JP7189749B2 - screw compressor - Google Patents

screw compressor Download PDF

Info

Publication number
JP7189749B2
JP7189749B2 JP2018227315A JP2018227315A JP7189749B2 JP 7189749 B2 JP7189749 B2 JP 7189749B2 JP 2018227315 A JP2018227315 A JP 2018227315A JP 2018227315 A JP2018227315 A JP 2018227315A JP 7189749 B2 JP7189749 B2 JP 7189749B2
Authority
JP
Japan
Prior art keywords
rotor
female
male
suction
male rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018227315A
Other languages
Japanese (ja)
Other versions
JP2021028474A (en
Inventor
紘太郎 千葉
正彦 高野
茂幸 頼金
謙次 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2018227315A priority Critical patent/JP7189749B2/en
Priority to US17/298,720 priority patent/US20220049700A1/en
Priority to CN201980079092.8A priority patent/CN113167275A/en
Priority to PCT/JP2019/038674 priority patent/WO2020116007A1/en
Priority to TW108142886A priority patent/TWI720701B/en
Publication of JP2021028474A publication Critical patent/JP2021028474A/en
Application granted granted Critical
Publication of JP7189749B2 publication Critical patent/JP7189749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、ロータ径方向の外側に位置する吸込口と、作動室に対してロータ軸方向に連通する吸込流路とを有する、スクリュー圧縮機に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw compressor having a suction port located outside in the radial direction of the rotor and a suction passage communicating with a working chamber in the axial direction of the rotor.

特許文献1に記載のスクリュー圧縮機は、歯部を有する雄ロータと、雄ロータの歯部と噛み合う歯部を有する雌ロータと、雄ロータ及び雌ロータを収容するケーシングとを備える。 A screw compressor described in Patent Document 1 includes a male rotor having teeth, a female rotor having teeth that mesh with the teeth of the male rotor, and a casing that houses the male rotor and the female rotor.

ケーシングは、雄ロータの歯部及び雌ロータの歯部を収容してそれらの歯溝に雄ロータ側の作動室及び雌ロータ側の作動室を形成するボアを有する。また、ケーシングは、雄ロータの歯部及び雌ロータの歯部よりロータ径方向の外側に位置する吸込口と、吸込口と吸込行程の作動室を接続するように形成された吸込流路とを有する。また、ケーシングは、雄ロータの歯部及び雌ロータの歯部よりロータ径方向の外側に位置する吐出口と、吐出口と吐出行程の作動室を接続するように形成された吐出流路とを有する。 The casing has a bore that accommodates the teeth of the male rotor and the teeth of the female rotor and forms a working chamber on the male rotor side and a working chamber on the female rotor side in their tooth spaces. Further, the casing has a suction port located outside the teeth of the male rotor and the teeth of the female rotor in the radial direction of the rotor, and a suction passage formed to connect the suction port and the working chamber of the suction stroke. have. Further, the casing has a discharge port located outside the teeth of the male rotor and the tooth of the female rotor in the radial direction of the rotor, and a discharge passage formed to connect the discharge port and the working chamber of the discharge stroke. have.

作動室は、ロータ軸方向の一方側から他方側に移動しつつ、その容積が変化する。これにより、作動室は、吸込流路を介して吸込口から気体を吸込む吸込行程と、気体を圧縮する圧縮行程と、吐出流路を介して吐出口へ圧縮気体を吐出する吐出行程を順次行うようになっている。 The volume of the working chamber changes while moving from one side to the other side in the axial direction of the rotor. As a result, the working chamber sequentially performs a suction stroke for sucking gas from the suction port through the suction passage, a compression stroke for compressing the gas, and a discharge stroke for discharging the compressed gas to the discharge port via the discharge passage. It's like

吸込流路は、吸込行程の作動室に対してロータ軸方向に連通する。また、吸込流路は、雄ロータ側、かつ雄ロータの中心軸及び雌ロータの中心軸を通る仮想平面より下流側(言い換えれば、吸込口とは反対側)にある雄ロータ側吸込流路と、雌ロータ側、かつ前述した仮想平面より下流側にある雌ロータ側吸込流路とを有する。 The suction passage communicates with the working chamber in the suction stroke in the axial direction of the rotor. In addition, the suction flow channel is the male rotor side suction flow channel on the male rotor side and on the downstream side (in other words, on the side opposite to the suction port) of an imaginary plane passing through the central axis of the male rotor and the central axis of the female rotor. , the female rotor side, and the female rotor side suction flow path located downstream of the above-described imaginary plane.

特開2012-041910号公報(例えば、図8、図9参照)Japanese Patent Application Laid-Open No. 2012-041910 (see, for example, FIGS. 8 and 9)

特許文献1では、雄ロータ側吸込流路のロータ径方向外側の流路壁(但し、作動室に気体を閉じ込めるための部分を除く)は、ボアの壁よりロータ径方向の外側に位置する。そのため、雄ロータ側吸込流路から雄ロータ側作動室に向かう気体の流れの成分として、ロータ径方向の成分が生じ、圧力損失の増加の要因となっている。 In Patent Document 1, the flow path wall on the rotor radial direction outer side of the male rotor side suction flow path (excluding the portion for trapping gas in the working chamber) is located on the rotor radial direction outer side of the bore wall. Therefore, a component in the radial direction of the rotor is generated as a component of the flow of gas from the male rotor side suction flow path to the male rotor side working chamber, which causes an increase in pressure loss.

同様に、雌ロータ側吸込流路のロータ径方向外側の流路壁(但し、作動室に気体を閉じ込めるための壁部分を除く)は、ボアの壁よりロータ径方向の外側に位置する。そのため、雌ロータ側吸込流路から雌ロータ側作動室に向かう気体の流れの成分として、ロータ径方向の成分が生じ、圧力損失の増加の要因となっている。 Similarly, the flow channel wall on the rotor radial outer side of the female rotor side suction flow channel (excluding the wall portion for confining the gas in the working chamber) is located on the rotor radial outer side of the bore wall. Therefore, a component in the radial direction of the rotor is generated as a component of the gas flow directed from the female rotor side suction passage to the female rotor side working chamber, which causes an increase in pressure loss.

本発明は、上記事柄に鑑みてなされたものであり、吸込流路の圧力損失を低減することを課題の一つとするものである。 The present invention has been made in view of the above problems, and one of the objects thereof is to reduce the pressure loss in the suction flow path.

上記課題を解決するために、特許請求の範囲に記載の構成を適用する。本発明は、上記課題を解決するための手段を複数含んでいるが、その一例を挙げるならば、歯部を有する雄ロータと、前記雄ロータの歯部と噛み合う歯部を有する雌ロータと、前記雄ロータ及び前記雌ロータを収容するケーシングとを備え、前記ケーシングは、前記雄ロータの歯部及び前記雌ロータの歯部を収容してそれらの歯溝に雄ロータ側の作動室及び雌ロータ側の作動室を形成するボアと、前記雄ロータの歯部及び前記雌ロータの歯部よりロータ径方向の外側に位置する吸込口と、前記吸込口と吸込行程の作動室を接続するように形成され、前記吸込行程の作動室に対してロータ軸方向に連通する吸込流路とを有し、前記吸込流路は、前記雄ロータ側、かつ前記雄ロータの中心軸及び前記雌ロータの中心軸を通る仮想平面より下流側にある雄ロータ側吸込流路と、前記雌ロータ側、かつ前記仮想平面より下流側にある雌ロータ側吸込流路とを有する、スクリュー圧縮機において、前記雄ロータ側吸込流路は、少なくともロータ軸方向における前記雄ロータの歯部の吸込側端面から前記歯部の軸方向ピッチの半分の範囲にて、ロータ径方向外側の流路壁が、ロータ軸方向から見て前記ボアの壁と同じ位置になるように形成され、かつ、少なくとも前記雄ロータの回転方向における前記仮想平面から前記雄ロータの歯部の回転方向ピッチの範囲にて、前記雄ロータの各半径方向に沿って切断されたロータ軸方向断面である各流路断面の面積が、前記雄ロータ側の各作動室のロータ径方向断面の面積と同じになるように形成される。 In order to solve the above problems, the configurations described in the claims are applied. The present invention includes a plurality of means for solving the above problems. To give an example, a male rotor having teeth, a female rotor having teeth that mesh with the teeth of the male rotor, a casing that accommodates the male rotor and the female rotor; the casing accommodates the teeth of the male rotor and the teeth of the female rotor; a bore forming a side working chamber, a suction port located radially outside of the teeth of the male rotor and the teeth of the female rotor, and a working chamber in the suction stroke with the suction port. and a suction passage communicating with the working chamber of the suction stroke in the axial direction of the rotor, the suction passage being on the male rotor side and at the center axis of the male rotor and the center of the female rotor. A screw compressor having a male rotor side suction flow path on the downstream side of an imaginary plane passing through an axis and a female rotor side suction flow path on the female rotor side and on the downstream side of the imaginary plane, wherein the male rotor In the side suction flow path, the flow path wall on the outer side in the rotor radial direction extends from the suction side end surface of the tooth portion of the male rotor at least in the rotor axial direction to the half of the axial pitch of the tooth portion. and at least within a range of the rotational pitch of the male rotor teeth from the imaginary plane in the rotational direction of the male rotor. The area of each channel cross section, which is a rotor axial cross section cut along the radial direction, is formed to be the same as the area of the rotor radial cross section of each working chamber on the male rotor side.

本発明によれば、吸込流路の圧力損失を低減することができる。 ADVANTAGE OF THE INVENTION According to this invention, the pressure loss of a suction flow path can be reduced.

なお、上記以外の課題、構成及び効果は、以下の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description.

本発明の一実施形態における給油式のスクリュー圧縮機の構成を表す概略図である。1 is a schematic diagram showing the configuration of an oil-fed screw compressor in one embodiment of the present invention. FIG. 本発明の一実施形態における圧縮機本体の構造を表す鉛直断面図である。It is a vertical sectional view showing the structure of the compressor main body in one embodiment of the present invention. 図2の断面III-IIIによる水平断面図である。FIG. 3 is a horizontal sectional view according to section III-III of FIG. 2; 図2の断面IV-IVによる鉛直断面図である。FIG. 3 is a vertical sectional view along section IV-IV of FIG. 2; 図2の断面V-Vによる鉛直断面図である。FIG. 3 is a vertical sectional view along section VV of FIG. 2; 本発明の一変形例における圧縮機本体の構造を表す水平断面図である。It is a horizontal cross-sectional view showing the structure of the compressor main body in the modified example of this invention.

本発明の一実施形態を、図1~図5を用いて説明する。 An embodiment of the present invention will be described with reference to FIGS. 1 to 5. FIG.

本実施形態のスクリュー圧縮機は、モータ1と、モータ1によって駆動され、空気(気体)を圧縮する圧縮機本体2と、圧縮機本体2から吐出された圧縮空気とこれに含まれる油(液体)を分離する気液分離器3と、気液分離器3で分離された油を圧縮機本体2(詳細には、後述する作動室、吸入側軸受、及び吐出側軸受)に供給する油配管4とを備える。油配管4には、油を冷却するオイルクーラ5や、油中の不純物を除去するオイルフィルタ6等が設けられている。 The screw compressor of this embodiment includes a motor 1, a compressor body 2 that is driven by the motor 1 and compresses air (gas), compressed air discharged from the compressor body 2, and oil (liquid) contained therein. ), and the oil pipe that supplies the oil separated by the gas-liquid separator 3 to the compressor body 2 (more specifically, the working chamber, the suction side bearing, and the discharge side bearing, which will be described later) 4. The oil pipe 4 is provided with an oil cooler 5 for cooling the oil, an oil filter 6 for removing impurities in the oil, and the like.

圧縮機本体2は、スクリューロータである雄ロータ11A及び雌ロータ11Bと、雄ロータ11A及び雌ロータ11Bを収納するケーシング12とを備える。 The compressor main body 2 includes a male rotor 11A and a female rotor 11B, which are screw rotors, and a casing 12 that houses the male rotor 11A and the female rotor 11B.

雄ロータ11Aは、螺旋状に延在する複数(本実施形態では4つ)の歯を有する歯部13Aと、歯部13Aの軸方向一方側(図2及び図3の左側)に接続された吸入側軸部14Aと、歯部13Aの軸方向他方側(図2及び図3の右側)に接続された吐出側軸部15Aとを有する。雄ロータ11Aの吸入側軸部14Aは吸入側軸受16Aで回転可能に支持され、雄ロータ11Aの吐出側軸部15Aは吐出側軸受17Aで回転可能に支持されている。 The male rotor 11A is connected to a tooth portion 13A having a plurality (four in this embodiment) of spirally extending teeth, and to one axial side (the left side in FIGS. 2 and 3) of the tooth portion 13A. It has a suction side shaft portion 14A and a discharge side shaft portion 15A connected to the other axial side (right side in FIGS. 2 and 3) of the tooth portion 13A. A suction side shaft portion 14A of the male rotor 11A is rotatably supported by a suction side bearing 16A, and a discharge side shaft portion 15A of the male rotor 11A is rotatably supported by a discharge side bearing 17A.

同様に、雌ロータ11Bは、螺旋状に延在する複数(本実施形態では6つ)の歯を有する歯部13Bと、歯部13Bの軸方向一方側(図2及び図3の左側)に接続された吸入側軸部14Bと、歯部13Bの軸方向他方側(図2及び図3の右側)に接続された吐出側軸部15Bとを有する。雌ロータ11Bの吸入側軸部14Bは吸入側軸受16Bで回転可能に支持され、雌ロータ11Bの吐出側軸部15Bは吐出側軸受17Bで回転可能に支持されている。 Similarly, the female rotor 11B has a tooth portion 13B having a plurality of (six in this embodiment) teeth extending spirally, and a tooth portion 13B on one axial side (the left side in FIGS. 2 and 3) of the tooth portion 13B. It has a connected suction side shaft portion 14B and a discharge side shaft portion 15B connected to the other axial side (right side in FIGS. 2 and 3) of the tooth portion 13B. A suction side shaft portion 14B of the female rotor 11B is rotatably supported by a suction side bearing 16B, and a discharge side shaft portion 15B of the female rotor 11B is rotatably supported by a discharge side bearing 17B.

雄ロータ11Aの吸入側軸部14Aは、ケーシング12を貫通して、モータ1の回転軸に連結されている。そして、モータ1の駆動によって雄ロータ11Aが回転し、雄ロータ11Aの歯部13Aと雌ロータ11Bの歯部13Bの噛み合いによって雌ロータ11Bも回転するようになっている。 A suction side shaft portion 14A of the male rotor 11A penetrates the casing 12 and is connected to the rotating shaft of the motor 1 . The driving of the motor 1 causes the male rotor 11A to rotate, and the meshing of the teeth 13A of the male rotor 11A and the teeth 13B of the female rotor 11B causes the female rotor 11B to also rotate.

ケーシング12は、メインケーシング18と、メインケーシング18の軸方向一方側(図2及び図3の左側)に連結された吸入側ケーシング19と、メインケーシング18の軸方向他方側(図2及び図3の右側)に連結された吐出側ケーシング20とで構成されている。 The casing 12 includes a main casing 18, a suction side casing 19 connected to one axial side of the main casing 18 (left side in FIGS. 2 and 3), and a suction side casing 19 connected to the other axial side of the main casing 18 (FIGS. 2 and 3). right side) and a discharge side casing 20 connected thereto.

ケーシング12は、雄ロータ11Aの歯部13A及び雌ロータ11Bの歯部13Bを収納してそれらの歯溝に雄ロータ側の作動室及び雌ロータ側の作動室を形成するボア21を有する。ボア21は、雄ロータ11Aの歯部13A及び雌ロータ11Bの歯部13Bをそれぞれ収納する2つの円筒状の穴が互いに部分的に重なって構成されている(図5参照)。 The casing 12 has a bore 21 that accommodates the toothed portion 13A of the male rotor 11A and the toothed portion 13B of the female rotor 11B and forms a working chamber on the male rotor side and a working chamber on the female rotor side in the tooth spaces between them. The bore 21 is formed by partially overlapping two cylindrical holes that respectively accommodate the teeth 13A of the male rotor 11A and the teeth 13B of the female rotor 11B (see FIG. 5).

ケーシング12は、雄ロータ11Aの歯部13A及び雌ロータ11Bの歯部13Bよりロータ径方向の外側(図2の上側)に位置する吸込口22と、吸込口22と吸込行程の作動室を接続するように形成された吸込流路23とを有する。ボア21、吸込口22、及び吸込流路23は、メインケーシング18に形成されている。 The casing 12 connects a suction port 22 located radially outside (upper side in FIG. 2) of the teeth 13A of the male rotor 11A and the teeth 13B of the female rotor 11B, and the suction port 22 and a working chamber for the suction stroke. and a suction channel 23 formed to. A bore 21 , a suction port 22 and a suction flow path 23 are formed in the main casing 18 .

ケーシング12は、雄ロータ11Aの歯部13A及び雌ロータ11Bの歯部13Bよりロータ径方向の外側(図2の下側)に位置する吐出口24と、吐出口と吐出行程の作動室を接続するように形成された吐出流路25とを有する。吐出口24は、吐出側ケーシング20に形成され、吐出流路25は、吐出側ケーシング20及びメインケーシング18に形成されている。 The casing 12 connects a discharge port 24 located radially outside (lower in FIG. 2) than the toothed portion 13A of the male rotor 11A and the toothed portion 13B of the female rotor 11B, and a working chamber for the discharge stroke and the discharge port. and a discharge channel 25 formed to do so. The discharge port 24 is formed in the discharge-side casing 20 , and the discharge flow path 25 is formed in the discharge-side casing 20 and the main casing 18 .

作動室は、ロータ軸方向の一方側から他方側に移動しつつ、その容積が変化する。これにより、作動室は、吸込流路23を介して吸込口22から気体を吸込む吸込行程と、気体を圧縮する圧縮行程と、吐出流路25を介して吐出口24へ圧縮気体を吐出する吐出行程を順次行うようになっている。 The volume of the working chamber changes while moving from one side to the other side in the axial direction of the rotor. As a result, the working chamber has a suction stroke for sucking gas from the suction port 22 through the suction flow path 23 , a compression stroke for compressing the gas, and a discharge stroke for discharging the compressed gas to the discharge port 24 via the discharge flow path 25 . The steps are performed sequentially.

吸込流路23は、吸込行程の作動室に対してロータ軸方向に連通する。また、吸込流路23は、雄ロータ11A側、かつ雄ロータ11Aの中心軸O1及び雌ロータ11Bの中心軸O2を通る仮想平面Cより下流側(言い換えれば、吸込口22とは反対側)にある雄ロータ側吸込流路26Aと、雌ロータ11B側、かつ仮想平面Cより下流側にある雌ロータ側吸込流路26Bとを有する(図3及び図4参照)。 The suction passage 23 communicates with the working chamber for the suction stroke in the axial direction of the rotor. In addition, the suction passage 23 is located on the male rotor 11A side and downstream of an imaginary plane C passing through the central axis O1 of the male rotor 11A and the central axis O2 of the female rotor 11B (in other words, the side opposite to the suction port 22). It has a certain male rotor side suction flow path 26A and a female rotor side suction flow path 26B on the female rotor 11B side and downstream from the imaginary plane C (see FIGS. 3 and 4).

ここで本実施形態の大きな特徴として、雄ロータ側吸込流路26Aのロータ径方向外側の流路壁27A(但し、作動室に気体を閉じ込めるための部分28を除く)は、少なくともロータ軸方向における雄ロータ11Aの歯部13Aの吸込側端面から歯部13Aの軸方向ピッチP1(図3参照)の半分の範囲にて(具体例として、図3ではP1×0.8=R1の範囲にて、後述の図6ではP1×0.5=R1の範囲にて)、ロータ軸方向から見てボア21の壁と同じ位置になるように形成されている。なお、歯部の軸方向ピッチとは、ロータ軸方向における歯先の間隔を意味する。また、加工誤差等を考慮するため、流路壁27Aがロータ軸方向から見てボア21の壁と同じ位置になるとは、雄ロータ11Aの中心軸O1を基準とした流路壁27Aの半径方向位置がボア21の壁の半径方向位置の95%~105%の範囲内にあるものとする。 Here, as a major feature of this embodiment, the flow channel wall 27A on the rotor radial direction outer side of the male rotor side suction flow channel 26A (excluding the portion 28 for confining the gas in the working chamber) is at least in the rotor axial direction. From the suction side end surface of the tooth portion 13A of the male rotor 11A to the half of the axial pitch P1 (see FIG. 3) of the tooth portion 13A (as a specific example, in FIG. 3, within the range of P1×0.8=R1 , in the range of P1×0.5=R1 in FIG. 6 which will be described later), and is formed so as to be at the same position as the wall of the bore 21 when viewed from the rotor axial direction. In addition, the axial pitch of the tooth portion means the interval between the tooth tips in the axial direction of the rotor. In addition, in consideration of machining errors and the like, the flow path wall 27A being at the same position as the wall of the bore 21 when viewed from the axial direction of the rotor means Let the position be within 95% to 105% of the radial position of the bore 21 wall.

また、雌ロータ側吸込流路26Bのロータ径方向外側の流路壁27B(但し、作動室に気体を閉じ込めるための部分28を除く)は、少なくともロータ軸方向における雌ロータ11Bの歯部13Bの吸込側端面から歯部13Bの軸方向ピッチP2(但し、P1=P2。図3参照)の半分の範囲にて(具体例として、図3ではP2×0.8=R2の範囲にて、後述の図6ではP2×0.5=R2の範囲にて)、ロータ軸方向から見てボア21の壁と同じ位置になるように形成されている。なお、加工誤差等を考慮するため、流路壁27Bがロータ軸方向から見てボア21の壁と同じ位置になるとは、雌ロータ11Bの中心軸O2を基準とした流路壁27Bの半径方向位置がボア21の壁の半径方向位置の95%~105%の範囲内にあるものとする。 Further, the flow channel wall 27B on the rotor radial direction outer side of the female rotor side suction flow channel 26B (excluding the portion 28 for confining the gas in the working chamber) is at least as large as the tooth portion 13B of the female rotor 11B in the rotor axial direction. In the range of half the axial pitch P2 (however, P1=P2; see FIG. 3) of the tooth portion 13B from the suction side end face (as a specific example, in the range of P2×0.8=R2 in FIG. 6), it is formed so as to be at the same position as the wall of the bore 21 when viewed from the rotor axial direction. In addition, in consideration of machining errors and the like, when the flow path wall 27B is positioned at the same position as the wall of the bore 21 when viewed from the rotor axial direction, it means Let the position be within 95% to 105% of the radial position of the bore 21 wall.

このような実施形態では、雄ロータ側吸込流路26Aから雄ロータ側作動室に向かう気体の流れの成分として、ロータ径方向の成分が生じにくいため、圧力損失を低減することができる。また、雌ロータ側吸込流路26Bから雌ロータ側作動室に向かう気体の流れの成分として、ロータ径方向の成分が生じにくいため、圧力損失を低減することができる。その結果、吸気流量の増大や、動力の低減を図ることができる。 In such an embodiment, the pressure loss can be reduced because the component in the rotor radial direction is less likely to occur as a component of the gas flow directed from the male rotor side suction passage 26A to the male rotor side working chamber. In addition, pressure loss can be reduced because a component in the radial direction of the rotor is less likely to occur as a component of the gas flow directed from the female rotor side suction passage 26B to the female rotor side working chamber. As a result, it is possible to increase the intake flow rate and reduce the power.

また、流路壁27A,27Bがボア21の壁よりロータ径方向の外側に位置する場合と比べて、圧縮機本体2の停止時に雄ロータ側吸込流路26A及び雌ロータ側吸込流路26Bの下部に油が溜まるのを抑制することができる。そのため、雄ロータ側吸込流路26A及び雌ロータ側吸込流路26Bの下部に溜まる油の影響による圧力損失も抑えることができる。 In addition, compared to the case where the flow path walls 27A and 27B are located outside the walls of the bore 21 in the rotor radial direction, when the compressor body 2 is stopped, the male rotor side suction flow path 26A and the female rotor side suction flow path 26B are It is possible to suppress the accumulation of oil in the lower part. Therefore, it is possible to suppress the pressure loss due to the influence of the oil accumulated in the lower portions of the male rotor side suction passage 26A and the female rotor side suction passage 26B.

流路壁27A,27Bがロータ軸方向から見てボア21の壁と同じ位置になる範囲として、少なくともロータ軸方向におけるロータの歯部の吸込側端面から歯部の軸方向ピッチの半分の範囲とした理由について補足する。スクリュー圧縮機の体積効率の観点から、雄ロータ側作動室のロータ軸方向断面(言い換えれば、ロータ軸方向に延在する断面)の面積に対する雄ロータ側吸込流路26Aのロータ軸方向断面の面積や、雌ロータ側作動室のロータ軸方向断面の面積に対する雌ロータ側吸込流路26Bのロータ軸方向断面の面積を考慮する必要がある。雄ロータ側作動室のロータ軸方向断面の面積は、例えば(雄ロータの歯の外径と軸の外径との差分)×軸方向ピッチ÷2で表されるので、雄ロータ側吸込流路26Aのロータ軸方向断面の面積は、少なくとも(雄ロータの歯の外径と軸の外径との差分)×軸方向ピッチ÷2を確保したほうがよい。同様に、雌ロータ側作動室のロータ軸方向断面の面積は、例えば(雌ロータの歯の外径と軸の外径との差分)×軸方向ピッチ÷2で表されるので、雌ロータ側吸込流路26Bのロータ軸方向断面の面積は、少なくとも(雌ロータの歯の外径と軸の外径との差分)×軸方向ピッチ÷2を確保したほうがよい。このような観点から、少なくともロータ軸方向におけるロータの歯部の吸込側端面から歯部の軸方向ピッチの半分の範囲にて、雄ロータ側吸込流路26A又は雌ロータ側吸込流路26Bに特徴をもたせないと、その効果が十分に得られない。 The range in which the flow path walls 27A and 27B are positioned at the same position as the wall of the bore 21 when viewed from the rotor axial direction is at least half the axial pitch of the teeth from the suction side end face of the rotor teeth in the rotor axial direction. Supplement the reason why. From the viewpoint of the volume efficiency of the screw compressor, the area of the rotor axial cross section of the male rotor side suction passage 26A relative to the area of the rotor axial cross section of the male rotor side working chamber (in other words, the cross section extending in the rotor axial direction) Also, it is necessary to consider the area of the rotor axial cross section of the female rotor side suction passage 26B with respect to the area of the rotor axial cross section of the female rotor side working chamber. The cross-sectional area of the male rotor side working chamber in the rotor axial direction is expressed by, for example, (the difference between the outer diameter of the teeth of the male rotor and the outer diameter of the shaft) x the axial pitch/2, so the male rotor side suction flow path is It is better to secure at least (difference between outer diameter of teeth of male rotor and outer diameter of shaft) x axial pitch/2 for the area of the rotor axial cross section of 26A. Similarly, the area of the rotor axial cross-section of the working chamber on the female rotor side is expressed by, for example, (the difference between the outer diameter of the teeth of the female rotor and the outer diameter of the shaft) x axial pitch / 2, so the female rotor side It is better to secure at least (difference between the outer diameter of the teeth of the female rotor and the outer diameter of the shaft)×the axial pitch/2 for the area of the cross section of the suction passage 26B in the axial direction of the rotor. From this point of view, the male rotor side suction passage 26A or the female rotor side suction passage 26B is characterized at least in the range of half the axial pitch of the teeth from the suction side end surface of the tooth portion of the rotor in the axial direction of the rotor. , the effect cannot be sufficiently obtained.

なお、上記一実施形態において、雄ロータ側吸込流路26Aは、雄ロータ11Aの各半径方向に沿って切断されたロータ軸方向断面である各流路断面の面積V1(図3参照)が、雄ロータ側の各作動室のロータ径方向断面(言い換えれば、ロータ径方向に延在する断面)の面積S1(図5参照)より大きくなるように形成され、雌ロータ側吸込流路26Bは、雌ロータ11Bの各半径方向に沿って切断されたロータ軸方向断面である各流路断面の面積V2(図3参照)が、雌ロータ側の各作動室のロータ径方向断面の面積S2(図5参照)より大きくなるように形成された場合を例にとって示したが、これに限られない。本発明の一変形例を、図6を用いて説明する。図6は、本変形例における圧縮機本体の構造を表す水平断面図である。 In the above embodiment, the male rotor side suction flow path 26A has an area V1 (see FIG. 3) of each flow path cross section, which is a rotor axial cross section cut along each radial direction of the male rotor 11A. The female rotor side suction passage 26B is formed so as to be larger than the area S1 (see FIG. 5) of the cross section in the rotor radial direction (in other words, the cross section extending in the rotor radial direction) of each working chamber on the male rotor side. The area V2 (see FIG. 3) of each channel cross section, which is a rotor axial cross section cut along each radial direction of the female rotor 11B, is the area S2 (see FIG. 3) of the rotor radial cross section of each working chamber on the female rotor side. 5) is shown as an example, but it is not limited to this. A modified example of the present invention will be described with reference to FIG. FIG. 6 is a horizontal sectional view showing the structure of the compressor main body in this modification.

本変形例では、雄ロータ側吸込流路26Aは、少なくとも雄ロータ11Aの回転方向における仮想平面Cから雄ロータ11Aの歯部13Aの回転方向ピッチ(本実施形態では90度)の範囲にて、雄ロータ11Aの各半径方向に沿って切断されたロータ軸方向断面である各流路断面の面積V1(図6参照)が、雄ロータ側の各作動室のロータ径方向の断面積S1(図5参照)と同じになるように形成されている。なお、歯部の回転方向ピッチとは、ロータ回転方向における隣り合う歯先の間の角度を意味する。また、加工誤差等を考慮するため、面積V1が面積S1と同じであるとは、面積V1が面積S1の95%~105%の範囲内にあるものとする。 In this modification, the male-rotor-side suction flow path 26A is formed at least within a range from the virtual plane C in the rotational direction of the male rotor 11A to the rotational-direction pitch (90 degrees in this embodiment) of the tooth portions 13A of the male rotor 11A. The cross-sectional area V1 (see FIG. 6) of each flow path cross section, which is a rotor axial cross section cut along each radial direction of the male rotor 11A, is the rotor radial cross-sectional area S1 (see FIG. 6) of each working chamber on the male rotor side. 5). The rotation direction pitch of the tooth portion means the angle between adjacent tooth tips in the rotor rotation direction. In addition, in consideration of processing errors and the like, the area V1 being the same as the area S1 means that the area V1 is within the range of 95% to 105% of the area S1.

また、雌ロータ側吸込流路26Bは、少なくとも雌ロータ11Bの回転方向における仮想平面Cから雌ロータ11Bの歯部13Bの回転方向ピッチ(本実施形態では45度)の範囲にて、雌ロータ11Bの各半径方向に沿って切断されたロータ軸方向断面である各流路断面の面積V2(図6参照)が、雌ロータ側の各作動室のロータ径方向断面の面積S2(図5参照)と同じになるように形成されている。なお、加工誤差等を考慮するため、面積V2が面積S2と同じであるとは、面積V2が面積S2の95%~105%の範囲内にあるものとする。 In addition, the female rotor side suction passage 26B is formed at least within the range of the rotation direction pitch (45 degrees in this embodiment) of the teeth 13B of the female rotor 11B from the virtual plane C in the rotation direction of the female rotor 11B. The area V2 (see FIG. 6) of each flow path cross section, which is a rotor axial cross section cut along each radial direction, is the area S2 (see FIG. 5) of the rotor radial cross section of each working chamber on the female rotor side. formed to be the same as In order to consider processing errors and the like, it is assumed that the area V2 is the same as the area S2 when the area V2 is within the range of 95% to 105% of the area S2.

このような変形例では、雄ロータ側吸込流路26A内の流速の変化や、雄ロータ側吸込流路26Aから雄ロータ側作動室への流速の変化を抑えて、圧力損失を更に低減することができる。また、雌ロータ側吸込流路26B内の流速の変化や、雌ロータ側吸込流路26Bから雌ロータ側作動室への流速の変化を抑えて、圧力損失を更に低減することができる。 In such a modified example, it is possible to further reduce the pressure loss by suppressing changes in flow velocity in the male rotor side suction flow path 26A and flow velocity changes from the male rotor side suction flow path 26A to the male rotor side working chamber. can be done. Further, pressure loss can be further reduced by suppressing changes in the flow velocity in the female rotor side suction flow path 26B and changes in the flow velocity from the female rotor side suction flow path 26B to the female rotor side working chamber.

なお、上記一実施形態においては、雄ロータ側吸込流路26Aと雌ロータ側吸込流路26Bの両方が、第1の特徴(詳細には、少なくともロータ軸方向における歯部の吸込側端面から歯部の軸方向ピッチの半分の範囲にて、ロータ径方向外側の流路壁が、ロータ軸方向から見てボア21の壁と同じ位置になるように形成された特徴)を有する場合を例にとって説明したが、これに限られない。すなわち、雄ロータ側吸込流路26Aと雌ロータ側吸込流路26Bのうちの一方だけが、第1の特徴を有してもよい。 In the above-described embodiment, both the male rotor side suction flow path 26A and the female rotor side suction flow path 26B have the first feature (more specifically, at least the tooth portion from the suction side end surface of the tooth portion in the axial direction of the rotor). In the case where the flow path wall on the radially outer side of the rotor is formed to be at the same position as the wall of the bore 21 when viewed from the rotor axial direction, in the half range of the axial pitch of the part. Illustrated, but not limited to. That is, only one of the male rotor side suction channel 26A and the female rotor side suction channel 26B may have the first feature.

また、上記一変形例においては、雄ロータ側吸込流路26Aと雌ロータ側吸込流路26Bの両方が、第1の特徴と第2の特徴(詳細には、少なくともロータ回転方向における仮想平面Cから歯部の回転方向ピッチの範囲にて、ロータの各半径方向に沿って切断されたロータ軸方向断面である各流路断面の面積が、各作動室のロータ径方向断面の面積と同じになるように形成された特徴)を有する場合を例にとって説明したが、これに限られない。すなわち、例えば、雄ロータ側吸込流路26Aと雌ロータ側吸込流路26Bのうちの一方だけが、第1の特徴と第2の特徴を有してもよい。また、例えば、雄ロータ側吸込流路26Aと雌ロータ側吸込流路26Bの両方が、第1の特徴を有し、雄ロータ側吸込流路26Aと雌ロータ側吸込流路26Bのうちの一方だけが、第2の特徴を有してもよい。 Further, in the modified example, both the male rotor side suction flow path 26A and the female rotor side suction flow path 26B have the first feature and the second feature (more specifically, at least the virtual plane C in the rotor rotation direction). to the pitch of the teeth in the rotational direction, the area of each flow path cross section, which is a rotor axial cross section cut along each radial direction of the rotor, is the same as the area of the rotor radial cross section of each working chamber. Although the case has been described as an example having the characteristics formed so as to be, the present invention is not limited to this. That is, for example, only one of the male rotor side suction channel 26A and the female rotor side suction channel 26B may have the first feature and the second feature. Also, for example, both the male rotor side suction flow path 26A and the female rotor side suction flow path 26B have the first characteristic, and one of the male rotor side suction flow path 26A and the female rotor side suction flow path 26B may have the second feature.

また、本発明の適用対象として、給油式の(詳細には、作動室内に油を供給する)スクリュー圧縮機を例にとって説明したが、これに限られず、給水式の(詳細には、作動室内に水を供給する)スクリュー圧縮機や、無給液式の(詳細には、作動室内に油や水などの液体を供給しない)スクリュー圧縮機であってもよい。 Further, as an application object of the present invention, an oil supply type (specifically, oil is supplied to the working chamber) screw compressor has been described as an example, but it is not limited to this, and a water supply type (specifically, the working chamber It may be a screw compressor that supplies water to the working chamber) or a non-liquid type screw compressor (specifically, it does not supply liquid such as oil or water into the working chamber).

11A…雄ロータ、11B…雌ロータ、12…ケーシング、13A,13B…歯部、21…ボア、22…吸込口、23…吸込流路、26A…雄ロータ側吸込流路、26B…雌ロータ側吸込流路、27A…雄ロータ側吸込流路のロータ径方向外側の流路壁、27B…雌ロータ側吸込流路のロータ径方向外側の流路壁 11A... male rotor, 11B... female rotor, 12... casing, 13A, 13B... teeth, 21... bore, 22... suction port, 23... suction flow path, 26A... male rotor side suction flow path, 26B... female rotor side Suction flow path 27A: Flow path wall on the outer side in the rotor radial direction of the male rotor side suction flow path 27B: Flow path wall on the outer side in the rotor radial direction of the female rotor side suction flow path

Claims (4)

歯部を有する雄ロータと、前記雄ロータの歯部と噛み合う歯部を有する雌ロータと、前記雄ロータ及び前記雌ロータを収容するケーシングとを備え、
前記ケーシングは、前記雄ロータの歯部及び前記雌ロータの歯部を収容してそれらの歯溝に雄ロータ側の作動室及び雌ロータ側の作動室を形成するボアと、前記雄ロータの歯部及び前記雌ロータの歯部よりロータ径方向の外側に位置する吸込口と、前記吸込口と吸込行程の作動室を接続するように形成され、前記吸込行程の作動室に対してロータ軸方向に連通する吸込流路とを有し、
前記吸込流路は、前記雄ロータ側、かつ前記雄ロータの中心軸及び前記雌ロータの中心軸を通る仮想平面より下流側にある雄ロータ側吸込流路と、前記雌ロータ側、かつ前記仮想平面より下流側にある雌ロータ側吸込流路とを有する、スクリュー圧縮機において、
前記雄ロータ側吸込流路は、
少なくともロータ軸方向における前記雄ロータの歯部の吸込側端面から前記歯部の軸方向ピッチの半分の範囲にて、ロータ径方向外側の流路壁が、ロータ軸方向から見て前記ボアの壁と同じ位置になるように形成され、かつ、
少なくとも前記雄ロータの回転方向における前記仮想平面から前記雄ロータの歯部の回転方向ピッチの範囲にて、前記雄ロータの各半径方向に沿って切断されたロータ軸方向断面である各流路断面の面積が、前記雄ロータ側の各作動室のロータ径方向断面の面積と同じになるように形成されたことを特徴とするスクリュー圧縮機。
A male rotor having teeth, a female rotor having teeth that mesh with the teeth of the male rotor, and a casing housing the male rotor and the female rotor,
The casing includes a bore that accommodates the tooth portions of the male rotor and the tooth portions of the female rotor and forms a working chamber on the male rotor side and a working chamber on the female rotor side in the tooth grooves of the male rotor and the teeth of the male rotor. and a suction port positioned radially outwardly of the tooth portion of the female rotor; and a suction flow path communicating with
The suction passage includes a male rotor side suction passage on the male rotor side and downstream of a virtual plane passing through the central axis of the male rotor and the central axis of the female rotor, and a male rotor side suction passage on the female rotor side and the virtual In a screw compressor having a female rotor side suction passage downstream from the plane,
The male rotor side suction passage is
At least in a range from the suction side end surface of the tooth portion of the male rotor in the rotor axial direction to half the axial pitch of the tooth portion, the flow passage wall on the rotor radial direction outer side is the wall of the bore when viewed from the rotor axial direction. and is formed to be at the same position as
Each flow passage section, which is a rotor axial section cut along each radial direction of the male rotor, at least within the range of the rotational pitch of the teeth of the male rotor from the virtual plane in the rotational direction of the male rotor. is formed to be the same as the area of the rotor radial cross section of each working chamber on the male rotor side .
請求項1に記載のスクリュー圧縮機において、
前記雌ロータ側吸込流路は、少なくともロータ軸方向における前記雌ロータの歯部の吸込側端面から前記歯部の軸方向ピッチの半分の範囲にて、ロータ径方向外側の流路壁が、ロータ軸方向から見て前記ボアの壁と同じ位置になるように形成されたことを特徴とするスクリュー圧縮機。
In the screw compressor according to claim 1 ,
The female rotor side suction flow path has a flow path wall on the rotor radial direction outer side in a range of at least half of the axial pitch of the teeth from the suction side end face of the tooth of the female rotor in the rotor axial direction. A screw compressor characterized in that it is formed so as to be in the same position as the wall of the bore when viewed from the axial direction.
請求項に記載のスクリュー圧縮機において、
前記雌ロータ側吸込流路は、少なくとも前記雌ロータの回転方向における前記仮想平面から前記雌ロータの歯部の回転方向ピッチの範囲にて、前記雌ロータの各半径方向に沿って切断されたロータ軸方向断面である各流路断面の面積が、前記雌ロータ側の各作動室のロータ径方向断面の面積と同じになるように形成されたことを特徴とするスクリュー圧縮機。
In the screw compressor according to claim 2 ,
The female-rotor-side suction flow path is a rotor cut along each radial direction of the female rotor at least within a range of the rotational pitch of the teeth of the female rotor from the virtual plane in the rotational direction of the female rotor. A screw compressor, wherein the area of each flow path cross section, which is an axial cross section, is the same as the area of the rotor radial cross section of each working chamber on the female rotor side.
歯部を有する雄ロータと、前記雄ロータの歯部と噛み合う歯部を有する雌ロータと、前記雄ロータ及び前記雌ロータを収容するケーシングとを備え、
前記ケーシングは、前記雄ロータの歯部及び前記雌ロータの歯部を収容してそれらの歯溝に雄ロータ側の作動室及び雌ロータ側の作動室を形成するボアと、前記雄ロータの歯部及び前記雌ロータの歯部よりロータ径方向の外側に位置する吸込口と、前記吸込口と吸込行程の作動室を接続するように形成され、前記吸込行程の作動室に対してロータ軸方向に連通する吸込流路とを有し、
前記吸込流路は、前記雄ロータ側、かつ前記雄ロータの中心軸及び前記雌ロータの中心軸を通る仮想平面より下流側にある雄ロータ側吸込流路と、前記雌ロータ側、かつ前記仮想平面より下流側にある雌ロータ側吸込流路とを有する、スクリュー圧縮機において、
前記雌ロータ側吸込流路は、
少なくともロータ軸方向における前記雌ロータの歯部の吸込側端面から前記歯部の軸方向ピッチの半分の範囲にて、ロータ径方向外側の流路壁が、ロータ軸方向から見て前記ボアの壁と同じ位置になるように形成され、かつ、
少なくとも前記雌ロータの回転方向における前記仮想平面から前記雌ロータの歯部の回転方向ピッチの範囲にて、前記雌ロータの各半径方向に沿って切断されたロータ軸方向断面である各流路断面の面積が、前記雌ロータ側の各作動室のロータ径方向断面の面積と同じになるように形成されたことを特徴とするスクリュー圧縮機。
A male rotor having teeth, a female rotor having teeth that mesh with the teeth of the male rotor, and a casing housing the male rotor and the female rotor,
The casing includes a bore that accommodates the tooth portions of the male rotor and the tooth portions of the female rotor and forms a working chamber on the male rotor side and a working chamber on the female rotor side in the tooth grooves of the male rotor and the teeth of the male rotor. and a suction port positioned radially outwardly of the tooth portion of the female rotor; and a suction flow path communicating with
The suction passage includes a male rotor side suction passage on the male rotor side and downstream of a virtual plane passing through the central axis of the male rotor and the central axis of the female rotor, and a male rotor side suction passage on the female rotor side and the virtual In a screw compressor having a female rotor side suction passage downstream from the plane,
The female rotor side suction passage is
At least in the range from the suction side end surface of the tooth portion of the female rotor in the rotor axial direction to half the axial pitch of the tooth portion, the flow passage wall on the rotor radial direction outer side is the wall of the bore when viewed from the rotor axial direction. and is formed to be at the same position as
Each flow passage section, which is a rotor axial section cut along each radial direction of the female rotor, at least within the range of the rotational pitch of the tooth portion of the female rotor from the virtual plane in the rotational direction of the female rotor. is formed to be the same as the area of the rotor radial cross section of each working chamber on the female rotor side .
JP2018227315A 2018-12-04 2018-12-04 screw compressor Active JP7189749B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018227315A JP7189749B2 (en) 2018-12-04 2018-12-04 screw compressor
US17/298,720 US20220049700A1 (en) 2018-12-04 2019-10-01 Screw Compressor
CN201980079092.8A CN113167275A (en) 2018-12-04 2019-10-01 Screw compressor
PCT/JP2019/038674 WO2020116007A1 (en) 2018-12-04 2019-10-01 Screw compressor
TW108142886A TWI720701B (en) 2018-12-04 2019-11-26 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018227315A JP7189749B2 (en) 2018-12-04 2018-12-04 screw compressor

Publications (2)

Publication Number Publication Date
JP2021028474A JP2021028474A (en) 2021-02-25
JP7189749B2 true JP7189749B2 (en) 2022-12-14

Family

ID=70975215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018227315A Active JP7189749B2 (en) 2018-12-04 2018-12-04 screw compressor

Country Status (5)

Country Link
US (1) US20220049700A1 (en)
JP (1) JP7189749B2 (en)
CN (1) CN113167275A (en)
TW (1) TWI720701B (en)
WO (1) WO2020116007A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023135232A (en) 2022-03-15 2023-09-28 株式会社日立産機システム screw compressor
CN116480588B (en) * 2023-04-18 2024-02-23 北京通嘉宏瑞科技有限公司 Stator and vacuum pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247115A (en) 2010-05-25 2011-12-08 Hitachi Plant Technologies Ltd Screw compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117191U (en) * 1984-07-04 1986-01-31 株式会社神戸製鋼所 Screw compressor
UA43456C2 (en) * 1997-03-26 2001-12-17 Закритоє Акціонєрноє Общєство "Нєзавісімая Енєргєтіка" STEAM SCREW MACHINE
JP5177081B2 (en) * 2009-06-01 2013-04-03 株式会社日立プラントテクノロジー Screw compressor
JP5759125B2 (en) * 2010-08-23 2015-08-05 北越工業株式会社 Structure of suction part of screw compressor body
PT2763979T (en) 2011-10-07 2019-04-12 Takeda Pharmaceuticals Co 1 - arylcarbonyl - 4 - oxy - piperidine compounds useful for the treatment of neurodegenerative diseases
JP7075721B2 (en) * 2017-04-10 2022-05-26 日立ジョンソンコントロールズ空調株式会社 Screw compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247115A (en) 2010-05-25 2011-12-08 Hitachi Plant Technologies Ltd Screw compressor

Also Published As

Publication number Publication date
TWI720701B (en) 2021-03-01
JP2021028474A (en) 2021-02-25
TW202022233A (en) 2020-06-16
US20220049700A1 (en) 2022-02-17
CN113167275A (en) 2021-07-23
WO2020116007A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US20080193301A1 (en) Composite fluid machine
JP7189749B2 (en) screw compressor
CN111295518B (en) Liquid-cooled screw compressor
KR101074633B1 (en) The water cooling dry vacuum pump which has two phase screw type
JP4404115B2 (en) Screw compressor
JP5177081B2 (en) Screw compressor
WO2014168085A1 (en) Compressor
JPH0642475A (en) Single screw compressor
JP6076343B2 (en) Roots pump
JP6077014B2 (en) Fluid machinery
JP2000064975A (en) Improvement of vacuum pump
US20140161655A1 (en) Pump
JP2008297944A (en) Screw compressor
KR100964517B1 (en) Oil pump rotor
CN111279081B (en) Liquid-cooled screw compressor
WO2022255275A1 (en) Screw compressor
JP7143450B2 (en) Double-rotating scroll compressor
WO2021171889A1 (en) Liquid supply type screw compressor
JP6778126B2 (en) Vertical refueling screw compressor
WO2024034235A1 (en) Oil-cooled screw compressor
WO2023112424A1 (en) Liquid supply type screw compressor
JP4248055B2 (en) Oil-cooled screw compressor
JP2005232979A (en) Oil free screw compressor
JP2011074807A (en) Screw compressor
KR100724377B1 (en) Apparatus for reducing oil discharge of high pressure scroll compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221202

R150 Certificate of patent or registration of utility model

Ref document number: 7189749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150