WO2023112424A1 - Liquid supply type screw compressor - Google Patents

Liquid supply type screw compressor Download PDF

Info

Publication number
WO2023112424A1
WO2023112424A1 PCT/JP2022/036623 JP2022036623W WO2023112424A1 WO 2023112424 A1 WO2023112424 A1 WO 2023112424A1 JP 2022036623 W JP2022036623 W JP 2022036623W WO 2023112424 A1 WO2023112424 A1 WO 2023112424A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
male rotor
female rotor
wall surface
female
Prior art date
Application number
PCT/JP2022/036623
Other languages
French (fr)
Japanese (ja)
Inventor
紘太郎 千葉
茂幸 頼金
謙次 森田
雄太 梶江
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2023112424A1 publication Critical patent/WO2023112424A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a feed-type screw compressor that compresses gas while supplying liquid to a working chamber.
  • a liquid feeding type screw compressor compresses gas (eg air) while supplying liquid (eg oil) to the working chamber.
  • gas eg air
  • liquid eg oil
  • the purposes of the liquid supply include gas cooling during the compression stroke, working chamber gap sealing, and rotor lubrication.
  • the feed type screw compressor includes, for example, a male rotor and a female rotor that rotate while meshing with each other, a male rotor side bore that accommodates the teeth of the male rotor, a female rotor side bore that accommodates the teeth of the female rotor, A low-pressure side cusp and a high-pressure side cusp that are boundaries between the wall surface of the male rotor side bore and the wall surface of the female rotor side bore, the male rotor side working chamber that is formed in the tooth groove of the male rotor and compresses gas, and the female rotor. and a female rotor side working chamber for compressing gas.
  • the volumes of the male rotor side working chamber and the female rotor side working chamber change while moving from one side to the other side in the axial direction of the rotor as the male rotor and the female rotor rotate.
  • an intake stroke for sucking gas through the intake passage a compression stroke for compressing the gas, and a discharge stroke for discharging the compressed gas through the discharge passage are sequentially performed.
  • the jet flow flows from the high-pressure side working chamber to the low-pressure side working chamber through the meshing portion between the male rotor and the female rotor (in other words, the gap between the male rotor and the female rotor). occurs.
  • the liquid contained in the compressed gas may turn into high-temperature mist and blow out into the suction flow path.
  • the feed-type screw compressor of Patent Document 1 has ribs arranged in the suction flow path and pockets formed by the ribs.
  • the pocket is positioned adjacent to the low pressure side cusp in the axial direction of the rotor, and is recessed radially outward of the wall surface of the male rotor side bore and the wall surface of the female rotor side bore.
  • the ribs and pockets prevent the liquid contained in the compressed gas from being spouted into the suction flow path.
  • the rib of Patent Document 1 has a line-symmetrical structure about a first imaginary plane including the low pressure side cusp and the high pressure side cusp. Therefore, the pocket of Patent Document 1 extends from the wall surface of the male rotor side bore so as not to exceed the first imaginary plane, and the farther away from the wall surface of the male rotor side bore, the axial center of the male rotor and the female rotor.
  • a first slanted surface slanted away from a second imaginary plane including the axial center of the female rotor, and a wall surface of the female rotor side bore extending so as not to exceed the first imaginary plane, the female rotor and a second slanted surface that is slanted so as to be farther away from the second imaginary plane as it is further away from the wall surface of the side bore.
  • the distribution ratio of the liquid flowing from the pocket into the male rotor side working chamber is substantially the same as the distribution ratio of the liquid flowing from the pocket into the female rotor side working chamber.
  • the male rotor since the male rotor generally has a larger outer diameter than the female rotor, its rotational speed is higher than that of the female rotor. Therefore, the liquid that has flowed into the male rotor side working chamber is agitated at a higher speed than the liquid that has flowed into the female rotor side working chamber. Therefore, if the distribution ratio of the liquid flowing into the working chamber on the female rotor side from the pocket is increased and the distribution ratio of the liquid flowing into the working chamber on the male rotor side from the pocket is decreased, the shaft power required for stirring the liquid can be reduced. It is possible to connect and save energy.
  • the present invention has been made in view of the above matters, and one of its objectives is to reduce the shaft power required for stirring liquids to save energy.
  • the present invention includes a plurality of means for solving the above problems.
  • One example is a male rotor and a female rotor that rotate while meshing with each other, and a male rotor side that accommodates the teeth of the male rotor.
  • the nozzle is positioned adjacent to the low-pressure side cusp in the rotor axial direction, and includes a wall surface of the male rotor side bore and the female rotor. It further has a pocket formed so as to be recessed outward in the rotor radial direction from the wall surface of the side bore.
  • FIG. 1 is an axial sectional view showing the structure of a compressor main body in a first embodiment of the invention
  • FIG. 1 is an axial sectional view showing the structure of a compressor main body in a first embodiment of the invention
  • FIG. 1 is a radial cross-sectional view showing the structure of a compressor main body according to a first embodiment of the present invention
  • FIG. 6 is an axial cross-sectional view showing the structure of a compressor body in a second embodiment of the present invention
  • FIG. 6 is a radial cross-sectional view showing the structure of a compressor body according to a second embodiment of the present invention
  • FIG. 5 is an axial cross-sectional view showing the structure of a compressor main body in a modified example of the present invention
  • FIG. 1 is a schematic diagram showing the configuration of a feed screw compressor in this embodiment.
  • 2 and 3 are axial sectional views showing the structure of the compressor main body in this embodiment.
  • FIG. 4 is a radial cross-sectional view showing the structure of the compressor main body in this embodiment.
  • 2 corresponds to a cross-sectional view along section II-II in FIG. 4
  • FIG. 3 corresponds to a cross-sectional view along section III-III in FIG.
  • FIG. 4 corresponds to a cross-sectional view along section IV--IV in FIG. 2 or FIG.
  • the screw compressor of this embodiment includes a motor 1, a compressor main body 2 that is driven by the motor 1 and compresses gas (for example, air), compressed gas discharged from the compressor main body 2, and liquid contained therein ( and a liquid pipe 4 for supplying the liquid separated by the gas-liquid separator 3 to the working chamber of the compressor main body 2 .
  • the liquid pipe 4 is provided with a cooler 5 for cooling the liquid, a filter 6 for removing impurities in the liquid, and the like.
  • the compressor main body 2 includes a male rotor 11A, a female rotor 11B, and a casing 12 that houses the male rotor 11A and the female rotor 11B.
  • the male rotor 11A includes a tooth portion 13A having a plurality (four in this embodiment) of spirally extending teeth, and a suction side shaft connected to one axial side (left side in FIG. 2) of the tooth portion 13A. and a discharge-side shaft portion 15 connected to the other axial side (right side in FIG. 2) of the tooth portion 13A.
  • a suction side shaft portion 14 of the male rotor 11A is rotatably supported by a suction side bearing 16, and a discharge side shaft portion 15 of the male rotor 11A is rotatably supported by a discharge side bearing 17. As shown in FIG.
  • the female rotor 11B includes a tooth portion 13B having a plurality (six in this embodiment) of spirally extending teeth, and a suction side shaft portion (Fig. (not shown) and a discharge-side shaft portion (not shown) connected to the other axial side of the tooth portion 13B.
  • a suction side shaft portion of the female rotor 11B is rotatably supported by a suction side bearing (not shown), and a discharge side shaft portion of the female rotor 11B is rotatably supported by a discharge side bearing (not shown).
  • the suction-side shaft portion 14 of the male rotor 11A passes through the casing 12 and is connected to the rotating shaft of the motor 1.
  • the driving of the motor 1 causes the male rotor 11A to rotate, and the meshing of the teeth 13A of the male rotor 11A and the teeth 13B of the female rotor 11B causes the female rotor 11B to also rotate.
  • the casing 12 includes a main casing 18, a suction side casing 19 connected to one axial side (left side in FIG. 2) of the main casing 18, and a suction side casing 19 connected to the other axial side (right side in FIG. 2) of the main casing 18. and a discharge side casing 20.
  • the main casing 18 includes a male rotor side bore 22A that accommodates the tooth portion 13A of the male rotor 11A and forms a male rotor side working chamber 21A in the tooth groove thereof, and a tooth portion 13B of the female rotor 11B that accommodates the tooth groove. and a female rotor side bore 22B forming a female rotor side working chamber 21B.
  • the bores 22A, 22B partially overlap each other and have a low pressure side cusp 23 and a high pressure side cusp 24 as their wall boundaries.
  • the volumes of the male rotor side working chamber 21A and the female rotor side working chamber 21B change while moving from one side to the other side in the rotor axial direction as the male rotor 11A and the female rotor 11B rotate.
  • an intake stroke for sucking gas through the intake passage 25 a compression stroke for compressing the gas, and a discharge stroke for discharging the compressed gas through the discharge passage 26 are sequentially performed.
  • the suction passage 25 of this embodiment is arranged so as to overlap with the toothed portion 13A of the male rotor 11A and the toothed portion 13B of the female rotor 11B when viewed from the rotor radial direction, and extends in the rotor radial direction.
  • the main casing 18 has liquid supply nozzles 27 that supply liquid to the male rotor side working chamber 21A and the female rotor side working chamber 21B.
  • the purposes of the liquid supply include gas cooling during the compression stroke, working chamber gap sealing, and rotor lubrication.
  • the air flows from the high-pressure side working chamber to the low-pressure side working chamber via the meshing portion between the male rotor 11A and the female rotor 11B (in other words, the gap between the male rotor 11A and the female rotor 11B).
  • a jet flow is produced.
  • the liquid contained in the compressed gas may become high-temperature mist and blow out into the suction flow path 25 .
  • the compressor body 2 of the present embodiment is formed by the ribs 28 arranged in the suction passage 25 and extending in the axial direction of the rotor (in other words, the ribs 28 do not communicate directly with the suction passage 25). and a pocket 29 formed as follows.
  • the pocket 29 is positioned adjacent to the low-pressure side cusp 23 in the axial direction of the rotor, and is recessed outward in the rotor radial direction (upper side in FIG. 4) from the wall surface of the male rotor side bore 22A and the wall surface of the female rotor side bore 22B. formed to fit.
  • the pocket 29 is formed on a width H1 of the meshing portion between the male rotor 11A and the female rotor 11B (more specifically, on a straight line perpendicular to the axial center O1 of the male rotor 11A and the axial center O2 of the female rotor 11B). distance between the position where the tooth tip of the female rotor 11B passes and the position where the tooth tip of the female rotor 11B passes) and smaller than the width H2 between the axial center O1 of the male rotor 11A and the axial center O2 of the female rotor 11B. formed.
  • the ribs 28 and the pockets 29 prevent the liquid contained in the compressed gas from spouting into the suction flow path 25 .
  • the rib 28 has a structure that is not line-symmetrical about the imaginary plane C1 including the low pressure side cusp 23 and the high pressure side cusp 24 as the center.
  • the pocket 29 is formed by the inclined surfaces 30A and 30B of the rib 28.
  • the inclined surface 30A of the rib 28 extends from the wall surface of the male-rotor-side bore 22A so as to exceed the imaginary plane C1. 11B so as to be greatly separated from the imaginary plane C2 including the axis O2 of 11B.
  • the inclined surface 30B of the rib 28 extends from the wall surface of the female rotor-side bore 22B so as not to exceed the imaginary plane C2, and the farther away from the wall surface of the female rotor-side bore 22B, the farther away from the imaginary plane C2. inclined to Therefore, the boundary between the inclined surface 30A and the inclined surface 30B of the rib 28 (in other words, the bottom of the pocket 29) is positioned closer to the axial center O2 of the female rotor 11B than the imaginary plane C1.
  • the distribution ratio of liquid flowing from the pocket 29 into the female rotor side working chamber 21B can be increased, and the distribution ratio of the liquid flowing from the pocket 29 into the male rotor side working chamber 21A can be decreased.
  • the liquid that has flowed into the male rotor side working chamber 21A is agitated at a higher speed than the liquid that has flowed into the female rotor side working chamber 21B. Therefore, it is possible to save energy by reducing the shaft power required for stirring the liquid.
  • FIG. 5 is an axial cross-sectional view showing the structure of the compressor main body in this embodiment.
  • FIG. 6 is a radial cross-sectional view showing the structure of the compressor main body in this embodiment.
  • 5 corresponds to a cross-sectional view taken along line VV in FIG. 6
  • FIG. 6 corresponds to a cross-sectional view taken along line VI-VI in FIG.
  • symbol is attached
  • the suction passage 25A of this embodiment is arranged so as not to overlap the toothed portion 13A of the male rotor 11A and the toothed portion 13B of the female rotor 11B when viewed from the rotor radial direction, and extends in the rotor radial direction.
  • the pocket 29A of this embodiment is formed so as to directly communicate with the suction flow path 25A.
  • the pocket 29A of the present embodiment is positioned adjacent to the low-pressure side cusp 23 in the axial direction of the rotor. It is formed so as to be recessed outward in the rotor radial direction (upper side in FIG. 6) from the wall surface. Further, it is formed to be larger than the width H1 of the meshing portion between the male rotor 11A and the female rotor 11B and smaller than the width H2 between the axial center O1 of the male rotor 11A and the axial center O2 of the female rotor 11B.
  • the pocket 29A of this embodiment is formed of inclined surfaces 30A and 30B.
  • the inclined surface 30A extends from the wall surface of the male rotor side bore 22A so as to exceed the virtual plane C1, and is inclined to be farther away from the virtual plane C2 as the distance from the wall surface of the male rotor side bore 22A increases.
  • the inclined surface 30B extends from the wall surface of the female rotor side bore 22B so as not to exceed the imaginary plane C2, and is inclined so as to be farther away from the imaginary plane C2 as the distance from the wall surface of the female rotor side bore 22B increases. there is Therefore, the boundary between the inclined surface 30A and the inclined surface 30B (in other words, the bottom of the pocket 29A) is positioned closer to the axial center O2 of the female rotor 11B than the imaginary plane C1.
  • the pocket 29A when the pocket 29A is formed so as to directly communicate with the suction flow path 25A (that is, the male rotor side working chamber 21A and the female rotor side working chamber 21B are connected to the suction flow path 25A and The case where gas is sucked through the pocket 29A) has been described as an example, but the present invention is not limited to this.
  • the pocket 29A may be formed by a partition wall 31 extending in the radial direction of the rotor so as not to directly communicate with the suction flow path 25A. As a result, the liquid contained in the compressed gas may be prevented from spouting into the suction flow path 25A.
  • the inclined surface 30A is composed of at least one flat surface, at least one curved surface, or a combination thereof. It is good if it is.
  • the inclined surface 30B may be composed of at least one flat surface, at least one curved surface, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a liquid supply type screw compressor capable of saving energy by reducing the shaft power required for stirring liquid. The liquid supply type screw compressor has: a male rotor side bore 22A in which a teeth part 13A of a male rotor 11A is housed; a female rotor side bore 22B in which a teeth part 13B of a female rotor 11B is housed; a low pressure side cusp 23 and a high pressure side cusp 24 that are boundaries between a wall surface of the male rotor side bore 22A and a wall surface of the female rotor side bore 22B; and a pocket 29 located adjacent to the low pressure side cusp 23 in the rotor axial direction, and formed to be depressed outward in the rotor radial direction relative to the wall surface of the male rotor side bore 22A and the wall surface of the female rotor side bore 22B. The pocket 29 is formed by inclined surfaces 30A, 30B. The inclined surface 30A extends from the wall surface of the male rotor side bore 22A beyond a virtual plane C1 including the low pressure side cusp 23 and the high pressure side cusp 24.

Description

給液式スクリュー圧縮機Feed screw compressor
 本発明は、作動室に液体を供給しつつ気体を圧縮する給液式スクリュー圧縮機に関する。 The present invention relates to a feed-type screw compressor that compresses gas while supplying liquid to a working chamber.
 給液式スクリュー圧縮機は、作動室に液体(例えば油)を供給しつつ、気体(例えば空気)を圧縮する。液体供給の目的は、圧縮行程における気体の冷却、作動室の隙間の封止、及びロータの潤滑などである。 A liquid feeding type screw compressor compresses gas (eg air) while supplying liquid (eg oil) to the working chamber. The purposes of the liquid supply include gas cooling during the compression stroke, working chamber gap sealing, and rotor lubrication.
 給液式スクリュー圧縮機は、例えば、互いに噛み合いながら回転する雄ロータ及び雌ロータと、雄ロータの歯部を収納する雄ロータ側ボアと、雌ロータの歯部を収納する雌ロータ側ボアと、雄ロータ側ボアの壁面と雌ロータ側ボアの壁面との境界線である低圧側カスプ及び高圧側カスプと、雄ロータの歯溝に形成され、気体を圧縮する雄ロータ側作動室と、雌ロータの歯溝に形成され、気体を圧縮する雌ロータ側作動室とを有する。 The feed type screw compressor includes, for example, a male rotor and a female rotor that rotate while meshing with each other, a male rotor side bore that accommodates the teeth of the male rotor, a female rotor side bore that accommodates the teeth of the female rotor, A low-pressure side cusp and a high-pressure side cusp that are boundaries between the wall surface of the male rotor side bore and the wall surface of the female rotor side bore, the male rotor side working chamber that is formed in the tooth groove of the male rotor and compresses gas, and the female rotor. and a female rotor side working chamber for compressing gas.
 雄ロータ側作動室及び雌ロータ側作動室は、雄ロータ及び雌ロータの回転に伴い、ロータ軸方向の一方側から他方側に移動しつつ、容積が変化する。これにより、吸入流路を介して気体を吸入する吸入行程と、気体を圧縮する圧縮行程と、吐出流路を介して圧縮気体を吐出する吐出行程を順次行うようになっている。 The volumes of the male rotor side working chamber and the female rotor side working chamber change while moving from one side to the other side in the axial direction of the rotor as the male rotor and the female rotor rotate. As a result, an intake stroke for sucking gas through the intake passage, a compression stroke for compressing the gas, and a discharge stroke for discharging the compressed gas through the discharge passage are sequentially performed.
 上述した給液式スクリュー圧縮機においては、雄ロータと雌ロータとの噛合い部(言い換えれば、雄ロータと雌ロータとの隙間)を介して高圧側作動室から低圧側作動室に向かう噴き出し流れが生じる。そして、圧縮機の構造によっては、圧縮気体中に含まれる液体が高温のミストとなって吸入流路に噴き出す可能性がある。 In the above-described feed type screw compressor, the jet flow flows from the high-pressure side working chamber to the low-pressure side working chamber through the meshing portion between the male rotor and the female rotor (in other words, the gap between the male rotor and the female rotor). occurs. Depending on the structure of the compressor, the liquid contained in the compressed gas may turn into high-temperature mist and blow out into the suction flow path.
 そのため、特許文献1の給液式のスクリュー圧縮機は、吸入流路内に配置されたリブと、リブによって形成されたポケットとを有する。ポケットは、ロータ軸方向にて低圧側カスプと隣り合うように位置し、雄ロータ側ボアの壁面及び雌ロータ側ボアの壁面よりロータ径方向外側に窪むように形成されている。リブ及びポケットにより、圧縮気体に含まれる液体が吸入流路へ噴き出すのを抑制する。 Therefore, the feed-type screw compressor of Patent Document 1 has ribs arranged in the suction flow path and pockets formed by the ribs. The pocket is positioned adjacent to the low pressure side cusp in the axial direction of the rotor, and is recessed radially outward of the wall surface of the male rotor side bore and the wall surface of the female rotor side bore. The ribs and pockets prevent the liquid contained in the compressed gas from being spouted into the suction flow path.
特開2010-174830号公報JP 2010-174830 A
 しかしながら、従来技術には、下記のような改善の余地があった。 However, the conventional technology has room for improvement as follows.
 特許文献1のリブは、低圧側カスプ及び高圧側カスプを含む第1の仮想平面を中心として線対称な構造である。そのため、特許文献1のポケットは、雄ロータ側ボアの壁面より、第1の仮想平面を超えないように延在し、雄ロータ側ボアの壁面より大きく離れるほど、雄ロータの軸中心及び雌ロータの軸中心を含む第2の仮想平面に対して大きく離れるように傾斜した第1の傾斜面と、雌ロータ側ボアの壁面より、第1の仮想平面を超えないように延在し、雌ロータ側ボアの壁面より大きく離れるほど、第2の仮想平面に対して大きく離れるように傾斜した第2の傾斜面とで形成されている。 The rib of Patent Document 1 has a line-symmetrical structure about a first imaginary plane including the low pressure side cusp and the high pressure side cusp. Therefore, the pocket of Patent Document 1 extends from the wall surface of the male rotor side bore so as not to exceed the first imaginary plane, and the farther away from the wall surface of the male rotor side bore, the axial center of the male rotor and the female rotor. A first slanted surface slanted away from a second imaginary plane including the axial center of the female rotor, and a wall surface of the female rotor side bore extending so as not to exceed the first imaginary plane, the female rotor and a second slanted surface that is slanted so as to be farther away from the second imaginary plane as it is further away from the wall surface of the side bore.
 雄ロータ側作動室及び雌ロータ側作動室から噴き出された液体は、ポケットを経て、雄ロータ側作動室及び雌ロータ側作動室に再び流入する。上述したポケットの構造によれば、ポケットから雄ロータ側作動室に流入する液体の分配比と、ポケットから雌ロータ側作動室に流入する液体の分配比は、ほぼ同じである。 The liquid ejected from the male rotor side working chamber and the female rotor side working chamber passes through the pocket and flows into the male rotor side working chamber and the female rotor side working chamber again. According to the pocket structure described above, the distribution ratio of the liquid flowing from the pocket into the male rotor side working chamber is substantially the same as the distribution ratio of the liquid flowing from the pocket into the female rotor side working chamber.
 ところが、一般的に、雄ロータは、雌ロータより外径が大きいから、雌ロータより回転速度が大きい。そのため、雄ロータ側作動室に流入した液体は、雌ロータ側作動室に流入した液体より、高速で撹拌される。したがって、ポケットから雌ロータ側作動室に流入する液体の分配比を多くして、ポケットから雄ロータ側作動室に流入する液体の分配比を少なくすれば、液体の撹拌に要する軸動力の低減に繋がり、省エネを図ることが可能である。 However, since the male rotor generally has a larger outer diameter than the female rotor, its rotational speed is higher than that of the female rotor. Therefore, the liquid that has flowed into the male rotor side working chamber is agitated at a higher speed than the liquid that has flowed into the female rotor side working chamber. Therefore, if the distribution ratio of the liquid flowing into the working chamber on the female rotor side from the pocket is increased and the distribution ratio of the liquid flowing into the working chamber on the male rotor side from the pocket is decreased, the shaft power required for stirring the liquid can be reduced. It is possible to connect and save energy.
 本発明は、上記事柄に鑑みてなされたものであり、液体の撹拌に要する軸動力を低減して省エネを図ることを課題の一つとするものである。 The present invention has been made in view of the above matters, and one of its objectives is to reduce the shaft power required for stirring liquids to save energy.
 上記課題を解決するために、特許請求の範囲に記載の構成を適用する。本発明は、上記課題を解決するための手段を複数含んでいるが、その一例を挙げるならば、互いに噛み合いながら回転する雄ロータ及び雌ロータと、前記雄ロータの歯部を収納する雄ロータ側ボアと、前記雌ロータの歯部を収納する雌ロータ側ボアと、前記雄ロータ側ボアの壁面と前記雌ロータ側ボアの壁面との境界線である低圧側カスプ及び高圧側カスプと、前記雄ロータの歯溝に形成され、気体を圧縮する雄ロータ側作動室と、前記雌ロータの歯溝に形成され、気体を圧縮する雌ロータ側作動室と、前記雄ロータ側作動室及び前記雌ロータ側作動室に液体を供給する給液ノズルとを有する給液式スクリュー圧縮機において、ロータ軸方向にて前記低圧側カスプと隣接するように位置し、前記雄ロータ側ボアの壁面及び前記雌ロータ側ボアの壁面よりロータ径方向の外側に窪むように形成されたポケットを更に有し、前記ポケットは、前記雄ロータ側ボアの壁面より、前記低圧側カスプ及び前記高圧側カスプを含む第1の仮想平面を超えるように延在し、前記雄ロータ側ボアの壁面より大きく離れるほど、前記雄ロータの軸中心及び前記雌ロータの軸中心を含む第2の仮想平面に対して大きく離れるように傾斜した第1の傾斜面と、前記雌ロータ側ボアの壁面より、前記第1の仮想平面を超えないように延在し、前記雌ロータ側ボアの壁面より大きく離れるほど、前記第2の仮想平面に対して大きく離れるように傾斜した第2の傾斜面とで形成される。 In order to solve the above problems, the configuration described in the claims is applied. The present invention includes a plurality of means for solving the above problems. One example is a male rotor and a female rotor that rotate while meshing with each other, and a male rotor side that accommodates the teeth of the male rotor. a bore, a female rotor-side bore that accommodates the teeth of the female rotor, a low-pressure side cusp and a high-pressure side cusp that are boundary lines between the wall surface of the male rotor-side bore and the wall surface of the female rotor-side bore, and the male rotor. A male rotor side working chamber formed in the tooth groove of the rotor for compressing the gas, a female rotor side working chamber formed in the tooth groove of the female rotor for compressing the gas, the male rotor side working chamber and the female rotor In a liquid feed type screw compressor having a liquid feed nozzle for supplying liquid to a side working chamber, the nozzle is positioned adjacent to the low-pressure side cusp in the rotor axial direction, and includes a wall surface of the male rotor side bore and the female rotor. It further has a pocket formed so as to be recessed outward in the rotor radial direction from the wall surface of the side bore. extending beyond the plane, and inclined to be farther away from the second imaginary plane including the axial center of the male rotor and the axial center of the female rotor as the wall surface of the male rotor side bore is further away. and a first inclined surface that extends from the wall surface of the female rotor-side bore so as not to exceed the first virtual plane, and the farther away from the wall surface of the female rotor-side bore, the more it lies on the second virtual plane. and a second slanted surface slanted away from the slanted surface.
 本発明によれば、液体の撹拌に要する軸動力を低減して省エネを図ることができる。 According to the present invention, it is possible to save energy by reducing the shaft power required for stirring the liquid.
 なお、上記以外の課題、構成及び効果は、以下の説明により明らかにされる。 In addition, problems, configurations and effects other than the above will be clarified by the following explanation.
本発明の第1の実施形態における給液式スクリュー圧縮機の構成を表す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic showing the structure of the feed type screw compressor in the 1st Embodiment of this invention. 本発明の第1の実施形態における圧縮機本体の構造を表す軸方向断面図である。1 is an axial sectional view showing the structure of a compressor main body in a first embodiment of the invention; FIG. 本発明の第1の実施形態における圧縮機本体の構造を表す軸方向断面図である。1 is an axial sectional view showing the structure of a compressor main body in a first embodiment of the invention; FIG. 本発明の第1の実施形態における圧縮機本体の構造を表す径方向断面図である。1 is a radial cross-sectional view showing the structure of a compressor main body according to a first embodiment of the present invention; FIG. 本発明の第2の実施形態における圧縮機本体の構造を表す軸方向断面図である。FIG. 6 is an axial cross-sectional view showing the structure of a compressor body in a second embodiment of the present invention; 本発明の第2の実施形態における圧縮機本体の構造を表す径方向断面図である。FIG. 6 is a radial cross-sectional view showing the structure of a compressor body according to a second embodiment of the present invention; 本発明の一変形例における圧縮機本体の構造を表す軸方向断面図である。FIG. 5 is an axial cross-sectional view showing the structure of a compressor main body in a modified example of the present invention;
 本発明の第1の実施形態を、図1~図4を用いて説明する。図1は、本実施形態における給液式スクリュー圧縮機の構成を表す概略図である。図2及び図3は、本実施形態における圧縮機本体の構造を表す軸方向断面図である。図4は、本実施形態における圧縮機本体の構造を表す径方向断面図である。なお、図2は、図4の断面II-IIによる断面図に相当し、図3は、図4の断面III-IIIによる断面図に相当する。図4は、図2又は図3の断面IV-IVによる断面図に相当する。 A first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG. FIG. 1 is a schematic diagram showing the configuration of a feed screw compressor in this embodiment. 2 and 3 are axial sectional views showing the structure of the compressor main body in this embodiment. FIG. 4 is a radial cross-sectional view showing the structure of the compressor main body in this embodiment. 2 corresponds to a cross-sectional view along section II-II in FIG. 4, and FIG. 3 corresponds to a cross-sectional view along section III-III in FIG. FIG. 4 corresponds to a cross-sectional view along section IV--IV in FIG. 2 or FIG.
 本実施形態のスクリュー圧縮機は、モータ1と、モータ1によって駆動され、気体(例えば空気)を圧縮する圧縮機本体2と、圧縮機本体2から吐出された圧縮気体とこれに含まれる液体(例えば油)を分離する気液分離器3と、気液分離器3で分離された液体を圧縮機本体2の作動室に供給する液体配管4とを備える。液体配管4には、液体を冷却するクーラ5や、液体中の不純物を除去するフィルタ6等が設けられている。 The screw compressor of this embodiment includes a motor 1, a compressor main body 2 that is driven by the motor 1 and compresses gas (for example, air), compressed gas discharged from the compressor main body 2, and liquid contained therein ( and a liquid pipe 4 for supplying the liquid separated by the gas-liquid separator 3 to the working chamber of the compressor main body 2 . The liquid pipe 4 is provided with a cooler 5 for cooling the liquid, a filter 6 for removing impurities in the liquid, and the like.
 圧縮機本体2は、雄ロータ11A及び雌ロータ11Bと、雄ロータ11A及び雌ロータ11Bを収納するケーシング12とを備える。 The compressor main body 2 includes a male rotor 11A, a female rotor 11B, and a casing 12 that houses the male rotor 11A and the female rotor 11B.
 雄ロータ11Aは、螺旋状に延在する複数(本実施形態では4つ)の歯を有する歯部13Aと、歯部13Aの軸方向一方側(図2の左側)に接続された吸入側軸部14と、歯部13Aの軸方向他方側(図2の右側)に接続された吐出側軸部15とを有する。雄ロータ11Aの吸入側軸部14は吸入側軸受16で回転可能に支持され、雄ロータ11Aの吐出側軸部15は吐出側軸受17で回転可能に支持されている。 The male rotor 11A includes a tooth portion 13A having a plurality (four in this embodiment) of spirally extending teeth, and a suction side shaft connected to one axial side (left side in FIG. 2) of the tooth portion 13A. and a discharge-side shaft portion 15 connected to the other axial side (right side in FIG. 2) of the tooth portion 13A. A suction side shaft portion 14 of the male rotor 11A is rotatably supported by a suction side bearing 16, and a discharge side shaft portion 15 of the male rotor 11A is rotatably supported by a discharge side bearing 17. As shown in FIG.
 同様に、雌ロータ11Bは、螺旋状に延在する複数(本実施形態では6つ)の歯を有する歯部13Bと、歯部13Bの軸方向一方側に接続された吸入側軸部(図示せず)と、歯部13Bの軸方向他方側に接続された吐出側軸部(図示せず)とを有する。雌ロータ11Bの吸入側軸部は吸入側軸受(図示せず)で回転可能に支持され、雌ロータ11Bの吐出側軸部は吐出側軸受(図示せず)で回転可能に支持されている。 Similarly, the female rotor 11B includes a tooth portion 13B having a plurality (six in this embodiment) of spirally extending teeth, and a suction side shaft portion (Fig. (not shown) and a discharge-side shaft portion (not shown) connected to the other axial side of the tooth portion 13B. A suction side shaft portion of the female rotor 11B is rotatably supported by a suction side bearing (not shown), and a discharge side shaft portion of the female rotor 11B is rotatably supported by a discharge side bearing (not shown).
 雄ロータ11Aの吸入側軸部14は、ケーシング12を貫通して、モータ1の回転軸に連結されている。そして、モータ1の駆動によって雄ロータ11Aが回転し、雄ロータ11Aの歯部13Aと雌ロータ11Bの歯部13Bの噛み合いによって雌ロータ11Bも回転するようになっている。 The suction-side shaft portion 14 of the male rotor 11A passes through the casing 12 and is connected to the rotating shaft of the motor 1. The driving of the motor 1 causes the male rotor 11A to rotate, and the meshing of the teeth 13A of the male rotor 11A and the teeth 13B of the female rotor 11B causes the female rotor 11B to also rotate.
 ケーシング12は、メインケーシング18と、メインケーシング18の軸方向一方側(図2の左側)に連結された吸入側ケーシング19と、メインケーシング18の軸方向他方側(図2の右側)に連結された吐出側ケーシング20とで構成されている。 The casing 12 includes a main casing 18, a suction side casing 19 connected to one axial side (left side in FIG. 2) of the main casing 18, and a suction side casing 19 connected to the other axial side (right side in FIG. 2) of the main casing 18. and a discharge side casing 20.
 メインケーシング18は、雄ロータ11Aの歯部13Aを収納してその歯溝に雄ロータ側作動室21Aを形成する雄ロータ側ボア22Aと、雌ロータ11Bの歯部13Bを収納してその歯溝に雌ロータ側作動室21Bを形成する雌ロータ側ボア22Bとを有する。ボア22A,22Bは、互いに部分的に重なっており、それらの壁面の境界線として低圧側カスプ23及び高圧側カスプ24を有する。 The main casing 18 includes a male rotor side bore 22A that accommodates the tooth portion 13A of the male rotor 11A and forms a male rotor side working chamber 21A in the tooth groove thereof, and a tooth portion 13B of the female rotor 11B that accommodates the tooth groove. and a female rotor side bore 22B forming a female rotor side working chamber 21B. The bores 22A, 22B partially overlap each other and have a low pressure side cusp 23 and a high pressure side cusp 24 as their wall boundaries.
 雄ロータ側作動室21A及び雌ロータ側作動室21Bは、雄ロータ11A及び雌ロータ11Bの回転に伴い、ロータ軸方向の一方側から他方側に移動しつつ、容積が変化する。これにより、吸入流路25を介して気体を吸入する吸入行程と、気体を圧縮する圧縮行程と、吐出流路26を介して圧縮気体を吐出する吐出行程を順次行うようになっている。なお、本実施形態の吸入流路25は、ロータ径方向から見て雄ロータ11Aの歯部13A及び雌ロータ11Bの歯部13Bと重なるように配置され、ロータ径方向に延在している。 The volumes of the male rotor side working chamber 21A and the female rotor side working chamber 21B change while moving from one side to the other side in the rotor axial direction as the male rotor 11A and the female rotor 11B rotate. As a result, an intake stroke for sucking gas through the intake passage 25, a compression stroke for compressing the gas, and a discharge stroke for discharging the compressed gas through the discharge passage 26 are sequentially performed. The suction passage 25 of this embodiment is arranged so as to overlap with the toothed portion 13A of the male rotor 11A and the toothed portion 13B of the female rotor 11B when viewed from the rotor radial direction, and extends in the rotor radial direction.
 メインケーシング18は、雄ロータ側作動室21A及び雌ロータ側作動室21Bに液体を供給する給液ノズル27を有する。液体供給の目的は、圧縮行程における気体の冷却、作動室の隙間の封止、及びロータの潤滑などである。 The main casing 18 has liquid supply nozzles 27 that supply liquid to the male rotor side working chamber 21A and the female rotor side working chamber 21B. The purposes of the liquid supply include gas cooling during the compression stroke, working chamber gap sealing, and rotor lubrication.
 上述した圧縮機本体2においては、雄ロータ11Aと雌ロータ11Bとの噛合い部(言い換えれば、雄ロータ11Aと雌ロータ11Bとの隙間)を介して高圧側作動室から低圧側作動室に向かう噴き出し流れが生じる。そして、圧縮機本体2の構造によっては、圧縮気体中に含まれる液体が高温のミストとなって吸入流路25に噴き出す可能性がある。 In the compressor main body 2 described above, the air flows from the high-pressure side working chamber to the low-pressure side working chamber via the meshing portion between the male rotor 11A and the female rotor 11B (in other words, the gap between the male rotor 11A and the female rotor 11B). A jet flow is produced. Then, depending on the structure of the compressor main body 2 , the liquid contained in the compressed gas may become high-temperature mist and blow out into the suction flow path 25 .
 そのため、本実施形態の圧縮機本体2は、吸入流路25内に配置されてロータ軸方向に延在するリブ28と、リブ28によって形成された(言い換えれば、吸入流路25と直接連通しないように形成された)ポケット29とを有する。ポケット29は、ロータ軸方向にて低圧側カスプ23と隣接するように位置し、雄ロータ側ボア22Aの壁面及び雌ロータ側ボア22Bの壁面よりロータ径方向の外側(図4の上側)に窪むように形成されている。また、ポケット29は、雄ロータ11Aと雌ロータ11Bの噛み合い部の幅H1(詳細には、雄ロータ11Aの軸中心O1及び雌ロータ11Bの軸中心O2に直交する直線上、雄ロータ11Aの歯先が通過する位置と雌ロータ11Bの歯先が通過する位置との間隔)より大きく、かつ、雄ロータ11Aの軸中心O1と雌ロータ11Bの軸中心O2の間の幅H2より小さくなるように形成されている。リブ28及びポケット29により、圧縮気体に含まれる液体が吸入流路25へ噴き出すのを抑制する。 Therefore, the compressor body 2 of the present embodiment is formed by the ribs 28 arranged in the suction passage 25 and extending in the axial direction of the rotor (in other words, the ribs 28 do not communicate directly with the suction passage 25). and a pocket 29 formed as follows. The pocket 29 is positioned adjacent to the low-pressure side cusp 23 in the axial direction of the rotor, and is recessed outward in the rotor radial direction (upper side in FIG. 4) from the wall surface of the male rotor side bore 22A and the wall surface of the female rotor side bore 22B. formed to fit. In addition, the pocket 29 is formed on a width H1 of the meshing portion between the male rotor 11A and the female rotor 11B (more specifically, on a straight line perpendicular to the axial center O1 of the male rotor 11A and the axial center O2 of the female rotor 11B). distance between the position where the tooth tip of the female rotor 11B passes and the position where the tooth tip of the female rotor 11B passes) and smaller than the width H2 between the axial center O1 of the male rotor 11A and the axial center O2 of the female rotor 11B. formed. The ribs 28 and the pockets 29 prevent the liquid contained in the compressed gas from spouting into the suction flow path 25 .
 ここで、本実施形態の最も大きな特徴として、リブ28は、低圧側カスプ23及び高圧側カスプ24を含む仮想平面C1を中心として線対称にならない構造である。ポケット29は、リブ28の傾斜面30A,30Bで形成されている。リブ28の傾斜面30Aは、雄ロータ側ボア22Aの壁面より、仮想平面C1を超えるように延在し、雄ロータ側ボア22Aの壁面より大きく離れるほど、雄ロータ11Aの軸中心O1及び雌ロータ11Bの軸中心O2を含む仮想平面C2に対して大きく離れるように傾斜している。リブ28の傾斜面30Bは、雌ロータ側ボア22Bの壁面より、仮想平面C2を超えないように延在し、雌ロータ側ボア22Bの壁面より大きく離れるほど、仮想平面C2に対して大きく離れるように傾斜している。そのため、リブ28の傾斜面30Aと傾斜面30Bの境界(言い換えれば、ポケット29の底部)は、仮想平面C1より雌ロータ11Bの軸中心O2側に位置する。 Here, as the most significant feature of this embodiment, the rib 28 has a structure that is not line-symmetrical about the imaginary plane C1 including the low pressure side cusp 23 and the high pressure side cusp 24 as the center. The pocket 29 is formed by the inclined surfaces 30A and 30B of the rib 28. As shown in FIG. The inclined surface 30A of the rib 28 extends from the wall surface of the male-rotor-side bore 22A so as to exceed the imaginary plane C1. 11B so as to be greatly separated from the imaginary plane C2 including the axis O2 of 11B. The inclined surface 30B of the rib 28 extends from the wall surface of the female rotor-side bore 22B so as not to exceed the imaginary plane C2, and the farther away from the wall surface of the female rotor-side bore 22B, the farther away from the imaginary plane C2. inclined to Therefore, the boundary between the inclined surface 30A and the inclined surface 30B of the rib 28 (in other words, the bottom of the pocket 29) is positioned closer to the axial center O2 of the female rotor 11B than the imaginary plane C1.
 上述したポケット29の構造により、次のような効果を得ることができる。雄ロータ側作動室21A及び雌ロータ側作動室21Bから噴き出されてポケット29に流入した潤滑油の大部分は、慣性力により、リブ28の傾斜面30A又は30Bに衝突し、傾斜面30A又は30Bに沿って移動し、傾斜面30Aと傾斜面30Bの境界近傍に集まる。その後、リブ28の傾斜面30Aと傾斜面30Bの境界近傍に集まった潤滑油の大部分は、自重により、雌ロータ側作動室21Bに流入する。そのため、ポケット29から雌ロータ側作動室21Bに流入する液体の分配比を多くして、ポケット29から雄ロータ側作動室21Aに流入する液体の分配比を少なくすることができる。ここで、雄ロータ側作動室21Aに流入した液体は、雌ロータ側作動室21Bに流入した液体より、高速で撹拌される。したがって、液体の撹拌に要する軸動力を低減して省エネを図ることができる。 With the structure of the pocket 29 described above, the following effects can be obtained. Most of the lubricating oil ejected from the male rotor side working chamber 21A and the female rotor side working chamber 21B and flowed into the pockets 29 collides with the inclined surfaces 30A or 30B of the ribs 28 due to inertial force, 30B and gather near the boundary between the inclined surfaces 30A and 30B. After that, most of the lubricating oil collected near the boundary between the inclined surfaces 30A and 30B of the rib 28 flows into the female rotor working chamber 21B due to its own weight. Therefore, the distribution ratio of liquid flowing from the pocket 29 into the female rotor side working chamber 21B can be increased, and the distribution ratio of the liquid flowing from the pocket 29 into the male rotor side working chamber 21A can be decreased. Here, the liquid that has flowed into the male rotor side working chamber 21A is agitated at a higher speed than the liquid that has flowed into the female rotor side working chamber 21B. Therefore, it is possible to save energy by reducing the shaft power required for stirring the liquid.
 本発明の第2の実施形態を、図5及び図6を用いて説明する。図5は、本実施形態における圧縮機本体の構造を表す軸方向断面図である。図6は、本実施形態における圧縮機本体の構造を表す径方向断面図である。なお、図5は、図6の断面V-Vによる断面図に相当し、図6は、図5の断面VI-VIによる断面図に相当する。なお、本実施形態において、第1の実施形態と同等の部分は同一の符号を付し、適宜、説明を省略する。 A second embodiment of the present invention will be described with reference to FIGS. 5 and 6. FIG. FIG. 5 is an axial cross-sectional view showing the structure of the compressor main body in this embodiment. FIG. 6 is a radial cross-sectional view showing the structure of the compressor main body in this embodiment. 5 corresponds to a cross-sectional view taken along line VV in FIG. 6, and FIG. 6 corresponds to a cross-sectional view taken along line VI-VI in FIG. In addition, in this embodiment, the same code|symbol is attached|subjected to the part equivalent to 1st Embodiment, and description is abbreviate|omitted suitably.
 本実施形態の吸入流路25Aは、ロータ径方向から見て雄ロータ11Aの歯部13A及び雌ロータ11Bの歯部13Bと重ならないように配置され、ロータ径方向に延在する。本実施形態のポケット29Aは、第1の実施形態のポケット29と異なり、吸入流路25Aと直接連通するように形成されている。 The suction passage 25A of this embodiment is arranged so as not to overlap the toothed portion 13A of the male rotor 11A and the toothed portion 13B of the female rotor 11B when viewed from the rotor radial direction, and extends in the rotor radial direction. Unlike the pocket 29 of the first embodiment, the pocket 29A of this embodiment is formed so as to directly communicate with the suction flow path 25A.
 本実施形態のポケット29Aは、第1の実施形態のポケット29と同様、ロータ軸方向にて低圧側カスプ23と隣接するように位置し、雄ロータ側ボア22Aの壁面及び雌ロータ側ボア22Bの壁面よりロータ径方向の外側(図6の上側)に窪むように形成されている。また、雄ロータ11Aと雌ロータ11Bの噛み合い部の幅H1より大きく、かつ、雄ロータ11Aの軸中心O1と雌ロータ11Bの軸中心O2の間の幅H2より小さくなるように形成されている。 Like the pocket 29 of the first embodiment, the pocket 29A of the present embodiment is positioned adjacent to the low-pressure side cusp 23 in the axial direction of the rotor. It is formed so as to be recessed outward in the rotor radial direction (upper side in FIG. 6) from the wall surface. Further, it is formed to be larger than the width H1 of the meshing portion between the male rotor 11A and the female rotor 11B and smaller than the width H2 between the axial center O1 of the male rotor 11A and the axial center O2 of the female rotor 11B.
 本実施形態のポケット29Aは、傾斜面30A,30Bで形成されている。傾斜面30Aは、雄ロータ側ボア22Aの壁面より仮想平面C1を超えるように延在し、雄ロータ側ボア22Aの壁面より大きく離れるほど、仮想平面C2に対して大きく離れるように傾斜している。傾斜面30Bは、雌ロータ側ボア22Bの壁面より仮想平面C2を超えないように延在し、雌ロータ側ボア22Bの壁面より大きく離れるほど、仮想平面C2に対して大きく離れるように傾斜している。そのため、傾斜面30Aと傾斜面30Bの境界(言い換えれば、ポケット29Aの底部)は、仮想平面C1より雌ロータ11Bの軸中心O2側に位置する。 The pocket 29A of this embodiment is formed of inclined surfaces 30A and 30B. The inclined surface 30A extends from the wall surface of the male rotor side bore 22A so as to exceed the virtual plane C1, and is inclined to be farther away from the virtual plane C2 as the distance from the wall surface of the male rotor side bore 22A increases. . The inclined surface 30B extends from the wall surface of the female rotor side bore 22B so as not to exceed the imaginary plane C2, and is inclined so as to be farther away from the imaginary plane C2 as the distance from the wall surface of the female rotor side bore 22B increases. there is Therefore, the boundary between the inclined surface 30A and the inclined surface 30B (in other words, the bottom of the pocket 29A) is positioned closer to the axial center O2 of the female rotor 11B than the imaginary plane C1.
 以上のように構成された本実施形態においても、第1の実施形態と同様、液体の撹拌に要する軸動力を低減して省エネを図ることができる。 Also in this embodiment configured as described above, similarly to the first embodiment, it is possible to reduce the axial power required for stirring the liquid and to save energy.
 なお、第2の実施形態において、ポケット29Aは、吸入流路25Aと直接連通するように形成された場合(すなわち、雄ロータ側作動室21A及び雌ロータ側作動室21Bは、吸入流路25A及びポケット29Aを介し気体を吸入する場合)を例にとって説明したが、これに限られない。例えば図7で示す変形例のように、ポケット29Aは、ロータ径方向に延在する隔壁31により、吸入流路25Aと直接連通しないように形成されてもよい。これにより、圧縮気体に含まれる液体が吸入流路25Aへ噴き出すのを抑制してもよい。 In the second embodiment, when the pocket 29A is formed so as to directly communicate with the suction flow path 25A (that is, the male rotor side working chamber 21A and the female rotor side working chamber 21B are connected to the suction flow path 25A and The case where gas is sucked through the pocket 29A) has been described as an example, but the present invention is not limited to this. For example, as in the modification shown in FIG. 7, the pocket 29A may be formed by a partition wall 31 extending in the radial direction of the rotor so as not to directly communicate with the suction flow path 25A. As a result, the liquid contained in the compressed gas may be prevented from spouting into the suction flow path 25A.
 また、第1及び第2の実施形態において、特に説明しなかったが、傾斜面30Aは、少なくとも1つの平面で構成されるか、少なくとも1つの曲面で構成されるか、若しくはそれらの組み合わせで構成されていればよい。また、傾斜面30Bは、少なくとも1つの平面で構成されるか、少なくとも1つの曲面で構成されるか、若しくはそれらの組み合わせで構成されていればよい。 In addition, although not specifically described in the first and second embodiments, the inclined surface 30A is composed of at least one flat surface, at least one curved surface, or a combination thereof. It is good if it is. Also, the inclined surface 30B may be composed of at least one flat surface, at least one curved surface, or a combination thereof.
 11A…雄ロータ、11B…雌ロータ、13A,13B…歯部、21A…雄ロータ側作動室、21B…雌ロータ側作動室、22A…雄ロータ側ボア、22B…雌ロータ側ボア、23…低圧側カスプ、24…高圧側カスプ、25,25A…吸入流路、27…給液ノズル、29,29A…ポケット、30A,30B…傾斜面 11A... male rotor, 11B... female rotor, 13A, 13B... teeth, 21A... male rotor side working chamber, 21B... female rotor side working chamber, 22A... male rotor side bore, 22B... female rotor side bore, 23... low pressure Side cusp 24 High- pressure side cusp 25, 25A Suction channel 27 Liquid supply nozzle 29, 29A Pocket 30A, 30B Inclined surface

Claims (3)

  1.  互いに噛み合いながら回転する雄ロータ及び雌ロータと、
     前記雄ロータの歯部を収納する雄ロータ側ボアと、
     前記雌ロータの歯部を収納する雌ロータ側ボアと、
     前記雄ロータ側ボアの壁面と前記雌ロータ側ボアの壁面との境界線である低圧側カスプ及び高圧側カスプと、
     前記雄ロータの歯溝に形成され、気体を圧縮する雄ロータ側作動室と、
     前記雌ロータの歯溝に形成され、気体を圧縮する雌ロータ側作動室と、
     前記雄ロータ側作動室及び前記雌ロータ側作動室に液体を供給する給液ノズルとを有する給液式スクリュー圧縮機において、
     ロータ軸方向にて前記低圧側カスプと隣接するように位置し、前記雄ロータ側ボアの壁面及び前記雌ロータ側ボアの壁面よりロータ径方向の外側に窪むように形成されたポケットを更に有し、
     前記ポケットは、
     前記雄ロータ側ボアの壁面より、前記低圧側カスプ及び前記高圧側カスプを含む第1の仮想平面を超えるように延在し、前記雄ロータ側ボアの壁面より大きく離れるほど、前記雄ロータの軸中心及び前記雌ロータの軸中心を含む第2の仮想平面に対して大きく離れるように傾斜した第1の傾斜面と、
     前記雌ロータ側ボアの壁面より、前記第1の仮想平面を超えないように延在し、前記雌ロータ側ボアの壁面より大きく離れるほど、前記第2の仮想平面に対して大きく離れるように傾斜した第2の傾斜面とで形成されたことを特徴とする給液式スクリュー圧縮機。
    a male rotor and a female rotor that rotate while meshing with each other;
    a male rotor-side bore that accommodates the teeth of the male rotor;
    a female rotor-side bore that accommodates the teeth of the female rotor;
    a low pressure side cusp and a high pressure side cusp, which are boundary lines between the wall surface of the male rotor side bore and the wall surface of the female rotor side bore;
    a male rotor side working chamber formed in the tooth groove of the male rotor for compressing gas;
    a female rotor side working chamber formed in the tooth groove of the female rotor for compressing gas;
    In a liquid feed type screw compressor having a liquid feed nozzle that supplies liquid to the male rotor side working chamber and the female rotor side working chamber,
    a pocket positioned adjacent to the low pressure side cusp in the rotor axial direction and recessed outward in the rotor radial direction from the wall surface of the male rotor side bore and the wall surface of the female rotor side bore;
    The pocket is
    The shaft of the male rotor extends from the wall surface of the male rotor side bore so as to exceed a first imaginary plane including the low pressure side cusp and the high pressure side cusp, and the farther away from the wall surface of the male rotor side bore, the shaft of the male rotor. a first slanted surface slanted away from a second imaginary plane including the center and the axial center of the female rotor;
    Extends from the wall surface of the female rotor side bore so as not to exceed the first virtual plane, and is inclined to be farther away from the second virtual plane as the distance from the wall surface of the female rotor side bore increases. A feed screw compressor characterized by being formed with a second slanted surface.
  2.  請求項1に記載の給液式スクリュー圧縮機において、
     前記ポケットは、前記雄ロータと前記雌ロータの噛み合い部の幅より大きく、かつ、前記雄ロータの軸中心と前記雌ロータの軸中心の間の幅より小さくなるように形成されたことを特徴とする給液式スクリュー圧縮機。
    In the feed screw compressor according to claim 1,
    The pocket is formed so as to be larger than the width of the meshing portion of the male rotor and the female rotor and smaller than the width between the axial center of the male rotor and the axial center of the female rotor. feed type screw compressor.
  3.  請求項1に記載の給液式スクリュー圧縮機において、
     前記ポケットは、前記雄ロータ側作動室及び前記雌ロータ側作動室に連通する吸入流路と直接連通しないように形成されたことを特徴とする給液式スクリュー圧縮機。
    In the feed screw compressor according to claim 1,
    A feed type screw compressor, wherein the pocket is formed so as not to directly communicate with a suction passage communicating with the male rotor side working chamber and the female rotor side working chamber.
PCT/JP2022/036623 2021-12-13 2022-09-30 Liquid supply type screw compressor WO2023112424A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021201573A JP2023087275A (en) 2021-12-13 2021-12-13 screw compressor
JP2021-201573 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023112424A1 true WO2023112424A1 (en) 2023-06-22

Family

ID=86774307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036623 WO2023112424A1 (en) 2021-12-13 2022-09-30 Liquid supply type screw compressor

Country Status (2)

Country Link
JP (1) JP2023087275A (en)
WO (1) WO2023112424A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307190A (en) * 2002-04-15 2003-10-31 Hitachi Industrial Equipment Systems Co Ltd Oil supply type screw compressor
JP2014214677A (en) * 2013-04-25 2014-11-17 株式会社神戸製鋼所 Oil-cooled screw compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307190A (en) * 2002-04-15 2003-10-31 Hitachi Industrial Equipment Systems Co Ltd Oil supply type screw compressor
JP2014214677A (en) * 2013-04-25 2014-11-17 株式会社神戸製鋼所 Oil-cooled screw compressor

Also Published As

Publication number Publication date
JP2023087275A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
JP6986117B2 (en) Fluid machine
CN111133197B (en) Scroll compressor having a scroll compressor with a suction chamber
TWI537471B (en) Compressor and oil supply method thereof
JP5433604B2 (en) Scroll compressor
JP7141918B2 (en) Feed screw compressor
WO2023112424A1 (en) Liquid supply type screw compressor
TWI720701B (en) Screw compressor
CN113107850B (en) Oblique roots screw composite vacuum pump
US20230332600A1 (en) Flange and Pump Body Assembly with Same
CN214741941U (en) Crankshaft, variable frequency compressor and refrigeration equipment
CN214577618U (en) Crankshaft, variable frequency compressor and refrigeration equipment
CN213116704U (en) Movable scroll device and scroll compressor comprising same
JP2008127990A (en) Screw compressor
JP2007162679A (en) Fluid machine
CN207195173U (en) Compressor with a compressor housing having a plurality of compressor blades
JP2001248577A (en) Scroll type fluid machine
JP7366799B2 (en) Liquid feed type screw compressor
WO2024034235A1 (en) Oil-cooled screw compressor
JP2000161266A (en) Scroll compressor
CN211737452U (en) Compressor with a compressor housing having a plurality of compressor blades
CN215058164U (en) Roots screw combined vacuum pump
CN1309961C (en) Leaking oil proof sturctrue for vacuum pump
JP2000227079A (en) Horizontal closed type compressor
JP2011032910A (en) Scroll compressor
CN113123972A (en) Oil pump and scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906959

Country of ref document: EP

Kind code of ref document: A1