JPH109164A - Screw type fluid machine - Google Patents

Screw type fluid machine

Info

Publication number
JPH109164A
JPH109164A JP15791996A JP15791996A JPH109164A JP H109164 A JPH109164 A JP H109164A JP 15791996 A JP15791996 A JP 15791996A JP 15791996 A JP15791996 A JP 15791996A JP H109164 A JPH109164 A JP H109164A
Authority
JP
Japan
Prior art keywords
suction
rotor
female
female rotor
fluid machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15791996A
Other languages
Japanese (ja)
Inventor
Takeshi Tsuchiya
豪 土屋
Junji Okita
純二 沖田
Seiji Tsuru
誠司 鶴
Shinichiro Tazawa
紳一郎 田澤
Hirochika Kametani
裕敬 亀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15791996A priority Critical patent/JPH109164A/en
Publication of JPH109164A publication Critical patent/JPH109164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the suction flow rate of a screw type fluid machine utilizing a lower pressure in the working chamber when it is opened again by providing a suction port having at least one structure for partially interrupting its suction effect during the suction process. SOLUTION: A suction port is structured to be partially closed during its suction process, where it is closed at a rotational angle AM2 of a male rotor and is opened again at a rotational angle AM1 of the rotor. The displacement of the working chamber increases during from AM2 through AM1, while the pressure in the working chamber decreases because of the closed suction port. The forcible drop in pressure of the working chamber increases the suction flow rate through the utilization of a lower pressure therein at or after the rotational angle AM1 of the male rotor which opens the suction port again. The increased suction flow rate in turn improves the volumetric efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はスクリュー流体機械
に関する。
[0001] The present invention relates to a screw fluid machine.

【0002】[0002]

【従来の技術】スクリュー流体機械の基本的な構造は、
特公昭56−17559 号公報に詳細に記載されている。ここ
に図5を用いて、スクリュー流体機械の概略について簡
単に説明する。雄ロータ4と雌ロータ5の回転に伴い、
吸い込みポート1より雄ロータ4と雌ロータ5及びボア
3により形成される作動室へと作動流体を吸い込み、作
動室へ吸い込んだ作動流体が最大量に達した時点で吸い
込みポート1を閉じる。続いて、作動室容積が縮小し
て、作動流体を圧縮し、所期容積比に達した時点で吐き
出しポート2から圧縮した作動流体を吐出する。図5
で、I−I断面で示される吸い込みポート1の形状を図
6に示す。6,7は雄ロータ4の回転中心、雌ロータ5
の回転中心、8,9は雄ロータ側ボア壁面、雌ロータ側
ボア壁面であり、 10は吸い込み開始線、11,12
は雄ロータ側吸い込み終了線、雌ロータ側吸い込み終了
線である。雄ロータ側吸い込み終了線11,雌ロータ側
吸い込み終了線12の形状は、それぞれ、図7に示す雄
ロータ4の前進面13の形状、雌ロータ5の後進面16
の形状を基本として構成している。なお、一般に雄ロー
タ4の回転方向に対して進んでいる歯形の縁を前進面1
3、遅れている縁を後進面14と呼び、雌ロータでは雄
ロータの前進面13,後進面14に対応する縁を各々雌
ロータの前進面15,後進面16と呼ぶ。
2. Description of the Related Art The basic structure of a screw fluid machine is as follows.
The details are described in JP-B-56-17559. Here, the outline of the screw fluid machine will be briefly described with reference to FIG. With the rotation of the male rotor 4 and the female rotor 5,
The working fluid is sucked from the suction port 1 into the working chamber formed by the male rotor 4, the female rotor 5 and the bore 3, and when the working fluid sucked into the working chamber reaches the maximum amount, the suction port 1 is closed. Subsequently, the working chamber volume is reduced to compress the working fluid, and when the desired volume ratio is reached, the compressed working fluid is discharged from the discharge port 2. FIG.
FIG. 6 shows the shape of the suction port 1 shown in the II section. 6 and 7 are the rotation center of the male rotor 4 and the female rotor 5
, The rotation center of 8 and 9 are the male rotor side bore wall surface and the female rotor side bore wall surface, 10 is the suction start line, 11 and 12
Denotes a male rotor side suction end line and a female rotor side suction end line. The shapes of the male rotor side suction end line 11 and the female rotor side suction end line 12 are respectively the shape of the forward surface 13 of the male rotor 4 and the reverse surface 16 of the female rotor 5 shown in FIG.
It is configured based on the shape of. In general, the edge of the tooth profile advancing in the rotation direction of the male rotor 4 is
3. The lagging edge is referred to as a reversing surface 14, and the edges corresponding to the advancing surface 13 and the reversing surface 14 of the male rotor are referred to as the advancing surface 15 and the reversing surface 16 of the female rotor, respectively.

【0003】さらに、雄ロータ4の一溝とこれに対応す
る雌ロータ5の一溝及びボア3から形成される作動室内
の容積,圧力変化を図8に示して説明する。雄ロータ4
の回転角度aで作動流体の吸い込みを開始し、角度bに
て吸い込みポート1を閉じる。この間、吸い込み圧力は
ほぼ一定である。吸い込みを終了すると圧縮工程に移行
し、作動流体を所期容積比となる回転角度cまで圧縮し
た後、吐き出しを開始する。
FIG. 8 shows a change in volume and pressure in the working chamber formed by one groove of the male rotor 4 and a corresponding groove of the female rotor 5 and the bore 3. Male rotor 4
The suction of the working fluid is started at the rotation angle a, and the suction port 1 is closed at the angle b. During this time, the suction pressure is almost constant. When the suction is completed, the process proceeds to the compression step, in which the working fluid is compressed to the rotation angle c that is the desired volume ratio, and then the discharge is started.

【0004】[0004]

【発明が解決しようとする課題】作動室内の吸い込み圧
力はほぼ一定であるが、スクリュー流体機械は、吸い込
み状態で、押し退け容積100%に相当する作動流体を
作動室へと吸い込むことができていない。原因の一つと
して、スクリュー流体機械が給油式で数千回転、無給油
式で一万数千回転の高速回転型の流体機械であることか
ら流路抵抗などによる吸い込み損失が大きいこと。ま
た、原因の一つとして、構造上シールラインを境に圧縮
状態にある作動室と吸い込み状態にある作動室が密接し
ていることから、シールラインを越えて吸い込み状態に
ある作動室へと作動流体が漏れ込むこと。さらに、圧縮
状態にある作動室と吸い込み状態にある作動室が密接し
ているため、吸い込み状態にある作動室が加熱されて作
動流体の圧力を上昇させることが挙げられる。このよう
に、従来のスクリュー流体機械では作動室への吸い込み
流量が減少し、押し退け容積100%に満たないことか
ら体積効率の低下を招いている。
Although the suction pressure in the working chamber is almost constant, the screw fluid machine cannot suck the working fluid corresponding to the displacement volume of 100% into the working chamber in the suction state. . One of the causes is that the suction loss due to flow path resistance is large because the screw fluid machine is a high-speed rotation type fluid machine with thousands of revolutions of lubrication type and 10,000 revolutions of non-lubrication type. Also, one of the causes is that the working chamber in the compressed state and the working chamber in the suction state are close to each other due to the structure of the seal line, so that the working chamber moves beyond the seal line to the working chamber in the suction state. Leakage of fluid. Further, since the working chamber in the compressed state and the working chamber in the suction state are in close contact with each other, the working chamber in the suction state may be heated to increase the pressure of the working fluid. As described above, in the conventional screw fluid machine, the suction flow rate into the working chamber is reduced, and the volumetric displacement is reduced because the displacement volume is less than 100%.

【0005】本発明の目的は、吸い込み終了に達する前
に、部分的に吸い込みポートを閉じて作動室内圧力を強
制的に低下させ、再度吸い込みポートを開いた時点で作
動室内の低圧力を利用し吸い込み流量を増加させること
にある。
An object of the present invention is to partially close the suction port and forcibly reduce the pressure in the working chamber before reaching the end of suction, and to utilize the low pressure in the working chamber when the suction port is opened again. The purpose is to increase the suction flow rate.

【0006】[0006]

【課題を解決するための手段】上記目的達成の為、本発
明では、部分的に空間を共有する二つのボアよりなるボ
ア室をもち、前記ボア室に開口した吸い込みポートと吐
き出しポートを備えたケーシングと、複数の山及び前記
山の相互間に存在する複数の溝から、らせん状に形成さ
れた雌雄一対のロータを備え、前記ロータが前記ボア内
で互いにかみ合った状態で回転自在に納められ、前記ロ
ータは、直接に前記ロータ相互の接触回転伝達により、
あるいは同期回転手段によりかみ合いながら回転し、前
記ロータと前記ケーシングの間に複数の作動空間が形成
されるスクリュー流体機械で、吸い込み工程中に吸い込
み作用を部分的に中断する構造を一つ以上備えた吸い込
みポートを具備するスクリュー流体機械を提供する。ま
た本発明では、前記吸い込み作用を部分的に中断する構
造の終了線形状を、前記作動空間が再度前記吸い込みポ
ートへと開口する時に瞬時に開口する形状として構成す
る。また、本発明では、前記吸い込み作用を部分的に中
断する構造の終了線形状の内、前記雄ロータ側を前記雄
ロータ歯形の後進面と、また、前記雌ロータ側を前記雌
ロータ歯形の前進面と同一形状として構成する。また、
本発明では、従来の雌ロータ側吸い込み終了線を雌ロー
タの回転方向とは逆向きに戻した位置に設定し、前記雌
ロータの回転中心を中心とした前記雌ロータ側吸い込み
終了線と前記雌ロータ側の吸い込み作用を部分的に中断
する構造の終了線のなす角度を最小で前記雌ロータの一
溝に相当する角度として構成する。また、本発明では、
吸い込み作用を部分的に中断する期間を前記ロータの一
溝に相当する期間より長くして構成する。
In order to achieve the above object, the present invention has a bore chamber composed of two bores partially sharing a space, and has a suction port and a discharge port opened to the bore chamber. A casing is provided with a pair of male and female rotors formed in a spiral shape from a plurality of peaks and a plurality of grooves existing between the peaks, and the rotors are rotatably accommodated in the bore while being engaged with each other. , The rotor is directly contacted with the rotor by rotation transmission,
Alternatively, a screw fluid machine that rotates while meshing with the synchronous rotating means and has a plurality of working spaces formed between the rotor and the casing, and has at least one structure that partially interrupts a suction operation during a suction process. A screw fluid machine having a suction port is provided. Further, in the present invention, the end line shape of the structure that partially interrupts the suction operation is configured to be a shape that opens instantaneously when the working space opens again to the suction port. Further, in the present invention, among the end linear shapes of the structure that partially interrupts the suction action, the male rotor side is a retreating surface of the male rotor tooth shape, and the female rotor side is a forward movement of the female rotor tooth shape. It has the same shape as the surface. Also,
In the present invention, the conventional female rotor side suction end line is set at a position returned to the direction opposite to the rotation direction of the female rotor, and the female rotor side suction end line about the rotation center of the female rotor and the female suction end line. The angle formed by the end line of the structure that partially interrupts the suction operation on the rotor side is set to an angle corresponding to at least one groove of the female rotor. In the present invention,
A period in which the suction operation is partially interrupted is set to be longer than a period corresponding to one groove of the rotor.

【0007】[0007]

【発明の実施の形態】本発明の第1の実施例について図
1を用いて説明する。図1は、図5のI−I面に対応
し、スクリュー流体機械の吸い込みポート形状を表す。
図6に示した従来の吸い込みポート形状に対し、図1で
は吸い込み作用を部分的に中断する構造として、雄ロー
タ,雌ロータ側の吸い込みポートを部分的に閉じる構造
20,23を有する。ここで、吸い込みポート1を部分
的に閉じる構造について詳述する。初めに吸い込みポー
ト1を部分的に閉じる構造の終了線形状に関し記述す
る。雄ロータ側で、雄ロータ側の吸い込みポートを部分
的に閉じる構造の終了線21と雄ロータ側ボア内壁27
との交点をPM1,雄ロータ歯底側内径線26との交点
をPM2とする。ここで、雄ロータ回転中心6で雄ロー
タ4を回転させ、雄ロータ4の歯先と交点PM1が一致
したときに、終了線21を雄ロータ4の後進面14と同
一形状として構成する。あるいは、交点PM1,PM2
を雄ロータ4の後進面14との交点であるとして、交点
PM1,PM2間を直線あるいは加工性を考慮した任意
の形状で構成する。雌ロータ側で、雌ロータ側の吸い込
みポートを部分的に閉じる構造の終了線24と雌ロータ
側ボア内壁29との交点をPF1、雌ロータ歯底側内径
線28との交点をPF2とする。ここで、雌ロータ回転
中心7で雌ロータ5を回転させ、雌ロータ5の歯先と交
点PF1が一致したときに、終了線24を雌ロータ5の
前進面15と同一形状として構成する。あるいは、交点
PF1,PF2を雌ロータ5の前進面15との交点であ
るとして、交点PF1,PF2間を直線あるいは加工性
を考慮した任意の形状にて構成する。ここで、交点PM
1,PF1は、雄ロータの回転中心6と雌ロータの回転
中心7を結んだ直線を基準とし、ロータの回転方向に向
かってAM1,AF1の角度に位置する。各角度AM
1,AF1は
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. FIG. 1 corresponds to the II plane of FIG. 5 and shows a suction port shape of a screw fluid machine.
In contrast to the conventional suction port shape shown in FIG. 6, FIG. 1 has structures 20 and 23 that partially close the suction ports on the male rotor and female rotor sides as a structure for partially interrupting the suction operation. Here, a structure for partially closing the suction port 1 will be described in detail. First, the end line shape of the structure in which the suction port 1 is partially closed will be described. On the male rotor side, the end line 21 of the structure that partially closes the suction port on the male rotor side and the inner wall 27 on the male rotor side bore
Is PM1, and the intersection with the male rotor tooth bottom side inner diameter line 26 is PM2. Here, the male rotor 4 is rotated at the male rotor rotation center 6, and when the tooth tip of the male rotor 4 coincides with the intersection point PM <b> 1, the end line 21 is configured to have the same shape as the reversing surface 14 of the male rotor 4. Alternatively, the intersection points PM1, PM2
Is defined as an intersection with the reversing surface 14 of the male rotor 4 and the intersection between the intersections PM1 and PM2 is formed as a straight line or an arbitrary shape considering workability. On the female rotor side, the intersection between the end line 24 of the structure that partially closes the suction port on the female rotor side and the female rotor side bore inner wall 29 is PF1, and the intersection between the female rotor tooth bottom side inner diameter line 28 is PF2. Here, the female rotor 5 is rotated about the female rotor rotation center 7, and when the tooth tip of the female rotor 5 coincides with the intersection PF <b> 1, the end line 24 is configured to have the same shape as the advancing surface 15 of the female rotor 5. Alternatively, the intersections PF1 and PF2 are assumed to be the intersections with the advancing surface 15 of the female rotor 5, and the intersections PF1 and PF2 are formed in a straight line or in any shape considering workability. Where the intersection PM
1, PF1 is located at an angle of AM1, AF1 in the rotation direction of the rotor with reference to a straight line connecting the rotation center 6 of the male rotor and the rotation center 7 of the female rotor. Each angle AM
1, AF1

【0008】[0008]

【数1】 AM1=JM+M1,AF1=JF+LF+F1 …(数1) の関係にあり、再度吸い込みを開始するときに、雄ロー
タ側,雌ロータ側作動室の開口をほぼ同時に行う構成と
なる。JM,JF及びLFは、図7で指示する角度であ
り、JMは雄ロータの後進面14に相当する回転角度、
JFは雌ロータの後進面16に相当する角度、LFは雌
ロータの前進面15に相当する角度である。また、M
1,F1は
## EQU1 ## AM1 = JM + M1, AF1 = JF + LF + F1 (Equation 1) When suction is started again, the opening of the working chambers on the male rotor side and the female rotor side is performed almost simultaneously. JM, JF and LF are the angles indicated in FIG. 7, and JM is the rotation angle corresponding to the reverse surface 14 of the male rotor,
JF is an angle corresponding to the backward movement surface 16 of the female rotor, and LF is an angle corresponding to the forward movement surface 15 of the female rotor. Also, M
1, F1

【0009】[0009]

【数2】 M1:F1=1/雄の歯数:1/雌の歯数 …(数2) の関係にある。M1: F1 = 1 / number of male teeth: 1 / number of female teeth... (Equation 2)

【0010】続いて、吸い込みポートを部分的に閉じる
構造の開始線形状に関し記述する。雄ロータ側で、雄ロ
ータ側の吸い込みポートを部分的に閉じる構造の開始線
22と雄ロータ側ボア内壁27との交点をPM3、雄ロ
ータ歯底側内径線26との交点をPM4とする。ここ
で、雄ロータ回転中心6で雄ロータ4を回転させ、雄ロ
ータ4の歯先と交点PM3が一致したときに、開始線2
2を雄ロータ4の前進面13と同一形状として構成す
る。あるいは、前述の通り交点PM3,PM4を雄ロー
タ4の前進面13との交点であるとして、交点PM3,
PM4間を直線あるいは加工性を考慮した任意の形状で
構成する。この時、開始線22が交点PM3,PM4間
を通過する雄ロータ4の前進面13の形状より雄ロータ
回転方向に進み出ない形状として構成する。雌ロータ側
で、雌ロータ側の吸い込みポートを部分的に閉じる構造
の開始線25と雌ロータ側ボア内壁29との交点をPF
3、雌ロータ歯底側内径線28との交点をPF4とす
る。ここで、雌ロータ回転中心7で雌ロータ5を回転さ
せ、雌ロータ5の歯先と交点PF3が一致したときに、
開始線25を雌ロータ5の後進面16と同一形状として
構成する。あるいは、前述の通り交点PF3,PF4を
雌ロータ5の後進面16との交点であるとして、交点P
F3,PF4間を直線あるいは加工性を考慮した任意の
形状にて構成する。この時、開始線25が交点PF3,
PF4間を通過する雌ロータ5の後進面16の形状より
雌ロータ回転方向に進み出ない形状として構成する。こ
こで、交点PM3,PF3は、雄ロータの回転中心6と
雌ロータの回転中心7を結んだ直線を基準とし、ロータ
の回転方向に向かってAM2,AF2の角度に位置す
る。各角度AM2,AF2は
Next, the starting line shape of the structure for partially closing the suction port will be described. On the male rotor side, the intersection of the start line 22 of the structure that partially closes the male rotor side suction port and the male rotor side bore inner wall 27 is PM3, and the intersection of the male rotor tooth bottom side inner diameter line 26 is PM4. Here, when the male rotor 4 is rotated at the male rotor rotation center 6 and the tooth tip of the male rotor 4 coincides with the intersection PM3, the start line 2
2 has the same shape as the advancing surface 13 of the male rotor 4. Alternatively, as described above, the intersections PM3 and PM4 are regarded as intersections with the forward surface 13 of the male rotor 4, and the intersections PM3 and PM4 are determined.
The space between the PMs 4 is constituted by a straight line or an arbitrary shape in consideration of workability. At this time, the start line 22 is configured so as not to protrude in the male rotor rotation direction from the shape of the advance surface 13 of the male rotor 4 passing between the intersections PM3 and PM4. On the female rotor side, the intersection of the start line 25 of the structure that partially closes the female rotor side suction port and the female rotor side bore inner wall 29 is PF
3. The intersection of the female rotor tooth bottom side inner diameter line 28 is PF4. Here, when the female rotor 5 is rotated around the female rotor rotation center 7 and the tooth tip of the female rotor 5 coincides with the intersection PF3,
The start line 25 is configured to have the same shape as the reverse surface 16 of the female rotor 5. Alternatively, as described above, the intersections PF3 and PF4 are assumed to be the intersections with the reversing surface 16 of the female rotor 5, and the intersection P
A portion between F3 and PF4 is formed in a straight line or an arbitrary shape considering workability. At this time, the start line 25 is located at the intersection PF3.
The female rotor 5 passing between the PFs 4 is configured so as not to protrude in the female rotor rotation direction from the shape of the retreating surface 16. Here, the intersections PM3 and PF3 are located at angles AM2 and AF2 in the rotation direction of the rotor with reference to a straight line connecting the rotation center 6 of the male rotor and the rotation center 7 of the female rotor. Each angle AM2, AF2 is

【0011】[0011]

【数3】 AM2≦AM1−KM,AF2≦AF1−JF−LF …(数3) の関係にあり、吸い込み作用を中断する期間をロータの
一溝に相当する期間より長くできる構成となる。JM,
JF及びLFについては前述した通りであり、KMは、
図7で指示するように雄ロータの一溝に相当する角度で
ある。
## EQU00003 ## AM2.ltoreq.AM1-KM, AF2.ltoreq.AF1-JF-LF (Equation 3), and the period in which the suction operation is interrupted can be made longer than the period corresponding to one groove of the rotor. JM,
JF and LF are as described above, and KM is
As shown in FIG. 7, the angle corresponds to one groove of the male rotor.

【0012】以上の構成による効果について説明する。
ここで、雄ロータ4の一溝とこれに対応する雌ロータ5
の一溝及びボア3から形成される作動室内容積、圧力変
化を示す図2を用いて説明する。AM1,AM2は、図
1における吸い込み作用を無効にする構造の終了、開始
雄ロータ角度を示し、実線は本発明、破線は従来の場合
についての概略を示す。従来は、圧縮状態にある作動室
からの漏れや作動室の加熱等により、吸い込み終了前に
吸い込み圧力が上昇し、吸い込みが阻害され流量が減少
する。一方、本発明では、吸い込みポートが吸い込み工
程中に部分的に閉じる構造を有しており、雄ロータ回転
角AM2で吸い込みポートを閉じ、AM1にて再度吸い込
みポートを開口する。ここで、AM2〜AM1間にある
作動室内容積は従来通りに増加するが、吸い込みポート
が閉じられているために作動室内圧力は低下する。この
ように作動室内圧力を強制的に低下させることで、再度
吸い込みポートを開口する雄ロータ回転角AM1以降
で、作動室内の低圧力を利用し吸い込み流量の増加を図
ることができる。さらに、吸い込み流量が増加すること
から、体積効率を向上できる。
The effect of the above configuration will be described.
Here, one groove of the male rotor 4 and the corresponding female rotor 5
FIG. 2 showing the working chamber volume and pressure change formed by one groove and the bore 3 will be described. AM1 and AM2 indicate the end and the starting male rotor angles of the structure for disabling the suction action in FIG. Conventionally, the suction pressure increases before the end of suction due to leakage from the working chamber in a compressed state, heating of the working chamber, and the like, and suction is obstructed and the flow rate decreases. On the other hand, in the present invention, the suction port has a structure in which the suction port is partially closed during the suction process. The suction port is closed at the male rotor rotation angle AM2, and the suction port is opened again at AM1. Here, the working chamber volume between AM2 and AM1 increases as before, but the working chamber pressure decreases because the suction port is closed. By forcibly reducing the working chamber pressure in this manner, the suction flow rate can be increased using the low pressure in the working chamber after the male rotor rotation angle AM1 at which the suction port is opened again. Further, since the suction flow rate increases, the volume efficiency can be improved.

【0013】本発明の第2の実施例について図3を用い
て説明する。吸い込みポートを部分的に閉じる構造の終
了線形状に関しては、第1の実施の形態と同様である。
吸い込みポートを部分的に閉じる構造の開始線形状に関
しても、交点PM3,PM4,PF3及びPF4に関し
ては第1の実施の形態と同様である。各々PM5,PF
5は、雄ロータ回転中心6,雌ロータ回転中心7と交点
PM3,PF3を結ぶ線分と雄ロータ歯底側内径線2
6,雌ロータ歯底側内径線28との交点を示す。各ロー
タ側の吸い込み作用を中断する構造の開始線22,25
の各ロータ歯底内径線との交点は、PM5,PF5か
ら、PM4,PF4までの各ロータ歯底内径線上のどの
位置にあっても良く任意形状で構成する。本発明の第2
の実施の形態によれば、第1の実施の形態に比べて、吸
い込みポートを部分的に閉じる構造の開始線形状が異な
り、加工,成形が容易となる。一方、第1の実施の形態
と同様に、再度吸い込みを開始するときに、雄ロータ
側,雌ロータ側作動室の開口をほぼ同時に行うことが可
能であり、吸い込み作用を中断する期間をロータの一溝
に相当する期間より長くすることが可能となる。以上よ
り、製作コストの低減と吸い込み流量の増加を合わせて
図ることができる。
A second embodiment of the present invention will be described with reference to FIG. The end line shape of the structure that partially closes the suction port is the same as in the first embodiment.
Regarding the starting line shape of the structure in which the suction port is partially closed, the intersections PM3, PM4, PF3 and PF4 are the same as in the first embodiment. PM5, PF respectively
5 is a line segment connecting the intersection points PM3 and PF3 with the male rotor rotation center 6 and the female rotor rotation center 7, and the male rotor tooth bottom side inner diameter line 2
6, the intersection with the female rotor tooth bottom side inner diameter line 28 is shown. Start lines 22, 25 of a structure that interrupts the suction action on each rotor side
May be located at any position on each rotor root inner diameter line from PM5, PF5 to PM4, PF4, and may be formed in an arbitrary shape. Second embodiment of the present invention
According to this embodiment, the starting line shape of the structure that partially closes the suction port is different from that of the first embodiment, which facilitates processing and molding. On the other hand, similarly to the first embodiment, when the suction is started again, the opening of the male rotor side and the female rotor side working chambers can be performed almost simultaneously, and the period during which the suction action is interrupted is reduced by the rotor. It is possible to make the period longer than the period corresponding to one groove. As described above, it is possible to reduce the manufacturing cost and increase the suction flow rate.

【0014】本発明の第3の実施例について図4を用い
て説明する。本実施例は、特に雄ロータ4の歯数が雌ロ
ータ5の歯数より2以上少ない構成からなるスクリュー
流体機械に関する。吸い込みポートを部分的に閉じる構
造20,23の形状に関しては、第1,2の実施の形態
と同じである。本実施の形態は、吸い込みポートを部分
的に閉じる構造の位置と雌ロータ側吸い込み終了線の位
置に関する。雌ロータ側の吸い込み作用を中断する構造
の終了線24と雌ロータ側ボア内壁29との交点PF1
から雌ロータ側ボア内壁29上を雌ロータ回転方向に沿
って角度 AF3回転した点をPF7とする。また、従
来のスクリュー流体機械の雌ロータ側吸い込み終了線1
2と雌ロータ側ボア内壁29との交点PF6とする。従
来の雌ロータ側吸い込み終了線12形状を雌ロータ回転
中心7を中心として、雌ロータの回転方向とは逆に回転
し、雌ロータ側ボア内壁29上の点PF7に達した時点
で本実施例による雌ロータ側吸い込み終了線30を構成
する。図4で破線で記された部分は従来の吸い込みポー
トの一部を示し、本実施例では閉じている。なお、点P
F7は、雌ロータ側ボア内壁29上で雌ロータ回転方向
にPF6を超えない範囲で任意の場所に位置できる。こ
こで、角度AF3は
A third embodiment of the present invention will be described with reference to FIG. The present embodiment particularly relates to a screw fluid machine having a configuration in which the number of teeth of the male rotor 4 is smaller than the number of teeth of the female rotor 5 by two or more. The shapes of the structures 20, 23 for partially closing the suction port are the same as those in the first and second embodiments. The present embodiment relates to the position of the structure for partially closing the suction port and the position of the female rotor side suction end line. Intersection PF1 between end line 24 of the structure for interrupting the suction operation on the female rotor side and bore inner wall 29 on the female rotor side
The point on the female rotor side bore inner wall 29 from which the angle AF is rotated along the female rotor rotation direction by an angle AF3 is defined as PF7. In addition, the suction end line 1 of the female rotor side of the conventional screw fluid machine
The intersection point PF6 between the second inner wall 29 and the female rotor side bore inner wall 29 is set. When the conventional female rotor side suction end line 12 is rotated around the female rotor rotation center 7 in the opposite direction to the rotation direction of the female rotor and reaches the point PF7 on the female rotor side bore inner wall 29, the present embodiment is performed. Constitutes the suction end line 30 on the female rotor side. In FIG. 4, a portion indicated by a broken line shows a part of a conventional suction port, which is closed in this embodiment. Note that point P
F7 can be located anywhere on the female rotor side bore inner wall 29 within a range not exceeding PF6 in the female rotor rotation direction. Here, the angle AF3 is

【0015】[0015]

【数4】 JF+LF≦AF3≦N×(JF+LF) …(数4) の関係にあり、Nは、JF + LF ≦ AF3 ≦ N × (JF + LF) (Equation 4) where N is

【0016】[0016]

【数5】 N=雌ロータの歯数−雄ロータの歯数 …(数5) である。本実施例により、雌ロータ側の再吸い込み期間
を最短で雌ロータの一溝に相当する期間、開口している
ことができる。ここで、雄ロータ4と雌ロータ5の対応
する一溝とボア3とにより構成する吸い込み工程中の作
動室は、従来の構造では吸い込み終了後、雄ロータ側作
動室が圧縮工程に移っても雌ロータ側作動室は吸い込み
ポートに吸い込み口を開いたまま吸い込み状態にある。
よって、従来の雌ロータ側吸い込み終了線12では、再
吸い込み後の期間が長く、再吸い込みの効果が低減して
しまう。本実施例によれば、雌ロータ側の再吸い込み期
間を最短で雌ロータの一溝に相当する期間にとれること
から、再吸い込み中の作動室からの作動流体漏れを低減
することができ、増加した吸い込み流量の保持を図るこ
とができる。
N = number of teeth of female rotor−number of teeth of male rotor (Equation 5) According to this embodiment, the female rotor can be opened for a period corresponding to one groove of the female rotor at the shortest. Here, the working chamber in the suction process, which is constituted by the corresponding one groove of the male rotor 4 and the female rotor 5 and the bore 3, has a conventional structure. The female rotor side working chamber is in a suction state with the suction port opened to the suction port.
Therefore, in the conventional female rotor side suction end line 12, the period after re-suction is long, and the effect of re-suction is reduced. According to the present embodiment, since the re-suction period on the female rotor side can be set to the shortest period corresponding to one groove of the female rotor, it is possible to reduce the leakage of the working fluid from the working chamber during the re-suction, and to increase It is possible to maintain the suction flow rate.

【0017】[0017]

【発明の効果】本発明では、吸い込み効果を部分的に中
断する構造を備えた吸い込みポートをスクリュー流体機
械に適用する。部分的に吸い込みポートを閉じて作動室
内圧力を強制的に低下させ、再度吸い込みポートを開い
た時点で作動室内の低圧力を利用し吸い込み流量を増加
させる。これにより、吸い込み流量の増加が図れ、体積
効率を向上できる。
According to the present invention, a suction port having a structure for partially interrupting the suction effect is applied to a screw fluid machine. The suction port is partially closed to forcibly reduce the pressure in the working chamber, and when the suction port is opened again, the suction flow is increased by utilizing the low pressure in the working chamber. Thereby, the suction flow rate can be increased, and the volume efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の説明図。FIG. 1 is an explanatory diagram of a first embodiment.

【図2】第1の実施例の作動室内容積と圧力変化の説明
図。
FIG. 2 is an explanatory diagram of a working chamber volume and a pressure change in the first embodiment.

【図3】第2の実施例の説明図。FIG. 3 is an explanatory diagram of a second embodiment.

【図4】第3の実施例の説明図。FIG. 4 is an explanatory view of a third embodiment.

【図5】スクリュー流体機械の説明図。FIG. 5 is an explanatory view of a screw fluid machine.

【図6】従来の吸い込みポートの説明図。FIG. 6 is an explanatory view of a conventional suction port.

【図7】ロータ歯形の説明図。FIG. 7 is an explanatory diagram of a rotor tooth profile.

【図8】従来の作動室における作動室内容積と圧力変化
を示す説明図。
FIG. 8 is an explanatory diagram showing a working chamber volume and a pressure change in a conventional working chamber.

【符号の説明】[Explanation of symbols]

6…雄ロータ回転中心、7…雌ロータ回転中心、8…雄
ロータ側ボア壁面、9…雌ロータ側ボア壁面、10…吸
い込み開始線、11,12…吸い込み終了線、20…部
分的に閉じる構造、21…部分的に閉じる構造の終了
線、22…部分的に閉じる構造の開始線、23…部分的
に閉じる構造、24…部分的に閉じる構造の終了線、2
5…部分的に閉じる構造の開始線、26…雄ロータ歯底
側内径線、27…雄ロータ側ボア内壁、28…雌ロータ
歯底側内径線、29…雌ロータ側ボア内壁。
6: Male rotor rotation center, 7: Female rotor rotation center, 8: Male rotor side bore wall surface, 9: Female rotor side bore wall surface, 10: Suction start line, 11, 12: Suction end line, 20: Partially closed Structure, 21 ... End line of partially closed structure, 22 ... Start line of partially closed structure, 23 ... End line of partially closed structure, 24 ... End line of partially closed structure, 2
5 ... Start line of partially closed structure, 26 ... Male rotor tooth bottom side inner diameter line, 27 ... Male rotor side bore inner wall, 28 ... Female rotor tooth bottom side inner diameter line, 29 ... Female rotor side bore inner wall.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田澤 紳一郎 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 (72)発明者 亀谷 裕敬 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichiro Tazawa 603, Kandamachi, Tsuchiura-shi, Ibaraki Inside the Tsuchiura Plant, Hitachi, Ltd. Inside the mechanical laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】部分的に空間を共有する二つのボアよりな
るボア室をもち、前記ボア室に開口した吸い込みポート
と吐き出しポートを備えたケーシングと、複数の山及び
前記山の相互間に存在する複数の溝から、らせん状に形
成された雌雄一対のロータを備え、前記ロータが前記ボ
ア内で互いにかみ合った状態で回転自在に納められ、前
記ロータは、直接に前記ロータ相互の接触回転伝達によ
り、あるいは同期回転手段によりかみ合いながら回転
し、前記ロータと前記ケーシングの間に複数の作動空間
が形成されるスクリュー流体機械において、吸い込み工
程中に吸い込み作用を部分的に中断する構造を一つ以上
備えた吸い込みポートを具備するスクリュー流体機械。
1. A casing having a bore chamber composed of two bores partially sharing a space, having a suction port and a discharge port opened to the bore chamber, a plurality of peaks, and a plurality of peaks and a gap between the peaks. A plurality of male and female rotors formed in a spiral shape from a plurality of grooves, and the rotors are rotatably housed in a state of being engaged with each other in the bore, and the rotors are directly in contact with each other to transmit rotation of contact between the rotors. In a screw fluid machine that rotates while meshing with each other or with a synchronous rotating means and a plurality of working spaces are formed between the rotor and the casing, at least one structure that partially interrupts a suction operation during a suction process is provided. Screw fluid machine with a suction port provided.
【請求項2】請求項1において、前記吸い込み作用を部
分的に中断する構造の終了線形状を、前記作動空間が再
度前記吸い込みポートへと開口する時に瞬時に開口する
形状として構成するスクリュー流体機械。
2. The screw fluid machine according to claim 1, wherein the end line shape of the structure that partially interrupts the suction action is a shape that opens instantaneously when the working space opens again to the suction port. .
【請求項3】請求項2において、前記吸い込み作用を部
分的に中断する構造の終了線形状の内、前記雄ロータ側
を前記雄ロータ歯形の後進面と、また、前記雌ロータ側
を前記雌ロータ歯形の前進面と同一形状とするスクリュ
ー流体機械。
3. The method according to claim 2, wherein the male rotor side is a reversing surface of the male rotor tooth shape, and the female rotor side is a female terminal side. A screw fluid machine that has the same shape as the advance surface of the rotor tooth profile.
【請求項4】請求項2において、従来の雌ロータ側吸い
込み終了線を雌ロータの回転方向とは逆向きに戻した位
置に設定し、前記雌ロータの回転中心を中心とした前記
雌ロータ側吸い込み終了線と前記雌ロータ側の吸い込み
作用を部分的に中断する構造の終了線のなす角度を最小
で前記雌ロータの一溝に相当する角度とするスクリュー
流体機械。
4. The female rotor according to claim 2, wherein the conventional suction end line on the female rotor side is set at a position returned to the direction opposite to the rotation direction of the female rotor. A screw fluid machine in which the angle between the suction end line and the end line of the structure that partially interrupts the suction operation on the female rotor side is an angle corresponding to at least one groove of the female rotor.
【請求項5】請求項1,2,3または4において、前記
吸い込み作用を部分的に中断する期間を前記ロータの一
溝に相当する期間より長くするスクリュー流体機械。
5. The screw fluid machine according to claim 1, wherein a period during which the suction operation is partially interrupted is longer than a period corresponding to one groove of the rotor.
JP15791996A 1996-06-19 1996-06-19 Screw type fluid machine Pending JPH109164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15791996A JPH109164A (en) 1996-06-19 1996-06-19 Screw type fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15791996A JPH109164A (en) 1996-06-19 1996-06-19 Screw type fluid machine

Publications (1)

Publication Number Publication Date
JPH109164A true JPH109164A (en) 1998-01-13

Family

ID=15660335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15791996A Pending JPH109164A (en) 1996-06-19 1996-06-19 Screw type fluid machine

Country Status (1)

Country Link
JP (1) JPH109164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2390508A2 (en) 2010-05-25 2011-11-30 Hitachi Plant Technologies, Ltd. Suction opening of a screw compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2390508A2 (en) 2010-05-25 2011-11-30 Hitachi Plant Technologies, Ltd. Suction opening of a screw compressor

Similar Documents

Publication Publication Date Title
US4412796A (en) Helical screw rotor profiles
US7488164B2 (en) Optimized helix angle rotors for Roots-style supercharger
CN100520066C (en) Internal engagement gear pump and rotor set for the internal engagement gear pump
US3424373A (en) Variable lead compressor
IL166569A (en) Gear pump
US10436197B2 (en) Optimized helix angle rotors for roots-style supercharger
CN109555681A (en) A kind of determining roots pump rotor molded line rationally designs the method and its application in region
US2845031A (en) Gear tooth construction for rotary fluid meters
US3941521A (en) Rotary compressor
JPS6115241B2 (en)
JP5540364B2 (en) Rotary displacement machine
JPH109164A (en) Screw type fluid machine
US5145347A (en) Gerotor pump with blind-end groove on each lobe of the annulus
US5685704A (en) Rotary gear pump having asymmetrical convex tooth profiles
US3138110A (en) Helically threaded intermeshing rotors
JPH02252991A (en) Screw rotor for screw type pump device
US4076469A (en) Rotary compressor
JPS58155288A (en) Improved-type queen-bee pump
JPH1061566A (en) Vane cell type pump
CN208816319U (en) A kind of double end of twin-screw liquid pump smooth screw rotor entirely
JPH11230067A (en) Fluid machine
US4033708A (en) Rotary compressor
JP2642484B2 (en) Screw type fluid machine
CN110242561A (en) A kind of the big flow screw rotor and its design method of Quimby pump
US11286932B2 (en) Optimized helix angle rotors for roots-style supercharger