JP5478362B2 - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
JP5478362B2
JP5478362B2 JP2010118883A JP2010118883A JP5478362B2 JP 5478362 B2 JP5478362 B2 JP 5478362B2 JP 2010118883 A JP2010118883 A JP 2010118883A JP 2010118883 A JP2010118883 A JP 2010118883A JP 5478362 B2 JP5478362 B2 JP 5478362B2
Authority
JP
Japan
Prior art keywords
rotor
male
female
working chamber
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010118883A
Other languages
Japanese (ja)
Other versions
JP2011247115A (en
Inventor
正典 石川
裕敬 亀谷
利一 内田
誠司 鶴
隆史 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010118883A priority Critical patent/JP5478362B2/en
Priority to EP11167299.4A priority patent/EP2390508B1/en
Priority to CN201310562500.XA priority patent/CN103541899B/en
Priority to CN201110136609.8A priority patent/CN102261332B/en
Publication of JP2011247115A publication Critical patent/JP2011247115A/en
Application granted granted Critical
Publication of JP5478362B2 publication Critical patent/JP5478362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/086Carter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明はスクリュー圧縮機に関わり、特に、同期歯車を備えたオイルフリー式スクリュー圧縮機のアキシャル吸入ポートの形状に関する。   The present invention relates to a screw compressor, and more particularly to the shape of an axial suction port of an oil-free screw compressor having a synchronous gear.

スクリュー圧縮機のエネルギ効率や体積効率を向上させるため、これまで多くの努力が費やされてきた。性能を決める要因は多々あるが、最近の研究からアキシャル吸入ポートの輪郭形状がスクリュー圧縮機の体積効率に影響することがわかってきた。一般的には、アキシャル吸入ポートにおいて十分な開口面積や開口時間を確保できなかった場合は吸い込み流量が減少し体積効率の低下につながるが、逆に過大な開口面積および開口時間が設定されている場合、一旦作動室に吸引された流体が圧縮工程で逆流し、結果的に吸い込み流量が減少し体積効率が低下する。   Many efforts have been made to improve the energy efficiency and volumetric efficiency of screw compressors. Although there are many factors that determine the performance, recent studies have shown that the profile of the axial suction port affects the volumetric efficiency of the screw compressor. Generally, when sufficient opening area and opening time cannot be secured in the axial suction port, the suction flow rate decreases and the volume efficiency decreases, but conversely, an excessive opening area and opening time are set. In this case, the fluid once sucked into the working chamber flows backward in the compression process, and as a result, the suction flow rate is reduced and the volume efficiency is lowered.

特許文献1には、一時的に容積変化が中断する作動室を備えたスクリュー圧縮機のアキシャル吸入ポートに好適な輪郭形状が述べられている。また、特許文献2には、吸入動作を断続させることにより吸い込み流量を増す方法が述べられている。   Patent Document 1 describes a contour shape suitable for an axial suction port of a screw compressor having a working chamber in which volume change is temporarily interrupted. Patent Document 2 describes a method of increasing a suction flow rate by intermittently performing a suction operation.

特開平6−288369号公報JP-A-6-288369 特開平10−9164号公報Japanese Patent Laid-Open No. 10-9164

特許文献1,特許文献2は、適用できるスクリュー圧縮機の構造や使用方法に条件があり、広く一般的に適用するには至らなかった。そのため、多くのスクリュー圧縮機に適用できる吸い込み量を増すための構造を具体化することが課題となっていた。   Patent Document 1 and Patent Document 2 have conditions on the structure and usage of an applicable screw compressor, and have not been widely applied in general. Therefore, it has been a problem to embody a structure for increasing the amount of suction applicable to many screw compressors.

そこで、上記課題に鑑み本発明の目的は、一般的な構成のスクリュー圧縮機において、エネルギ効率,体積効率を向上できる構成を提案することにある。   In view of the above problems, an object of the present invention is to propose a configuration capable of improving energy efficiency and volume efficiency in a screw compressor having a general configuration.

上記課題を解決するため、請求項1は、ねじれた歯を有する雄ロータと、ねじれた歯を有する雌ロータと、前記雄ロータの歯と雌ロータの歯が互いに噛み合った状態で収納するためのボアを形成したケーシングと、該ケーシングの吸入側に設けられたアキシャル吸入ポートと、前記ケーシングの吐出側に設けられた吐出ポートと、を具備しており、前記アキシャル吸入ポートは、雄歯形に沿った線と雌歯形に沿った線を含む輪郭線で構成されており、前記雄歯形に沿った線は、前記雄ロータの雄歯溝と前記雌ロータの雌歯溝と前記ボアで囲まれて形成される作動室の容積が最大となる、前記雄ロータの回転角度における雄歯溝の追従側輪郭線位置よりも雄ロータの回転方向側に所定のずれ角を設けて配置されるスクリュー圧縮機とした。   In order to solve the above-described problem, a first aspect of the present invention is to accommodate a male rotor having twisted teeth, a female rotor having twisted teeth, and the teeth of the male rotor and the teeth of the female rotor being engaged with each other. A casing formed with a bore; an axial suction port provided on the suction side of the casing; and a discharge port provided on the discharge side of the casing. The axial suction port follows a male tooth shape. And a contour line including a line along the female tooth profile, and the line along the male tooth profile is surrounded by the male tooth groove of the male rotor, the female tooth groove of the female rotor, and the bore. Screw compressor that is arranged with a predetermined deviation angle on the rotational direction side of the male rotor with respect to the following contour position of the male tooth groove at the rotational angle of the male rotor, wherein the volume of the working chamber formed is maximum It was.

また、請求項2は、ねじれた歯を有する雄ロータと、ねじれた歯を有する雌ロータと、前記雄ロータの歯と雌ロータの歯が互いに噛み合った状態で収納するためのボアを形成したケーシングと、該ケーシングの吸入側に設けられたアキシャル吸入ポートと、前記ケーシングの吐出側に設けられた吐出ポートと、を具備しており、前記アキシャル吸入ポートは、雄歯形に沿った線と雌歯形に沿った線を含む輪郭線で構成されており、前記雌歯形に沿った線は、前記雄ロータの雄歯溝と前記雌ロータの雌歯溝と前記ボアで囲まれて形成される作動室の容積が最大となる、前記雌ロータの回転角度における雌歯溝の追従側輪郭線位置よりも雌ロータの回転方向側に所定のずれ角を設けて配置されるスクリュー圧縮機とした。   Further, the present invention provides a casing in which a male rotor having twisted teeth, a female rotor having twisted teeth, and a bore for accommodating the teeth of the male rotor and the teeth of the female rotor in mesh with each other. And an axial suction port provided on the suction side of the casing, and a discharge port provided on the discharge side of the casing. The axial suction port includes a line along the male tooth shape and a female tooth shape. The working chamber is formed by being surrounded by a male tooth groove of the male rotor, a female tooth groove of the female rotor, and the bore. The screw compressor is arranged with a predetermined deviation angle on the rotational direction side of the female rotor with respect to the contour line position of the female tooth groove at the rotational angle of the female rotor.

本発明によれば、吸入量を増やし高効率の圧縮機を実現することができる。   According to the present invention, a highly efficient compressor can be realized by increasing the amount of suction.

実施例1のロータ対と吸入ポートの輪郭である。2 is a contour of a rotor pair and a suction port according to the first embodiment. 実施例1のボア外周面の展開図である。FIG. 3 is a development view of an outer peripheral surface of a bore according to the first embodiment. 一般的なスクリュー圧縮機の断面模式図である。It is a cross-sectional schematic diagram of a general screw compressor. 一般的なスクリュー圧縮機のロータ対と吸入ポートの輪郭である。It is the outline of the rotor pair and suction port of a general screw compressor. スクリュー圧縮機の作動室の容積変化と吸入流量のグラフである。It is a graph of the volume change of the working chamber of a screw compressor, and a suction flow rate. 流入断面積形状を説明する図である。It is a figure explaining an inflow cross-sectional area shape.

本発明の実施例を説明する前に、スクリュー圧縮機の一般的な構成について、図3と図4を用いて説明する。   Before describing an embodiment of the present invention, a general configuration of a screw compressor will be described with reference to FIGS. 3 and 4.

図3は、スクリュー圧縮機の断面模式図である。1は、ねじれた歯を有する雄ロータ、2は、ねじれた歯を有する雌ロータである。ここに示すように、スクリュー圧縮機においては、雄ロータ1と雌ロータ2は互いに噛み合った状態で、ケーシング3の内部に形成したボア4に収納されている。ボア4は、一部を重複した2つの円筒形であり、より具体的には、雄ロータ1の歯部を覆う円筒状外周面と、雌ロータ2の歯部を覆う円筒状外周面と、吸入側端面7と、吐出側端面8の4面で構成される。吸入側端面7には後述するアキシャル吸入ポート11が設けられ、吐出側端面8には図示しない吐出ポートが設けられている。また、雄ロータ1の軸の一端に設けられた同期歯車10と、雌ロータ2の軸の一端に設けられた同期歯車10が、噛み合うように配置されており、雄ロータ1の回転駆動に同期して、雌ロータ2が回転駆動するように構成されている。雄ロータ1の雄歯溝5と雌ロータ2の雌歯溝6が連通する空間は、ボア4に覆われ、閉じた空間である作動室9を形成する。雄歯溝5と雌歯溝6が連通する空間は複数存在するので、作動室9も複数形成されることになる。各作動室9は、両ロータの回転に伴い、吸入側端面7から吐出側端面8方向に移動する。なお、オイルフリー式スクリュー圧縮機では同期歯車10同士のバックラッシは、雄ロータ1と雌ロータ2の歯部同士のバックラッシより小さく設計されており、雄ロータ1と雌ロータ2の歯部同士が接触することはない。このため、各作動室9は厳密な意味では閉じた空間ではなく、隙間を通じて隣接する作動室とつながっている。しかし、隙間を通って隣接する作動室9に漏れるガスは微少量であり無視できる。また、非オイルフリー式スクリュー圧縮機では、一般的に油や水などで隙間はシールされており、隣接する作動室9同士での漏れの影響は無視できる。よって以下では各作動室9が独立した空間であるとして説明を行う。   FIG. 3 is a schematic cross-sectional view of the screw compressor. 1 is a male rotor having twisted teeth, and 2 is a female rotor having twisted teeth. As shown here, in the screw compressor, the male rotor 1 and the female rotor 2 are housed in a bore 4 formed inside the casing 3 in a state of being engaged with each other. The bore 4 has two cylindrical shapes partially overlapping, more specifically, a cylindrical outer peripheral surface that covers the teeth of the male rotor 1, a cylindrical outer peripheral surface that covers the teeth of the female rotor 2, and The suction side end surface 7 and the discharge side end surface 8 are composed of four surfaces. The suction side end face 7 is provided with an axial suction port 11 described later, and the discharge side end face 8 is provided with a discharge port (not shown). The synchronous gear 10 provided at one end of the shaft of the male rotor 1 and the synchronous gear 10 provided at one end of the shaft of the female rotor 2 are arranged so as to mesh with each other, and are synchronized with the rotational drive of the male rotor 1. The female rotor 2 is configured to be driven to rotate. A space where the male tooth groove 5 of the male rotor 1 and the female tooth groove 6 of the female rotor 2 communicate with each other is covered with the bore 4 to form a working chamber 9 which is a closed space. Since there are a plurality of spaces where the male tooth groove 5 and the female tooth groove 6 communicate with each other, a plurality of working chambers 9 are also formed. Each working chamber 9 moves from the suction side end face 7 toward the discharge side end face 8 in accordance with the rotation of both rotors. In the oil-free screw compressor, the backlash between the synchronous gears 10 is designed to be smaller than the backlash between the teeth of the male rotor 1 and the female rotor 2, and the teeth of the male rotor 1 and the female rotor 2 are in contact with each other. Never do. For this reason, each working chamber 9 is not a closed space in a strict sense, but is connected to an adjacent working chamber through a gap. However, the gas that leaks through the gap to the adjacent working chamber 9 is negligible and can be ignored. In a non-oil-free screw compressor, the gap is generally sealed with oil, water, or the like, and the influence of leakage between adjacent working chambers 9 can be ignored. Therefore, the following description will be made assuming that each working chamber 9 is an independent space.

図4は、ボア4の吸入側端面7に設けられるアキシャル吸入ポート11の一般的な形状を説明する図である。矢印で示すように、雄ロータ1は時計回りで回転し、雌ロータ2は反時計回りで回転する。吸入側端面7上の両ロータが接する位置で生まれた作動室9は、両ロータの回転に従い、作動室9の先頭が吐出側端面8に向かって移動しながら、内容積を拡大する。この間、作動室9には、アキシャル吸入ポート11を介して被圧縮ガスが供給される。アキシャル吸入ポート11の雄ロータ1側の輪郭線15と雌ロータ2側の輪郭線18は、作動室9の内容積が最大となる位置に設けられている。すなわち、作動室9の内容積が拡大している期間、アキシャル吸入ポート11に連通する作動室9には被圧縮ガスが供給され、作動室9の内容積が縮小する期間、アキシャル吸入ポート11と連通しない作動室9には新たな被圧縮ガスが供給されないことになる。その後、両ロータの回転に伴い、作動室9の内容積が縮小するので、作動室9内の被圧縮ガスが圧縮されることとなる。圧縮された被圧縮ガスは、吐出側端面8に設けられた吐出ポートから吐き出される。   FIG. 4 is a diagram illustrating a general shape of the axial suction port 11 provided on the suction side end surface 7 of the bore 4. As indicated by the arrows, the male rotor 1 rotates clockwise and the female rotor 2 rotates counterclockwise. The working chamber 9 born at the position where the two rotors are in contact with each other on the suction side end surface 7 expands the internal volume while the head of the working chamber 9 moves toward the discharge side end surface 8 as the rotors rotate. During this time, compressed gas is supplied to the working chamber 9 via the axial suction port 11. The contour line 15 on the male rotor 1 side and the contour line 18 on the female rotor 2 side of the axial suction port 11 are provided at positions where the internal volume of the working chamber 9 is maximized. In other words, the compressed gas is supplied to the working chamber 9 communicating with the axial suction port 11 while the inner volume of the working chamber 9 is expanding, and the axial suction port 11 is connected to the working chamber 9 while the inner volume of the working chamber 9 is reduced. A new compressed gas is not supplied to the working chamber 9 which does not communicate. Thereafter, as the rotors rotate, the inner volume of the working chamber 9 is reduced, so that the gas to be compressed in the working chamber 9 is compressed. The compressed gas to be compressed is discharged from a discharge port provided on the discharge side end face 8.

本発明の実施例1を、図1を用いて説明する。図3,図4と同等の構成については同一の符号を付し説明を省略する。図1(a)は、ボア4の吸入側端面7に設けられるアキシャル吸入ポート11の実施例1における形状を説明する図である。矢印で示すように、雄ロータ1は時計回りで回転し、雌ロータ2は反時計回りで回転する。最も吐出側の斜線で示す作動室9は最大容積となった位置にあり、それより吸入側に並ぶ作動室は容積拡大による吸入過程にある。   A first embodiment of the present invention will be described with reference to FIG. The same components as those in FIGS. 3 and 4 are denoted by the same reference numerals and description thereof is omitted. FIG. 1A is a diagram illustrating the shape of the axial suction port 11 provided on the suction side end surface 7 of the bore 4 in the first embodiment. As indicated by the arrows, the male rotor 1 rotates clockwise and the female rotor 2 rotates counterclockwise. The working chamber 9 indicated by the oblique line on the most discharge side is at a position where the maximum volume is reached, and the working chambers arranged on the suction side are in the suction process by expanding the volume.

図1(b)に示すように、アキシャル吸入ポート11の輪郭線は、噛み合い部の線13,雄歯底径に沿った円弧14,雄歯形に沿った線15,雄歯先径に沿った円弧16,雌歯先径に沿った円弧17,雌歯形に沿った線18,雌歯底径に沿った円弧19、の7つの輪郭線で構成される。このうち、圧縮機の性能に大きく影響する輪郭線である、雄歯形に沿った線15と、雌歯形に沿った線18を詳しく説明する。   As shown in FIG. 1 (b), the contour line of the axial suction port 11 is along the mesh line 13, the arc 14 along the male bottom diameter, the line 15 along the male tooth shape, and the male tip diameter. It is composed of seven contour lines: an arc 16, an arc 17 along the female tooth tip diameter, a line 18 along the female tooth profile, and an arc 19 along the female tooth root diameter. Among these, the line 15 along the male tooth profile and the line 18 along the female tooth profile, which are contour lines that greatly influence the performance of the compressor, will be described in detail.

図1(a)中にハッチングで示した最大容積の作動室9は、雌雄両方で吸入側端面7と吐出側端面8に接している。吸入側端面7における各ロータの歯溝の輪郭をロータ回転に対して先行する側と追従する側の2つに分けて考える。これらのうち、圧縮機の性能に与える影響が大きいのは追従側であるので、以下では、雄歯溝5の追従側輪郭線21と、雌歯溝6の追従側輪郭線22に着目する。   The working chamber 9 having the maximum volume indicated by hatching in FIG. 1A is in contact with the suction-side end surface 7 and the discharge-side end surface 8 in both sexes. The contour of the tooth groove of each rotor on the suction side end face 7 will be divided into two parts, a side preceding the rotor rotation and a side following the rotor rotation. Among these, the influence on the performance of the compressor has a large effect on the follower side. Therefore, attention is paid to the follower side contour line 21 of the male tooth groove 5 and the follower side contour line 22 of the female tooth groove 6 below.

図1(b)に示すように、雄歯形に沿った線15は、作動室9が最大容積となるタイミングでの追従側輪郭線21位置から、Δf1だけ時計回りにずれた位置に設けられている。なお、雄歯形に沿った線15の位置精度は、ロータ直径の1/20以内であればよい。   As shown in FIG. 1 (b), the line 15 along the male tooth shape is provided at a position shifted clockwise by Δf1 from the position of the follow-up side contour line 21 at the timing when the working chamber 9 reaches the maximum volume. Yes. The position accuracy of the line 15 along the male tooth shape may be within 1/20 of the rotor diameter.

また、雌歯形に沿った線18は、作動室9が最大容積となるタイミングでの追従側輪郭線22位置から、Δf2だけ反時計回りにずれた位置に設けられている。なお、雌歯形に沿った線18の位置精度は、ロータ直径の1/20以内であればよい。   Further, the line 18 along the female tooth shape is provided at a position deviated counterclockwise by Δf2 from the position of the follow-up side contour line 22 at the timing when the working chamber 9 reaches the maximum volume. The position accuracy of the line 18 along the female tooth profile may be within 1/20 of the rotor diameter.

次に、図2に示すボア4の展開図を用いて、作動室9とアキシャル吸入ポート11との位置関係を説明する。図2で示すボア4の展開図のうち、右側は雄側円筒の展開図であり、左側は雌側円筒の展開図である。また、展開図の下端は吸入側端面7であり、上端は吐出側端面8である。吸入側端面7に隣接し、雄歯形に沿った線15と雌歯形に沿った線18で両端が規定されるアキシャル吸入ポート11が開口している。   Next, the positional relationship between the working chamber 9 and the axial suction port 11 will be described with reference to a development view of the bore 4 shown in FIG. In the development view of the bore 4 shown in FIG. 2, the right side is a development view of the male side cylinder, and the left side is a development view of the female side cylinder. Further, the lower end of the developed view is the suction side end face 7, and the upper end is the discharge side end face 8. Adjacent to the suction-side end face 7, an axial suction port 11 whose both ends are defined by a line 15 along the male tooth shape and a line 18 along the female tooth shape opens.

符号31で示す中央の縦線は、雄側円筒と雌側円筒の交線のうち、膨張側にある膨張側カスプである。符号32で示す左右両側の縦線は、ボア4の雄側円筒と雌側円筒の交線のうち、圧縮側にある圧縮側カスプである。また、斜線24,25およびそれらに平行な斜線は各ロータの歯先線を示す。各歯先線間に形成される作動室のうち、アキシャル吸入ポート11と面する作動室には被圧縮ガスの吸入があり、アキシャル吸入ポート11と面しない作動室には被圧縮ガスの吸入がない。   A central vertical line indicated by reference numeral 31 is an expansion side cusp on the expansion side among the intersection lines of the male side cylinder and the female side cylinder. The vertical lines on the left and right sides indicated by reference numeral 32 are compression side cusps on the compression side of the intersecting line of the male side cylinder and the female side cylinder of the bore 4. The oblique lines 24 and 25 and the oblique lines parallel to them indicate the tooth tip line of each rotor. Of the working chambers formed between the tooth tip lines, the working chamber facing the axial suction port 11 sucks compressed gas, and the working chamber not facing the axial suction port 11 sucks compressed gas. Absent.

なお、雌雄両ロータが回転すると、矢印で示すように、作動室は上方に移動し、内容量が拡大または減少する。   When both the male and female rotors rotate, the working chamber moves upward as shown by the arrows, and the internal capacity is increased or decreased.

図5を用いて、以上で説明した構成のスクリュー圧縮機の作動室への被圧縮ガスの吸入行程を説明する。図5(a)はロータを回転させたときの作動室の容積を示す。図5(b)は図5(a)を微分して求めた作動室の容積変化率を示す。図5(c)は作動室が吸入する体積流量を示す。なお、本実施例のアキシャル吸入ポート11が一般的なアキシャル吸入ポートよりも大きいことは、図5では、作動室容量増加期間よりもアキシャル吸入ポート開口期間が長いことで示されている。   With reference to FIG. 5, a description will be given of the suction stroke of the compressed gas into the working chamber of the screw compressor having the above-described configuration. FIG. 5A shows the volume of the working chamber when the rotor is rotated. FIG. 5 (b) shows the volume change rate of the working chamber obtained by differentiating FIG. 5 (a). FIG. 5C shows the volume flow rate that the working chamber sucks. The fact that the axial suction port 11 of this embodiment is larger than a general axial suction port is shown in FIG. 5 by the fact that the axial suction port opening period is longer than the working chamber capacity increase period.

まず、雄歯溝と雌歯溝が連通して形成される作動室が、吸入側端面7と膨張側カスプ31の接点に生じるロータの回転角度をθ0とする。回転角度θ0〜θ1の期間、吸入側端面7における作動室の開口は雄歯溝と雌歯溝が連結したものとなっている。回転角度θ1のとき、吸入側端面7における作動室の開口が雄歯溝側と雌歯溝側に分離する。図5(c)に示すように、回転角度θ1〜θ2の期間、作動室が吸入する体積流量は大きいが、雄ロータ側と雌ロータ側の二つの開口を介して、作動室に被圧縮ガスが吸入されるので、通過圧損は小さく、円滑な吸入を実現できる。 First, in the working chamber formed by communicating the male tooth groove and the female tooth groove, the rotation angle of the rotor generated at the contact point between the suction side end face 7 and the expansion side cusp 31 is θ 0 . During the rotation angle θ 0 to θ 1 , the opening of the working chamber in the suction side end face 7 is formed by connecting the male tooth groove and the female tooth groove. At the rotation angle θ 1 , the opening of the working chamber in the suction side end face 7 is separated into the male tooth groove side and the female tooth groove side. As shown in FIG. 5C, the volume flow rate sucked by the working chamber is large during the rotation angle θ 1 to θ 2 , but the working chamber is covered with two openings on the male rotor side and the female rotor side. Since the compressed gas is sucked, the passage pressure loss is small and smooth suction can be realized.

回転角度θ2のタイミングで、作動室の先端が吐出側端面8に到達すると、図5(b)(c)に示すように、作動室の容積の変化率および吸入する体積流量は次第に低下する。また、回転角度θ3のタイミングで作動室の容積が最大になり、θ3以後は作動室の容積が減少に転じる。ここで着目すべきは、作動室9の容積が減少に転じても、作動室への被圧縮ガスの吸入が回転角度θ4まで継続する点である。 When the tip of the working chamber reaches the discharge-side end surface 8 at the timing of the rotation angle θ 2, the rate of change of the working chamber volume and the volume flow rate of suction gradually decrease as shown in FIGS. . In addition, the volume of the working chamber becomes maximum at the timing of the rotation angle θ 3 , and the volume of the working chamber starts to decrease after θ 3 . It should be noted here that even if the volume of the working chamber 9 starts to decrease, the suction of the compressed gas into the working chamber continues to the rotation angle θ 4 .

図6を用いてこの理由を説明する。図6は吸入側ケーシングから吸入ポートを通じてロータへ吸入される被圧縮ガスの流れの状態を示している。従来は吸入に伴う慣性効果の小さい静止状態に近い状態からの吸入を想定していたため、ロートから吸入される被圧縮ガスの流速は十分大きな慣性効果を持ち、本実施例では、この慣性効果を利用できるようなアキシャル吸入ポート11の形状を採用することで、吸引量を増やして体積効率を向上させている。   The reason for this will be described with reference to FIG. FIG. 6 shows the state of the flow of the compressed gas sucked from the suction side casing into the rotor through the suction port. In the past, since the intake from a state close to a stationary state with a small inertia effect due to the suction was assumed, the flow velocity of the compressed gas sucked from the funnel has a sufficiently large inertia effect, and in this embodiment, this inertia effect is reduced. By adopting the shape of the axial suction port 11 that can be used, the suction efficiency is increased and the volume efficiency is improved.

以下では、作動室容積が減少に転じた後も、被圧縮ガスの吸入が可能である理由をより詳細に検討する。   Hereinafter, the reason why the compressed gas can be sucked even after the working chamber volume has started to decrease will be examined in more detail.

雄ロータ歯溝底の半径Rm,雄ロータ巻き角度θm,雌ロータ歯溝底の半径Rf,雌ロータ巻き角度θf、ロータの軸方向長さをLとすると、作動室の軸方向の溝長さL′は、歯溝底半径を最小として、
L′=√{(2πR×θ/2π)2+L2
と表す事ができる。(θはradian単位)
作動室に流入した被圧縮ガスは、圧縮工程前に移行する前はポート温度および圧力とほぼ等しいと考えられる。この時の被圧縮ガスの音速をaとする。非オイルフリー式の場合については、油ないしは水などの蒸気量で補正された音速で定義される。
If the radius Rm of the male rotor tooth groove bottom, the male rotor winding angle θm, the radius Rf of the female rotor tooth groove bottom, the female rotor winding angle θf, and the axial length of the rotor are L, then the axial groove length of the working chamber. L ′ is the minimum tooth root radius,
L ′ = √ {(2πR × θ / 2π) 2 + L 2 }
Can be expressed. (Θ is in radian units)
The compressed gas that has flowed into the working chamber is considered to be approximately equal to the port temperature and pressure before transitioning before the compression process. The speed of sound of the compressed gas at this time is a. In the case of a non-oil-free type, it is defined by the speed of sound corrected by the amount of steam such as oil or water.

作動室体積が最小の段階からロータの回転と共に作動室体積は拡大するが、作動室が吐出端面に到達した段階で作動室の容積拡大は最大となる。このとき、作動室が吐出端面に到達したことは被圧縮気体の音速条件のもとで吸入側へ伝達される。その気体の圧縮性に基づくタイムラグ時間Δtは、例えば作動室の軸方向の溝長さL′を用いて、
Δt=√{(2πR×θ/2π)2+L2}/a
となる。回転速度をωとすると、ずれ角度Δfは、
Δf=ω×√{(2πR×θ/2π)2+L2}/a
となる。
Although the working chamber volume increases with the rotation of the rotor from the stage where the working chamber volume is minimum, the volume expansion of the working chamber becomes maximum when the working chamber reaches the discharge end surface. At this time, the fact that the working chamber has reached the discharge end face is transmitted to the suction side under the sound velocity condition of the compressed gas. The time lag time Δt based on the compressibility of the gas is obtained by using, for example, the axial groove length L ′ of the working chamber,
Δt = √ {(2πR × θ / 2π) 2 + L 2 } / a
It becomes. When the rotational speed is ω, the deviation angle Δf is
Δf = ω × √ {(2πR × θ / 2π) 2 + L 2 } / a
It becomes.

具体的には、例えば雄ロータ側溝長さL′mが雌ロータ側溝長さL′fより短い場合を考えると、雌ロータ側歯溝底半径Rf=30mm,巻き角度θf=150°,ロータ軸方向長さL=100mm、被圧縮ガスを空気とし音速a=340m/sであった場合、Δt=3.7×10-4secとなり、雌ロータの回転数を秒間200回転とすると、遅れ時間のあいだに動く角度Δfは、Δf=27°となる。従って、アキシャルポートの閉止タイミングを、作動室が最大容積を成す角度から理論上はΔf=27°以下の範囲で遅らせることにより、吸い込み口断面積および吸い込み時間を拡大することが可能となり、吸い込み体積効率の向上を行う事ができるものである。 Specifically, for example, when considering the case where the male rotor side groove length L′ m is shorter than the female rotor side groove length L′ f, the female rotor side tooth groove bottom radius Rf = 30 mm, the winding angle θf = 150 °, the rotor shaft When the direction length L = 100 mm, the gas to be compressed is air, and the sound velocity a = 340 m / s, Δt = 3.7 × 10 −4 sec, and the rotational speed of the female rotor is 200 rpm, the delay time The angle Δf that moves during the period is Δf = 27 °. Therefore, by delaying the closing timing of the axial port within the theoretical range of Δf = 27 ° or less from the angle at which the working chamber forms the maximum volume, the suction port cross-sectional area and the suction time can be increased, and the suction volume is increased. The efficiency can be improved.

以上で説明した実施例1のスクリュー圧縮機によれば、吸入過程にある作動室が、円滑かつ低圧損で被圧縮ガスを吸入することができ、なおかつ、一旦吸入した被圧縮ガスの作動室からの逆流を防ぎつつ、吸入量を増やすことができる。   According to the screw compressor of the first embodiment described above, the working chamber in the suction process can suck the compressed gas smoothly and with low pressure loss, and from the compressed gas working chamber once sucked. The amount of inhalation can be increased while preventing backflow.

なお、被圧縮ガスの種別については、いずれの種類のガスにおいても適用可能である。また、条件については雄ロータ1と雌ロータ2で形成される作動室9の形状(主に長さ)で規定されるものであり、様々なロータ歯形状についても適用可能であり、またロータなどの材質については問わない。   Note that the type of gas to be compressed is applicable to any type of gas. The conditions are defined by the shape (mainly length) of the working chamber 9 formed by the male rotor 1 and the female rotor 2, and can be applied to various rotor tooth shapes. Any material is acceptable.

本発明の実施例2について記述する。実施例1では雄雌のアキシャル吸入ポート11を同一タイミングで閉止するようにしていたが、実施例2では、アキシャル吸入ポート11の雄側輪郭線である輪郭線15のみを実施例1に記述した閉止タイミングにて閉止することとした。   Example 2 of the present invention will be described. In the first embodiment, the male and female axial suction ports 11 are closed at the same timing, but in the second embodiment, only the contour line 15 that is the male side contour line of the axial suction port 11 is described in the first embodiment. It was decided to close at the closing timing.

これにより雌ロータ側の最大ズレ角度Δf《雄ロータ側の最大ズレ角度Δfとなる場合でも、効率向上を実施可能となる。   As a result, even when the maximum deviation angle Δf on the female rotor side << the maximum deviation angle Δf on the male rotor side, the efficiency can be improved.

本発明の実施例3について記述する。実施例1では雄雌のアキシャル吸入ポート11を同一タイミングで閉止するようにしていたが、実施例3では、アキシャル吸入ポート11の雌側輪郭線である輪郭線18のみを実施例1に記述した閉止タイミングにて閉止することとした。   Example 3 of the present invention will be described. In the first embodiment, the male and female axial suction ports 11 are closed at the same timing, but in the third embodiment, only the contour line 18 that is the female side contour line of the axial suction port 11 is described in the first embodiment. It was decided to close at the closing timing.

これにより雄ロータ側の最大ズレ角度Δf《雌ロータ側の最大ズレ角度Δfとなる場合でも、効率向上を実施可能となる。   As a result, even when the maximum deviation angle Δf on the male rotor side << the maximum deviation angle Δf on the female rotor side, the efficiency can be improved.

1 雄ロータ
2 雌ロータ
3 ケーシング
4 ボア
5 雄歯溝
6 雌歯溝
7 吸入側端面
8 吐出側端面
9 作動室
10 同期歯車
11 アキシャル吸入ポート
13〜19 アキシャル吸入ポートの輪郭を構成する個々の線
21 雄歯溝の追従側輪郭線
22 雌歯溝の追従側輪郭線
23 アキシャル吸入ポート11の進行側輪郭線
24 雄歯先線
25 雌歯先線
29 作動室(内容積拡大中で吸入過程にある)
31 膨張側カスプ
32 圧縮側カスプ
DESCRIPTION OF SYMBOLS 1 Male rotor 2 Female rotor 3 Casing 4 Bore 5 Male tooth groove 6 Female tooth groove 7 Suction side end surface 8 Discharge side end surface 9 Working chamber 10 Synchronous gear 11 Axial suction port 13-19 Each line which comprises the outline of an axial suction port 21 Male tooth groove follow side contour 22 Female tooth groove follow side contour 23 Progressive side contour line 24 of the axial suction port 11 Male tooth tip line 25 Female tooth tip line 29 Working chamber is there)
31 Expansion side cusp 32 Compression side cusp

Claims (3)

ねじれた歯を有する雄ロータと、
ねじれた歯を有する雌ロータと、
前記雄ロータの歯と雌ロータの歯が互いに噛み合った状態で収納するためのボアを形成
したケーシングと、
該ケーシングの吸入側に設けられたアキシャル吸入ポートと、
前記ケーシングの吐出側に設けられた吐出ポートと、
を具備しており、
前記アキシャル吸入ポートは、雄歯形に沿った線と雌歯形に沿った線を含む輪郭線で構
成されており、
前記雄歯形に沿った線は、前記雄ロータの雄歯溝と前記雌ロータの雌歯溝と前記ボアで
囲まれて形成される作動室の容積が最大となる、前記雄ロータの回転角度における雄歯溝
の追従側輪郭線位置よりも雄ロータの回転方向側に所定のずれ角を設けて配置されるスクリュー圧縮機において、
前記アキシャル吸入ポートは、前記作動室の容積がほぼ最大となる回転角度を経て容積
縮小過程にある位置からさらに、作動室が吐出端面に到達したときからロータの歯部長さ
を被圧縮ガスの音速で移動に要する時間だけ後以降に吸入ポートを閉止する構造であるこ
とを特徴とするスクリュー圧縮機。
A male rotor having twisted teeth;
A female rotor having twisted teeth;
A casing formed with a bore for accommodating the teeth of the male rotor and the teeth of the female rotor in mesh with each other;
An axial suction port provided on the suction side of the casing;
A discharge port provided on the discharge side of the casing;
It has
The axial suction port is composed of a contour line including a line along the male tooth profile and a line along the female tooth profile,
The line along the male tooth profile is at the rotation angle of the male rotor where the volume of the working chamber formed by the male tooth groove of the male rotor, the female tooth groove of the female rotor and the bore is maximized. in than follow side contour line position of Ohamizo disposed with a predetermined shift angle in the rotational direction of the male rotor away clew compressor,
The axial suction port has a volume through a rotation angle at which the volume of the working chamber is substantially maximum.
The tooth length of the rotor from when the working chamber reaches the discharge end face from the position in the reduction process
The suction port is closed after the time required for movement at the sound speed of the compressed gas.
A screw compressor characterized by the above.
ねじれた歯を有する雄ロータと、
ねじれた歯を有する雌ロータと、
前記雄ロータの歯と雌ロータの歯が互いに噛み合った状態で収納するためのボアを形成
したケーシングと、
該ケーシングの吸入側に設けられたアキシャル吸入ポートと、
前記ケーシングの吐出側に設けられた吐出ポートと、
を具備しており、
前記アキシャル吸入ポートは、雄歯形に沿った線と雌歯形に沿った線を含む輪郭線で構
成されており、
前記雄歯形に沿った線は、前記雄ロータの雄歯溝と前記雌ロータの雌歯溝と前記ボアで
囲まれて形成される作動室の容積が最大となる、前記雄ロータの回転角度における雄歯溝
の追従側輪郭線位置よりも雄ロータの回転方向側に所定のずれ角を設けて配置されるスクリュー圧縮機において、
前記アキシャル吸入ポートの輪郭は、該作動室の容積がほぼ最大となるロータの回転角
度以降において、作動室が吐出端面に到達したときからロータの歯部長さを被圧縮ガスの
音速で移動に要する時間だけ後以降に閉止するようなロータの回転角度から、該作動室の
一部を成す雄ロータ歯溝の回転で後側となる端面での輪郭線に沿った部分と、雌ロータ歯
溝の回転で後側となる端面での輪郭線に沿った部分の両方を含み、それら輪郭線よりも雌
雄両ロータの回転方向と反対側が開口しているとともに、回転方向側がボア端面で塞がれ
ている構造であることを特徴とするスクリュー圧縮機。
A male rotor having twisted teeth;
A female rotor having twisted teeth;
A casing formed with a bore for accommodating the teeth of the male rotor and the teeth of the female rotor in mesh with each other;
An axial suction port provided on the suction side of the casing;
A discharge port provided on the discharge side of the casing;
It has
The axial suction port is composed of a contour line including a line along the male tooth profile and a line along the female tooth profile,
The line along the male tooth profile is at the rotation angle of the male rotor where the volume of the working chamber formed by the male tooth groove of the male rotor, the female tooth groove of the female rotor and the bore is maximized. in than follow side contour line position of Ohamizo disposed with a predetermined shift angle in the rotational direction of the male rotor away clew compressor,
The outline of the axial suction port is the rotational angle of the rotor at which the volume of the working chamber is almost maximum.
After that, when the working chamber reaches the discharge end face, the tooth length of the rotor
From the rotation angle of the rotor that closes later after the time required to move at the speed of sound,
A portion along the contour line on the end surface on the rear side by rotation of the male rotor tooth groove forming a part, and the female rotor tooth
Including both of the parts along the contour line on the end face that is the rear side of the rotation of the groove, female than the contour line
The side opposite to the rotation direction of both male rotors is open, and the rotation direction side is blocked by the bore end face.
A screw compressor characterized by having a structure.
請求項1又は2に記載のスクリュー圧縮機において、  The screw compressor according to claim 1 or 2,
前記雌歯形に沿った線は、前記雄ロータの雄歯溝と前記雌ロータの雌歯溝と前記ボアで囲まれて形成される作動室の容積が最大となる、前記雌ロータの回転角度における雌歯溝の追従側輪郭線位置よりも雌ロータの回転方向側に所定のずれ角を設けて配置されることを特徴とするスクリュー圧縮機。  The line along the female tooth profile is at the rotation angle of the female rotor where the volume of the working chamber formed by the male tooth groove of the male rotor, the female tooth groove of the female rotor and the bore is maximized. A screw compressor, characterized in that the screw compressor is arranged with a predetermined deviation angle on the rotational direction side of the female rotor with respect to the contour side position of the female tooth groove.
JP2010118883A 2010-05-25 2010-05-25 Screw compressor Active JP5478362B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010118883A JP5478362B2 (en) 2010-05-25 2010-05-25 Screw compressor
EP11167299.4A EP2390508B1 (en) 2010-05-25 2011-05-24 Suction opening of a screw compressor
CN201310562500.XA CN103541899B (en) 2010-05-25 2011-05-25 Screw compressor
CN201110136609.8A CN102261332B (en) 2010-05-25 2011-05-25 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118883A JP5478362B2 (en) 2010-05-25 2010-05-25 Screw compressor

Publications (2)

Publication Number Publication Date
JP2011247115A JP2011247115A (en) 2011-12-08
JP5478362B2 true JP5478362B2 (en) 2014-04-23

Family

ID=44681524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118883A Active JP5478362B2 (en) 2010-05-25 2010-05-25 Screw compressor

Country Status (3)

Country Link
EP (1) EP2390508B1 (en)
JP (1) JP5478362B2 (en)
CN (2) CN102261332B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6619987B2 (en) * 2015-10-26 2019-12-11 株式会社アルバック Screw pump
JP7189749B2 (en) * 2018-12-04 2022-12-14 株式会社日立産機システム screw compressor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2457314A (en) * 1943-08-12 1948-12-28 Jarvis C Marble Rotary screw wheel device
US2481527A (en) * 1944-06-29 1949-09-13 Jarvis C Marble Rotary multiple helical rotor machine
JPS5951190A (en) * 1982-09-17 1984-03-24 Hitachi Ltd Oil thrower device of oil-free screw compressor
US5269667A (en) * 1993-02-24 1993-12-14 Ingersoll-Rand Company Removabe discharge port plate for a compressor
JPH06288369A (en) 1993-04-06 1994-10-11 Hitachi Ltd Suction port of screw compressor
JPH109164A (en) 1996-06-19 1998-01-13 Hitachi Ltd Screw type fluid machine
DE19724643A1 (en) * 1997-06-11 1998-12-17 Sihi Gmbh & Co Kg Screw compressor and method of operating the same
JP2000337283A (en) * 1999-05-28 2000-12-05 Tochigi Fuji Ind Co Ltd Screw compressor
US8096288B2 (en) * 2008-10-07 2012-01-17 Eaton Corporation High efficiency supercharger outlet

Also Published As

Publication number Publication date
EP2390508A2 (en) 2011-11-30
EP2390508B1 (en) 2018-03-28
CN102261332A (en) 2011-11-30
EP2390508A3 (en) 2014-09-24
CN103541899B (en) 2016-11-23
JP2011247115A (en) 2011-12-08
CN102261332B (en) 2015-01-14
CN103541899A (en) 2014-01-29

Similar Documents

Publication Publication Date Title
US11506056B2 (en) Rotary machine
RU2405970C2 (en) Gear pump (versions)
JP2007170253A (en) Scroll compressor
WO2009094862A1 (en) A rotary compressor
JP2012077638A (en) Internal gear type fluid apparatus
JP4823455B2 (en) Fluid machine provided with a gear and a pair of engagement gears using the gear
JP5478362B2 (en) Screw compressor
KR20080047295A (en) Vane pump
JP6127722B2 (en) Rotary compressor
JP5486851B2 (en) Screw compressor
JP6739660B1 (en) Scroll compressor
JP6991111B2 (en) Scroll compressor
JP5798937B2 (en) Scroll compressor
JP5703752B2 (en) Compressor
KR101315842B1 (en) vacuum pump pitch with screw rotor
KR102608742B1 (en) Rotary compressor
JP2019173590A (en) Screw compressor
JP6123488B2 (en) Rotary compressor
JP6873763B2 (en) Screw fluid machine
US10989197B2 (en) Compressor having round part placed near outlet port
JP5622514B2 (en) Scroll compressor
JP2003120558A (en) Screw type fluid machine
JP2008248823A (en) Scroll fluid machine
JP6769078B2 (en) Rotary compressor
JP2024507549A (en) fluid transfer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R151 Written notification of patent or utility model registration

Ref document number: 5478362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350