suction pipe 13.

従来の縦型2シリンダロータリ圧縮機では、加工の容易さから2つの吸込管の開放端は同じ高さであり、そのため各吸込室への吸込流路長さもそれぞれ異なっていた。   In the conventional vertical two-cylinder rotary compressor, the open ends of the two suction pipes have the same height for ease of processing, and therefore the length of the suction flow path to each suction chamber is also different.

本実施形態によれば、吸込流路長さLを同じとしているため、同一回転数で共振現象を活用でき圧縮機全体の容積効率を向上できる。図11は第2の実施形態に係る縦型2シリンダロータリ圧縮機の回転数と容積効率との関係を示す図である。従来は2つの吸込管の開放端を同じ高さとしていたため、第1の吸込管が第2の吸込管よりも長くなり、吸込流路長さが異なっていた。そのため式(7)より、共振回転数fnが第1の吸込室と第2の吸込室で異なっていたため、圧縮機全体の容積効率が低下していた。本実施形態では、式(7)に従い、第1、第2の吸込室の容積効率を同時に最大とするため、圧縮機全体の容積効率をより高めることができる。   According to this embodiment, since the suction flow path length L is the same, the resonance phenomenon can be utilized at the same rotation speed, and the volumetric efficiency of the entire compressor can be improved. FIG. 11 is a diagram showing the relationship between the rotational speed and the volumetric efficiency of the vertical two-cylinder rotary compressor according to the second embodiment. Conventionally, since the open ends of the two suction pipes have the same height, the first suction pipe is longer than the second suction pipe, and the suction flow path lengths are different. Therefore, from equation (7), the resonance speed fn is different between the first suction chamber and the second suction chamber, so that the volumetric efficiency of the entire compressor is lowered. In the present embodiment, the volume efficiency of the first and second suction chambers is simultaneously maximized according to the equation (7), so that the volume efficiency of the entire compressor can be further increased.

図12は第2の実施形態に係る縦型2シリンダロータリ圧縮機の回転数と全断熱効率の関係を示す図である。図9に示した特性から、従来の2シリンダロータリ圧縮機では、各吸込室の吸込流路長さが異なるため、圧縮機全体の共振回転数fnにおいて全断熱効率が低下していた。本実施形態では吸込流路長さLを同じとしたので、共振回転数fnでの全断熱効率を高めることができる。さらに共振回転数fnを最高回転数fmとしたため、図12に示す全断熱効率が高い回転数範囲で圧縮機を運転することができる。   FIG. 12 is a diagram showing the relationship between the rotational speed of the vertical two-cylinder rotary compressor according to the second embodiment and the total adiabatic efficiency. From the characteristics shown in FIG. 9, in the conventional two-cylinder rotary compressor, since the suction flow path lengths of the respective suction chambers are different, the total adiabatic efficiency is reduced at the resonance rotational speed fn of the entire compressor. In this embodiment, since the suction flow path length L is the same, the total heat insulation efficiency at the resonance rotational speed fn can be increased. Further, since the resonance rotational speed fn is set to the maximum rotational speed fm, the compressor can be operated in a rotational speed range in which the total adiabatic efficiency is high as shown in FIG.

「第3の実施形態」
本発明の第3の実施形態に係る縦型2シリンダロータリ圧縮機について、図13を参照しながら説明する。第3の実施形態は、第2の実施形態とほぼ同様の構成であるため、主な相違点を中心に述べる。
“Third Embodiment”
A vertical two-cylinder rotary compressor according to a third embodiment of the present invention will be described with reference to FIG. Since the third embodiment has substantially the same configuration as the second embodiment, the description will focus on the main differences.

第3の実施形態では、第1の吸込管13aの曲げ部32aの曲率半径Raを50[mm]、第2の吸込管13bの曲げ部32bの曲率半径Rbを12[mm]として、それぞれの吸込流路長さLを式(7)に基づいて同じ値とした。第1の曲率半径Raを、第2の曲率半径Rbよりも大きくしたので、同じ吸込流路長さLを設定する場合に、本実施形態では、第1と第2の吸込管における開放端の高さの差を小さくできる。具体的には両者の差は約20[mm]であり、第2の実施形態の構造よりも約20[mm]差が小さくなっている。   In the third embodiment, the curvature radius Ra of the bent portion 32a of the first suction pipe 13a is set to 50 [mm], and the curvature radius Rb of the bent portion 32b of the second suction pipe 13b is set to 12 [mm]. The suction flow path length L was set to the same value based on the formula (7). Since the first curvature radius Ra is larger than the second curvature radius Rb, when setting the same suction flow path length L, in this embodiment, the open ends of the first and second suction pipes The difference in height can be reduced. Specifically, the difference between the two is about 20 [mm], and the difference is about 20 [mm] smaller than the structure of the second embodiment.

第2の実施形態では図10に示したように、第1の吸込管18aにおける開放端の高さが低いため、流入穴24からの距離が大きい。そのため、第2の実施形態を冷媒封入量が多い空気調和機に適用した場合、圧縮機の起動時に液冷媒とガス冷媒が流入管25から流れてくると、直接、吸込管18aから液冷媒を吸入する可能性があった。   In the second embodiment, as shown in FIG. 10, the distance from the inflow hole 24 is large because the height of the open end of the first suction pipe 18a is low. Therefore, when the second embodiment is applied to an air conditioner with a large amount of refrigerant filled, when the liquid refrigerant and the gas refrigerant flow from the inlet pipe 25 when the compressor is started, the liquid refrigerant is directly discharged from the suction pipe 18a. There was a possibility of inhalation.

なお、冷媒が吸込管18に向けて流れる流入穴24は、アキュムレータ16の内壁に固定された平板状の網座22の外周側に近い箇所に複数個設けられ、吸込管18の上方開放端は流入穴24から外れた内周側に配置されているのが通常の配置構成である。この配置構成を前提とすると、特に、図10に示した第1の吸込管18aは流入穴24から離れているため、液冷媒を吸入する虞があった。   Note that a plurality of inflow holes 24 through which the refrigerant flows toward the suction pipe 18 are provided near the outer peripheral side of the flat screen seat 22 fixed to the inner wall of the accumulator 16, and the upper open end of the suction pipe 18 is It is a normal arrangement configuration that is arranged on the inner peripheral side out of the inflow hole 24. Assuming this arrangement, in particular, the first suction pipe 18a shown in FIG.

これに対して、第3の実施形態では、曲げ部32aの曲率半径Raを大きくして第1の吸込管18aにおける開放端の高さが高くなるため(図10に比べて)、液冷媒の吸入を抑制する構造となっている。さらに、第3の実施形態では、図13に示したように網座22の突起23を拡大して網座の高さを下げ、第1の吸込管18aにより近づける構造としたため、さらに液冷媒の吸入を抑制する。   On the other hand, in the third embodiment, the radius of curvature Ra of the bent portion 32a is increased and the height of the open end of the first suction pipe 18a is increased (compared to FIG. 10). It has a structure that suppresses inhalation. Furthermore, in the third embodiment, as shown in FIG. 13, the projection 23 of the mesh seat 22 is enlarged to lower the height of the mesh seat, and the structure closer to the first suction pipe 18a. Suppress inhalation.

一方、第2の吸込管18bは突起23内に開口しているので、アキュムレータ16内に滞留したガス冷媒を吸い込む際に、拡大した突起形状によって吸込管18bによる吸い込みの際の流体損失を生じない構造とした。なお、図13では第2の吸込管18bの開放端を平板状網座の突起(凸形状部)内に収めるように図示しているが、これに限らず、第1の吸込管18aの開放端も凸形状部内に収めるようにしてもよい。したがって、第3の実施形態では、第2の実施形態の効果を生かしつつ、液冷媒の吸込に対する信頼性を高めることができる。   On the other hand, since the second suction pipe 18b is opened in the protrusion 23, when the gas refrigerant staying in the accumulator 16 is sucked, no fluid loss occurs when the suction pipe 18b sucks due to the enlarged protrusion shape. The structure. In FIG. 13, the open end of the second suction pipe 18b is shown so as to be accommodated in the projection (convex shape portion) of the flat screen seat. However, the present invention is not limited thereto, and the first suction pipe 18a is opened. The ends may also be accommodated in the convex portion. Therefore, in the third embodiment, it is possible to improve the reliability with respect to the suction of the liquid refrigerant while making use of the effects of the second embodiment.

本発明の第1の実施形態に係るロータリ圧縮機の縦断面図である。It is a longitudinal section of the rotary compressor concerning a 1st embodiment of the present invention. 第1の実施形態に係るロータリ圧縮機において時刻t=0のときの吸い込み状態を表す図である。It is a figure showing the suction state when time t = 0 in the rotary compressor concerning a 1st embodiment. 第1の実施形態に係るロータリ圧縮機において時刻t=L/Cのときの吸い込み状態を表す図である。It is a figure showing the suction state when time t = L / C in the rotary compressor which concerns on 1st Embodiment. 第1の実施形態に係るロータリ圧縮機において時刻t=2L/Cのときの吸い込み状態を表す図である。It is a figure showing the suction state at the time of t = 2L / C in the rotary compressor which concerns on 1st Embodiment. 第1の実施形態に係るロータリ圧縮機において時刻t=3L/Cのときの吸い込み状態を表す図である。It is a figure showing the suction state at the time t = 3L / C in the rotary compressor which concerns on 1st Embodiment. 第1の実施形態に係るロータリ圧縮機において時刻t=4L/Cのときの吸い込み状態を表す図である。It is a figure showing the suction state at the time t = 4L / C in the rotary compressor which concerns on 1st Embodiment. 第1の実施形態に係るロータリ圧縮機の回転角度と吸込体積の時間変化率の関係を表す図である。It is a figure showing the relationship between the rotation angle of the rotary compressor which concerns on 1st Embodiment, and the time change rate of a suction volume. 第1の実施形態に係るロータリ圧縮機の共振回転数fnと吸込流路長さLの関係を表す図である。It is a figure showing the relationship between the resonant rotation speed fn and the suction flow path length L of the rotary compressor which concerns on 1st Embodiment. 第1の実施形態に係るロータリ圧縮機の回転数と全断熱効率の関係を表す図である。It is a figure showing the relationship between the rotation speed of the rotary compressor which concerns on 1st Embodiment, and total heat insulation efficiency. 本発明の第2の実施形態に係る縦型2シリンダロータリ圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the vertical 2 cylinder rotary compressor which concerns on the 2nd Embodiment of this invention. 第2の実施形態に係る縦型2シリンダロータリ圧縮機の回転数と容積効率との関係を示す図である。It is a figure which shows the relationship between the rotation speed and volumetric efficiency of the vertical 2 cylinder rotary compressor which concerns on 2nd Embodiment. 第2の実施形態に係る縦型2シリンダロータリ圧縮機の回転数と全断熱効率の関係を表す図である。It is a figure showing the relationship between the rotation speed of the vertical type 2 cylinder rotary compressor which concerns on 2nd Embodiment, and total heat insulation efficiency. 本発明の第3の実施形態に係る縦型2シリンダロータリ圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the vertical type 2 cylinder rotary compressor which concerns on the 3rd Embodiment of this invention. 従来技術に関するロータリ圧縮機の回転数と容積効率の関係を表す図である。It is a figure showing the relationship between the rotation speed and volumetric efficiency of the rotary compressor regarding a prior art.

符号の説明Explanation of symbols

1 圧縮機
2 回転軸
3 密閉容器
4 電動機
5 偏心部
10 シリンダ
11 ローラ
12 貫通孔
13 吸込口
14 内部空間
15 シールサクション
16 アキュムレータ
18 吸込管
20 閉塞板
21 網
22 網座
23 突起(凸形状部)
24 流入穴
30 吸込室
31 仕切板
32 吸込管曲げ部
DESCRIPTION OF SYMBOLS 1 Compressor 2 Rotating shaft 3 Sealed container 4 Electric motor 5 Eccentric part 10 Cylinder 11 Roller 12 Through hole 13 Suction port 14 Internal space 15 Seal suction 16 Accumulator 18 Suction pipe 20 Closure plate 21 Net 22 Net seat 23 Projection (convex shape part)
24 Inflow hole 30 Suction chamber 31 Partition plate 32 Suction pipe bending part

Claims (5)

密閉容器内の上部に配置された電動機と、前記電動機に連結された回転軸を有する偏心部と、前記偏心部の外周に設けられたローラとシリンダとで形成される吸込室と、前記吸込室の吸込側に設けたアキュムレータと、前記アキュムレータ内に開口する吸込管と、前記吸込管と前記吸込室の吸込口を接続するシールサクションと、を備えたロータリ圧縮機であって、
前記吸込室の冷媒吸込充填率が最大となる共振現象を引き起こす前記ロータリ圧縮機の共振回転数を前記ロータリ圧縮機の最高回転数に限定し、
前記吸込室の吸込終了時において前記吸込室の吸込側と吐出側とを隔てるベーンからみて前記ローラの回転中心と前記偏心部の中心とを結ぶ線分がなす回転角度を求め、
前記吸込管の開放端から前記吸込口の開放端までの吸込流路長さは、前記限定したロータリ圧縮機の最高回転数と、前記回転角度とに基づいて決定する
ことを特徴とするロータリ圧縮機。
An electric motor disposed in an upper part of the sealed container; an eccentric portion having a rotating shaft coupled to the electric motor; a suction chamber formed by a roller and a cylinder provided on an outer periphery of the eccentric portion; and the suction chamber A rotary compressor comprising: an accumulator provided on the suction side; a suction pipe that opens in the accumulator; and a seal suction that connects the suction pipe and a suction port of the suction chamber;
Limiting the rotational speed of the rotary compressor that causes a resonance phenomenon that maximizes the refrigerant suction filling rate of the suction chamber to the maximum rotational speed of the rotary compressor;
When the suction of the suction chamber is completed, a rotation angle formed by a line segment connecting the rotation center of the roller and the center of the eccentric portion as seen from the vane separating the suction side and the discharge side of the suction chamber is obtained.
The length of the suction flow path from the open end of the suction pipe to the open end of the suction port is determined based on the maximum number of rotations of the limited rotary compressor and the rotation angle. Machine.
密閉容器内の上部に配置された電動機と、前記電動機に連結された回転軸を有する偏心部と、前記偏心部の外周に設けられたローラとシリンダとで形成される吸込室と、前記吸込室の吸込側に設けたアキュムレータと、前記アキュムレータ内に開口する吸込管と、前記吸込管と前記吸込室の吸込口を接続するシールサクションと、を備えたロータリ圧縮機であって、
前記吸込管の開放端から前記吸込口の開放端までの吸込流路長さをL[m]とし、前記圧縮機の最高回転数をfm[Hz]とし、ガス冷媒の音速をC[m/s]とし、前記吸込室の吸込終了時において前記吸込室の吸込側と吐出側とを隔てるベーンからみて前記ローラの回転中心と前記偏心部の中心とを結ぶ線分がなす回転角度をθs[rad]とするとき、
L=(π−θs)/(4π・fm)
の関係が成立する
ことを特徴とするロータリ圧縮機。
An electric motor disposed in an upper part of the sealed container; an eccentric portion having a rotating shaft coupled to the electric motor; a suction chamber formed by a roller and a cylinder provided on an outer periphery of the eccentric portion; and the suction chamber A rotary compressor comprising: an accumulator provided on the suction side; a suction pipe that opens in the accumulator; and a seal suction that connects the suction pipe and a suction port of the suction chamber;
The suction flow path length from the open end of the suction pipe to the open end of the suction port is L [m], the maximum rotational speed of the compressor is fm [Hz], and the sound speed of the gas refrigerant is C [m / m s], and a rotation angle formed by a line segment connecting the rotation center of the roller and the center of the eccentric portion when viewed from the vane separating the suction side and the discharge side of the suction chamber at the end of the suction of the suction chamber is θs [ rad]
L = (π−θs) / (4π · fm)
The rotary compressor is characterized in that the relationship is established.
密閉容器内の上部に配置された電動機と、前記電動機に連結された回転軸を有する2つの偏心部と、前記回転軸が貫通する仕切板を介して設けられた前記2つの偏心部の外周にそれぞれ設けられたローラとシリンダとで形成される2つの吸込室と、前記2つの吸込室の吸込側に設けたアキュムレータと、前記アキュムレータ内に開口して曲げ部を有する略L字状の2つの吸込管と、前記2つの吸込管と前記2つの吸込室の吸込口を接続する2つのシールサクションと、を備えた縦型2シリンダロータリ圧縮機であって、
前記2つの吸込管はそれぞれ異なる経路を形成し、それぞれの吸込管の開放端からそれぞれの吸込口の開放端までの吸込流路長さを等しくしてそれぞれL[m]とし、前記圧縮機の最高回転数をfm[Hz]とし、ガス冷媒の音速をC[m/s]とし、前記2つの吸込室の吸込終了時においてそれぞれの吸込室の吸込側と吐出側とを隔てるベーンからみてそれぞれのローラの回転中心とそれぞれの偏心部の中心とを結ぶ線分がなす回転角度をθs[rad]とするとき、
L=(π−θs)/(4π・fm)
の関係が成立する
ことを特徴とする縦型2シリンダロータリ圧縮機。
On the outer periphery of the two eccentric parts provided via an electric motor arranged at the upper part in the sealed container, two eccentric parts having a rotating shaft connected to the electric motor, and a partition plate through which the rotating shaft passes. Two suction chambers each formed by a roller and a cylinder provided, an accumulator provided on the suction side of the two suction chambers, and two substantially L-shaped openings opened in the accumulator and having bent portions. A vertical two-cylinder rotary compressor comprising a suction pipe, and two seal suctions connecting the two suction pipes and the suction ports of the two suction chambers,
The two suction pipes form different paths, and the suction flow path lengths from the open ends of the respective suction pipes to the open ends of the respective suction ports are made equal to L [m], respectively. The maximum number of revolutions is fm [Hz], the sound speed of the gas refrigerant is C [m / s], and each of the two suction chambers is viewed from the vane that separates the suction side and the discharge side at the end of the suction. When the rotation angle formed by the line segment connecting the rotation center of each roller and the center of each eccentric portion is θs [rad],
L = (π−θs) / (4π · fm)
The vertical two-cylinder rotary compressor is characterized in that the relationship is established.
請求項3において、
前記電動機と逆側に位置する第1の吸込室に連通する第1の吸込管の曲げ部の曲率半径が、前記電動機側に位置する第2の吸込室に連通する第2の吸込管の曲げ部の曲率半径よりも大きくし、前記第1と第2の吸込管における前記アキュムレータ側の開放端の高さの差を小さくする
ことを特徴とする縦型2シリンダロータリ圧縮機。
In claim 3,
The curvature radius of the bent portion of the first suction pipe communicating with the first suction chamber located on the opposite side of the motor is the bending of the second suction pipe communicating with the second suction chamber located on the motor side. A vertical two-cylinder rotary compressor characterized in that the difference in height between the open ends of the first and second suction pipes on the accumulator side is reduced.
請求項3において、
前記アキュムレータの上部に冷媒を流下させるための複数の流入穴を有する網座を設けるとともに、前記吸込管における前記アキュムレータ側の開放端を収容させるための凸形状部を前記網座に設け、
前記2つの吸込管における前記アキュムレータ側の開放端の高さは第1と第2の吸込管とでそれぞれ異なっており、少なくとも1つの吸込管の開放端の高さを前記網座よりも低く配置する
ことを特徴とする縦型2シリンダロータリ圧縮機。
In claim 3,
Provided with a mesh seat having a plurality of inflow holes for allowing the coolant to flow down at the upper part of the accumulator, and provided with a convex shape portion for accommodating the open end of the suction pipe on the accumulator side,
The heights of the open ends of the two suction pipes on the accumulator side are different between the first and second suction pipes, and the height of the open ends of the at least one suction pipe is lower than that of the screen seat. A vertical two-cylinder rotary compressor characterized by:
JP2007280562A 2007-10-29 2007-10-29 Rotary compressor Expired - Fee Related JP4991483B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007280562A JP4991483B2 (en) 2007-10-29 2007-10-29 Rotary compressor
CN2008101708924A CN101424267B (en) 2007-10-29 2008-10-23 Rotary compressor
KR1020080105586A KR101056857B1 (en) 2007-10-29 2008-10-28 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280562A JP4991483B2 (en) 2007-10-29 2007-10-29 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2009108739A true JP2009108739A (en) 2009-05-21
JP4991483B2 JP4991483B2 (en) 2012-08-01

Family

ID=40615087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280562A Expired - Fee Related JP4991483B2 (en) 2007-10-29 2007-10-29 Rotary compressor

Country Status (3)

Country Link
JP (1) JP4991483B2 (en)
KR (1) KR101056857B1 (en)
CN (1) CN101424267B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036775A (en) * 2010-08-04 2012-02-23 Fujitsu General Ltd Rotary compressor
JP2014185564A (en) * 2013-03-22 2014-10-02 Toshiba Carrier Corp Multi-cylinder rotary compressor and refrigeration cycle device
WO2016013322A1 (en) * 2014-07-25 2016-01-28 東芝キヤリア株式会社 Compressor and refrigeration cycle device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102575675B (en) * 2009-09-18 2015-04-29 东芝开利株式会社 Multi-cylinder rotary compressor and refrigeration cycle device
CN103582762B (en) * 2011-06-08 2016-05-04 东芝开利株式会社 Hermetic type compressor and refrigerating circulatory device
CN103527483B (en) * 2013-07-24 2016-07-06 安徽美芝精密制造有限公司 Low backpressure rotary compressor and there is its refrigeration plant
CN103759477B (en) * 2014-01-07 2016-06-29 广东美芝制冷设备有限公司 Refrigerating circulatory device
CN103883527A (en) * 2014-03-25 2014-06-25 广东美芝制冷设备有限公司 Rotary compressor and refrigeration cycle device with same
CN206409386U (en) * 2017-01-18 2017-08-15 广东美芝制冷设备有限公司 Reservoir and the duplex cylinder compressor with it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235090A (en) * 1985-08-07 1987-02-16 Matsushita Electric Ind Co Ltd Rotary compressor
JP2006194184A (en) * 2005-01-14 2006-07-27 Mitsubishi Heavy Ind Ltd Compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106376A (en) 1986-10-24 1988-05-11 Hitachi Ltd Supercharge type compressor
KR100710354B1 (en) 2005-11-25 2007-04-23 엘지전자 주식회사 The structure of pipe arrangement inverter air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235090A (en) * 1985-08-07 1987-02-16 Matsushita Electric Ind Co Ltd Rotary compressor
JP2006194184A (en) * 2005-01-14 2006-07-27 Mitsubishi Heavy Ind Ltd Compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036775A (en) * 2010-08-04 2012-02-23 Fujitsu General Ltd Rotary compressor
JP2014185564A (en) * 2013-03-22 2014-10-02 Toshiba Carrier Corp Multi-cylinder rotary compressor and refrigeration cycle device
WO2016013322A1 (en) * 2014-07-25 2016-01-28 東芝キヤリア株式会社 Compressor and refrigeration cycle device

Also Published As

Publication number Publication date
KR101056857B1 (en) 2011-08-16
JP4991483B2 (en) 2012-08-01
CN101424267B (en) 2010-08-18
KR20090043450A (en) 2009-05-06
CN101424267A (en) 2009-05-06

Similar Documents

Publication Publication Date Title
JP4991483B2 (en) Rotary compressor
KR20160100987A (en) Compact low noise rotary compressor
KR101225993B1 (en) Scroll compressor
JP6548915B2 (en) Compressor
JP2008240666A (en) Rotary compressor and heat pump system
JP4065654B2 (en) Multi-cylinder rotary compressor
JP6409910B1 (en) Scroll compressor
JP6739660B1 (en) Scroll compressor
JP6974769B2 (en) Compressor
JP6143862B2 (en) Scroll compressor and air conditioner using the same
JP2018131910A (en) Scroll compressor
JP6991111B2 (en) Scroll compressor
JP5478362B2 (en) Screw compressor
CN113994097A (en) Scroll compressor having a plurality of scroll members
WO2012120808A1 (en) Rotary compressor
JP2015105635A (en) Compressor
KR102324772B1 (en) A compressor
JP2014070521A (en) Scroll-type compressor
JP2012047075A (en) Compressor
JP5595324B2 (en) Compressor
KR101718037B1 (en) Enclosed compressor
JP2011127463A (en) Electric compressor
JP5179955B2 (en) Positive displacement compressor
JP2017101557A (en) Hermetic type compressor
JP2007092738A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R150 Certificate of patent or registration of utility model

Ref document number: 4991483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees