JP4248055B2 - Oil-cooled screw compressor - Google Patents

Oil-cooled screw compressor Download PDF

Info

Publication number
JP4248055B2
JP4248055B2 JP28067498A JP28067498A JP4248055B2 JP 4248055 B2 JP4248055 B2 JP 4248055B2 JP 28067498 A JP28067498 A JP 28067498A JP 28067498 A JP28067498 A JP 28067498A JP 4248055 B2 JP4248055 B2 JP 4248055B2
Authority
JP
Japan
Prior art keywords
pressure stage
stage
casing
low
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28067498A
Other languages
Japanese (ja)
Other versions
JP2000110760A (en
Inventor
優和 青木
正彦 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP28067498A priority Critical patent/JP4248055B2/en
Publication of JP2000110760A publication Critical patent/JP2000110760A/en
Application granted granted Critical
Publication of JP4248055B2 publication Critical patent/JP4248055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は雄ロータ及び雌ロータ対を2組有する油冷式の圧縮機に係り、特に2組のロータ対を同一ケーシングに収納する油冷式スクリュー圧縮機に関する。
【0002】
【従来の技術】
従来の油冷式2段スクリュー圧縮機では、特開平8-109887号公報に記載のように低圧段と高圧段のロータおよびケーシングをタンデムに配列していた。また、特開昭48-21806号公報に記載のように、1つのケーシング内に高圧段及び低圧段のロータを収納していた。
【0003】
【発明が解決しようとする課題】
2段に構成された油冷式のスクリュー圧縮機では、特開平8-109887号公報に記載のように低圧段と高圧段のロータおよびケーシングをタンデムに配列すると、ロータ軸方向の寸法が長くなり機器の小型化の面で不十分であった。また、この公報に記載のものは、ロータ軸がモータに直結されているのでロータの設定回転数を変更することが困難であり、圧縮機の仕様毎に異なった諸元のロータを製作する必要があった。
【0004】
特開昭48-21806号公報に記載のものは、ロータ軸方向の寸法は比較的短く抑えられているが、高圧段と低圧段の吐出方向が逆向きであり、組立て時に反転を繰り返しながら、スラスト荷重を負荷するアンギュラ玉軸受を取付ける必要があった。また、圧縮機のメンテナンス時にロータをケーシングから抜き取る際に、高圧段と低圧段いずれかを駆動軸方向に引き抜く必要があり、原動機をあらかじめ移動しておく等の余分な作業が必要であった。特に、2段圧縮機は150kW以上の大型機が一般的であり、これらの作業性の悪さはメンテナンスコストの大幅な上昇につながる。
【0005】
2段圧縮機では、低圧段のロータを1サイズまたは2サイズ大型の機種の高圧段のロータに使用して部品の共通化を図っている。低圧段と高圧段の各軸端にピニオンギヤを設け、それぞれを共通のブルギヤで駆動する場合には、高圧段と低圧段の捩れ方向を逆に加工する必要がある。そのため、ロータのシリーズ設計を行う上で共通化が困難である。
【0006】
本発明上記従来技術の不具合に鑑みなされたものであり、その目的は、小型コンパクトな2段の油冷式スクリュー圧縮機を提供することにある。本発明の他の目的は、ロータのシリーズ設計や部品の共通化が容易な2段の油冷式スクリュー圧縮機を提供することにある。本発明のさらに他の目的は、メンテナンスの容易な2段の油冷式スクリュー圧縮機を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するための本発明の第1の特徴は、同一のケーシング内に雄ロータと雌ロータの対を2組回転自在に並べて収納し、一方のロータ対が低圧段、他方のロータ対が高圧段を形成し、前記高圧段のロータ対が前記低圧段のロータ対よりも短い油冷式スクリュー圧縮機において、前記低圧段は作動ガスの吸込み方向がラジアル方向であり、前記高圧段は作動ガスの吸込み方向がアキシャル方向であり、前記高圧段と前記低圧段は、ともに吐出方向が軸方向であり、
前記低圧段と前記高圧段に挟まれた空間に設けられ、前記低圧段から吐出される吐出ガスを前記高圧段に導く中間段通路と、前記中間段通路と前記高圧段の吸込側との間に位置し、中間段通路を通過したガスの方向を転換する方向転換部と、前記ケーシングの吐出側に取り付けられる複数のDケーシングと、前記ケーシングの吸込み側に取り付けられるギヤケーシングとを備え、前記高圧段と前記低圧段の吐出側の端面を揃えたものである。
【0008】
また好ましくは、ケーシングの上部に低圧段をなす雄ロータと雌ロータ対を水平に配列し、前記中間段通路を前記ロータ対の下部に配置し、さらにその下部に高圧段の雄ロータと雌ロータ対を水平に配列したものである。より好ましくは、ケーシングの吐出側に、高圧段のロータ対を支持する軸受を保持する高圧段Dケーシングと、低圧段のロータ対を支持する軸受を保持する低圧段Dケーシングとを設け、この低圧段Dケーシングに、低圧段から吐出される吐出ガスをケーシングの中段に形成された中間段通路に導く空間形成し、高圧段Dケーシングには吐出口を形成したものである。
【0009】
このように構成することで、圧縮機本体のロータ軸方向寸法を従来のタンデム配置の圧縮機より大幅に短くした。また、一般的に高圧段ロータは低圧段ロータよりも短いから、高圧段と低圧段のロータ長さの差を利用して各段の吸込ポートを設けて、軸方向の長さを極力低減した。さらに、吐出側のスラスト軸受を収納するDケーシングを高圧段と低圧段とで別個に設けた。
【0010】
【発明の実施の形態】
以下、本発明の一実施例を図面を用いて説明する。図1は、本発明に係る油冷式2段スクリュー圧縮機の縦断面図であり、図2は、図1のA−A断面図である。油冷式スクリュー圧縮機は、低圧段部分と高圧段部分がケーシングを共有している。低圧段部分はケーシング1の上部に配置されており、低圧段雄ロータ2と低圧段雌ロータ3は、円筒ころ軸受7により吸込側の軸部を回転自在に支承されている。また、アンギュラ玉軸受13により吐出側の軸部を回転自在に支承されている。そしてこれらの軸受7、13は、ケーシング1に保持されている。低圧段に吸込まれる作動ガスは、低圧段のロータ2、3のラジアル方向から吸込まれる。すなわち、吸込ガスは、ケーシング1の上部に設けられた吸込口6から、回転する低圧段ロータ2、3の歯溝にラジアル方向から流入する。本実施例においては、低圧段ロータ2、3の吸込側の軸部に対応するケーシング部分の軸方向長さは、円筒ころ軸受7を取付ける長さだけあればよい。
【0011】
スクリュー圧縮機において、ラジアル方向からガスを吸い込むものでは、高温の吐出側のガスと潤滑油がロータ間の噛み合い隙間からラジアル方向の吸込ポートへ漏れると、吸込ガスの温度を上昇させて体積効率を低下させる場合がある。本実施例においては、2段圧縮機として各段の圧縮比を小さくしているので、この影響をほとんど無視できる。しかも、大型の圧縮機に適用されることが多い2段圧縮機では、大量の吸込ガスを扱うので、吸込ガスの流れ方向を180度転換する必要のあるアキシャル吸込構造よりもラジアル吸込の方が吸込み抵抗が小さい。その結果、限られたスペースで高い吸込効率を達成することができる。
【0012】
圧縮機内に吸込まれた作動ガスは、低圧段における圧縮過程で潤滑油が注入される。低圧段の雄ロータ2と雌ロータ3により形成される圧縮室内で圧縮された作動ガスは、ケーシングの低圧段側のロータ挿入部の壁面に形成された低圧段ラジアル方向吐出ポート8と低圧段Dケーシング17のロータ吐出側端面に形成された低圧段アキシャル方向吐出ポート9を出て、ケーシングの低圧段と高圧段に挟まれた空間である中間段通路10へ流入する。
【0013】
中間段通路10へも潤滑油が噴射され、圧縮ガスを冷却する。中間段通路10は高圧段のロータ4、5の長さに相当するだけ形成する。中間段を流れる間に十分にガスと噴射される油が熱交換され、中間冷却の効果が上げられ、圧縮機が高い効率を達成できる。中間段で冷却されたガスは、高圧段の吸込ポート11で流れの向きを変えられ、高圧段ロータのアキシャル方向から高圧段雄ロータ4と高圧段雌ロータ5が形成する空間に吸込まれる。
【0014】
高圧段部分はケーシング1の下部に配置されており、高圧段雄ロータ4と雌ロータ5は円筒ころ軸受12により吸込側の軸部を回転自在に支承され、アンギュラ玉軸受14により吐出側の軸ぶを回転自在に支承されている。低圧段と同様に、軸受12、14は、ケーシング1内に保持されている。中間段から高圧段の吸込部にいたる通路には、すでに低圧段で昇圧されたガスが流入する。したがって、流速は低圧段吸込状態の1/3程度かあるいはそれ以下まで低下しており、アキシャル吸込の場合に生じる通路の曲がり等に起因する圧力損失を無視できる。
【0015】
中間段通路を通過したガスを180度方向転換するために、高圧段の吸込側に方向転換部を設ける。これは、高圧段のロータが低圧段のロータより短いから、この差を利用するものである。そして、この場所に方向転換部を設けると、高圧段と低圧段の吐出側の端面をほぼ同一面に揃えることも可能になる。この結果、ケーシングの小型化および加工の容易化が図れる。
【0016】
高圧段の雄ロータ4と雌ロータ5間に形成される圧縮室でさらに所定の圧力まで昇圧された作動ガスは、ケーシング1の高圧段側のロータ挿入部の壁面に形成された高圧段ラジアル方向吐出ポート15と高圧段Dケーシングのロータ吐出側端面に形成された高圧段アキシャル方向吐出ポート16から流出し、高圧段Dケーシング18に形成した吐出口から吐出される。
【0017】
なお、本実施例においては、各段のロータの吸込方向と吐出方向を同一にしているので、ロータに作用するスラスト荷重を負担するアンギュラ玉軸受13、14をDケーシングに収容している。このDケーシングはロータを収容するケーシングとは別個に設けられている。そして、低圧段のDケーシング17と高圧段のDケーシング18とは別体にしている。
【0018】
低圧段のDケーシング17には低圧段アキシャル方向吐出ポート9が形成されており、この吐出ポート9はケーシング1の中間段通路10へ連通する働きもする。
【0019】
本実施例によれば、高圧段ロータ4,5のみ、または低圧段ロータ2,3のみを分解することが可能である。さらに、ロータを分解するためには駆動軸と反対の1方向だけ分解すればよく、ロータを抜出す作業が容易になる。もちろん、組立て時にも同様に高圧段と低圧段を同じ方向から組み立てればよく、メンテナンス性能を向上するのみならず製造時のコストをも低減できる。
【0020】
高圧段と低圧段のロータをロータの捩れ方向が同一の相似形状とすることができるので、ロータの共用化設計が容易である。また、図示しない原動機の回転数を高圧段及び低圧段のロータの回転数に設定するために、歯車変速手段を用いている。この歯車変速手段は、駆動軸23に取付けられたまたは形成されたブルギヤ19と、このブルギヤに噛み合い所望の増速比が得られるピニオンギヤ20、21とからなり、これらギヤ19、20、21は、ケーシング1に隣接して設けたギヤーケーシング22で覆われている。なお、ピニオンギヤ20、21は、低圧段及び高圧段の雄ロータ軸端に取付ける。ギヤ19、20、21の歯数を適宜組合わせることにより、原動機の回転数を所望の設計回転数に容易に設定できる。
【0021】
【発明の効果】
本発明によれば、油冷式スクリュー圧縮機において、低圧段ではラジアル方向から作動ガスを吸い込み、高圧段ではアキシャル方向からガスを吸い込んでいるので、高効率でかつ軸方向にコンパクトな油冷式スクリュー圧縮機が得られる。また、本発明によれば、メンテナンスが容易な油冷式スクリュー圧縮機を得ることができる。さらに、本発明によれば、ロータのシリーズ化設計が容易であり、部品の共通化による製造コストの低減も可能である。
【図面の簡単な説明】
【図1】本発明に係る油冷式スクリュー圧縮機の一実施例の縦断面図。
【図2】図1に示した油冷式スクリュー圧縮機のA−A断面図。
【符号の説明】
1;ケーシング、2;低圧段雄ロータ、
3;低圧段雌ロータ、4;高圧段雄ロータ、
5;高圧段雌ロータ、6;吸込口、
7;円筒ころ軸受、8;低圧段ラジアル吐出ポート、
9;低圧段アキシャル吐出ポート、10;中間段通路、
11;高圧段吸込ポート、12;円筒ころ軸受、
13;アンギュラ玉軸受、14;アンギュラ玉軸受、
15;高圧段ラジアル吐出ポート、
16;高圧段アキシャル吐出ポート、
17;低圧段Dケーシング、
18;高圧段Dケーシング、
19;ブルギヤ、20;低圧段ピニオンギヤ、
21;高圧段ピニオンギヤ、22;ギヤケーシング、
23;駆動軸、24;オイルシール、
25;軸受。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oil-cooled compressor having two pairs of male and female rotors, and more particularly to an oil-cooled screw compressor that houses two pairs of rotors in the same casing.
[0002]
[Prior art]
In the conventional oil-cooled two-stage screw compressor, the rotor and casing of the low-pressure stage and the high-pressure stage are arranged in tandem as described in JP-A-8-109887. Further, as described in JP-A-48-21806, a high-pressure stage rotor and a low-pressure stage rotor are accommodated in one casing.
[0003]
[Problems to be solved by the invention]
In an oil-cooled screw compressor configured in two stages, if the rotor and casing of the low-pressure stage and the high-pressure stage are arranged in tandem as described in JP-A-8-109887, the dimension in the rotor axial direction becomes long. It was insufficient in terms of miniaturization of equipment. Moreover, since the rotor shaft is directly connected to the motor, it is difficult to change the set rotational speed of the rotor in the publication described in this publication, and it is necessary to manufacture a rotor with different specifications for each compressor specification. was there.
[0004]
The one described in JP-A-48-21806 has a relatively short dimension in the rotor axial direction, but the discharge directions of the high-pressure stage and the low-pressure stage are opposite, while reversing during assembly, It was necessary to install an angular contact ball bearing that applied a thrust load. Further, when the rotor is extracted from the casing during the maintenance of the compressor, it is necessary to pull out either the high-pressure stage or the low-pressure stage in the direction of the drive shaft, which requires extra work such as moving the prime mover in advance. In particular, the two-stage compressor is generally a large machine of 150 kW or more, and the poor workability leads to a significant increase in maintenance cost.
[0005]
In a two-stage compressor, a low-pressure stage rotor is used for a high-pressure stage rotor of a one-size or two-size large model to achieve common parts. When pinion gears are provided at the shaft ends of the low-pressure stage and the high-pressure stage and each is driven by a common bull gear, it is necessary to reverse the twist directions of the high-pressure stage and the low-pressure stage. For this reason, it is difficult to share the same in designing the rotor series.
[0006]
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a small and compact two-stage oil-cooled screw compressor. Another object of the present invention is to provide a two-stage oil-cooled screw compressor in which the rotor series design and parts can be easily shared. Still another object of the present invention is to provide a two-stage oil-cooled screw compressor that is easy to maintain.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the first feature of the present invention is that two pairs of a male rotor and a female rotor are housed side by side in the same casing so as to be rotatable, one rotor pair is a low pressure stage, and the other rotor pair is In the oil-cooled screw compressor in which the high pressure stage rotor pair is shorter than the low pressure stage rotor pair , the low pressure stage has a radial direction in which the working gas is sucked, and the high pressure stage has suction direction of the working gas is Ri axial der, the high pressure stage and the low-pressure stage, Ri both discharge direction axial der,
An intermediate stage passage provided in a space sandwiched between the low pressure stage and the high pressure stage and leading discharge gas discharged from the low pressure stage to the high pressure stage, and between the intermediate stage passage and the suction side of the high pressure stage A direction changing portion that changes the direction of the gas that has passed through the intermediate stage passage, a plurality of D casings attached to the discharge side of the casing, and a gear casing attached to the suction side of the casing, The end surfaces on the discharge side of the high-pressure stage and the low-pressure stage are aligned .
[0008]
Preferably, a male rotor and a female rotor pair forming a low pressure stage are horizontally arranged in an upper portion of the casing, the intermediate stage passage is disposed at a lower part of the rotor pair, and a male rotor and a female rotor of a high pressure stage are further provided below the intermediate passage. Pairs are arranged horizontally. More preferably, on the discharge side of the casing, a high-pressure stage D casing that holds a bearing that supports a high-pressure stage rotor pair and a low-pressure stage D casing that holds a bearing that supports a low-pressure stage rotor pair are provided. In the stage D casing, a space for guiding the discharge gas discharged from the low pressure stage to an intermediate stage passage formed in the middle stage of the casing is formed, and a discharge port is formed in the high pressure stage D casing.
[0009]
With this configuration, the rotor axial dimension of the compressor body is significantly shorter than the conventional tandem compressor. Moreover, since the high-pressure stage rotor is generally shorter than the low-pressure stage rotor, the suction port of each stage is provided by utilizing the difference between the rotor lengths of the high-pressure stage and the low-pressure stage, and the axial length is reduced as much as possible. . Furthermore, D casings for accommodating the thrust bearings on the discharge side were separately provided in the high pressure stage and the low pressure stage.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of an oil-cooled two-stage screw compressor according to the present invention, and FIG. 2 is a sectional view taken along line AA in FIG. In the oil-cooled screw compressor, the low pressure stage portion and the high pressure stage portion share a casing. The low-pressure stage portion is disposed in the upper part of the casing 1, and the low-pressure stage male rotor 2 and the low-pressure stage female rotor 3 are rotatably supported by a cylindrical roller bearing 7 on the suction side shaft portion. Further, the shaft portion on the discharge side is rotatably supported by the angular ball bearing 13. These bearings 7 and 13 are held in the casing 1. The working gas sucked into the low-pressure stage is sucked from the radial direction of the rotors 2 and 3 in the low-pressure stage. That is, the suction gas flows from the suction port 6 provided in the upper portion of the casing 1 into the tooth spaces of the rotating low-pressure stage rotors 2 and 3 from the radial direction. In the present embodiment, the axial length of the casing portion corresponding to the suction-side shaft portion of the low-pressure stage rotors 2 and 3 only needs to be a length for attaching the cylindrical roller bearing 7.
[0011]
In screw compressors that suck in gas from the radial direction, if high-temperature discharge side gas and lubricating oil leak from the meshing gap between the rotors into the radial suction port, the temperature of the suction gas is increased to increase volumetric efficiency. May decrease. In this embodiment, since the compression ratio of each stage is reduced as a two-stage compressor, this influence can be almost ignored. Moreover, in a two-stage compressor that is often applied to a large-sized compressor, a large amount of suction gas is handled. Therefore, radial suction is more preferable than an axial suction structure in which the suction gas flow direction needs to be changed by 180 degrees. Low suction resistance. As a result, high suction efficiency can be achieved in a limited space.
[0012]
The working gas sucked into the compressor is injected with lubricating oil in the compression process in the low pressure stage. The working gas compressed in the compression chamber formed by the male rotor 2 and the female rotor 3 of the low pressure stage is supplied to the low pressure stage radial direction discharge port 8 and the low pressure stage D formed on the wall surface of the rotor insertion portion on the low pressure stage side of the casing. The low pressure stage axial discharge port 9 formed on the rotor discharge side end face of the casing 17 exits and flows into the intermediate stage passage 10 which is a space between the low pressure stage and the high pressure stage of the casing.
[0013]
Lubricating oil is also injected into the intermediate stage passage 10 to cool the compressed gas. The intermediate stage passage 10 is formed to correspond to the length of the high-pressure stage rotors 4 and 5. The oil injected with the gas is sufficiently exchanged with heat while flowing through the intermediate stage, the effect of intermediate cooling is increased, and the compressor can achieve high efficiency. The gas cooled in the intermediate stage is changed in the flow direction at the suction port 11 of the high pressure stage, and is sucked into the space formed by the high pressure stage male rotor 4 and the high pressure stage female rotor 5 from the axial direction of the high pressure stage rotor.
[0014]
The high pressure stage portion is disposed at the lower part of the casing 1, and the high pressure stage male rotor 4 and the female rotor 5 are rotatably supported by a cylindrical roller bearing 12 on a suction side shaft portion, and an angular ball bearing 14 is provided on a discharge side shaft. It is supported so that it can rotate freely. Similar to the low-pressure stage, the bearings 12 and 14 are held in the casing 1. Gas that has already been pressurized in the low pressure stage flows into the passage from the intermediate stage to the suction section of the high pressure stage. Therefore, the flow velocity is reduced to about 1/3 of the low-pressure stage suction state or less, and the pressure loss due to the bending of the passage caused in the case of the axial suction can be ignored.
[0015]
In order to change the direction of the gas that has passed through the intermediate stage passage by 180 degrees, a direction changing part is provided on the suction side of the high-pressure stage. This utilizes this difference because the high pressure stage rotor is shorter than the low pressure stage rotor. If the direction changing portion is provided at this location, the end surfaces on the discharge side of the high-pressure stage and the low-pressure stage can be made substantially flush with each other. As a result, the casing can be reduced in size and processed easily.
[0016]
In the compression chamber formed between the male rotor 4 and the female rotor 5 in the high pressure stage, the working gas that has been further pressurized to a predetermined pressure is in the high pressure stage radial direction formed on the wall surface of the rotor insertion portion on the high pressure stage side of the casing 1. It flows out from the discharge port 15 and the high-pressure stage axial direction discharge port 16 formed on the rotor discharge side end face of the high-pressure stage D casing, and is discharged from the discharge port formed in the high-pressure stage D casing 18.
[0017]
In the present embodiment, the suction direction and the discharge direction of the rotor of each stage are made the same, so that the angular ball bearings 13 and 14 bearing the thrust load acting on the rotor are accommodated in the D casing. The D casing is provided separately from the casing that houses the rotor. The low-pressure stage D casing 17 and the high-pressure stage D casing 18 are separated.
[0018]
A low-pressure stage axial discharge port 9 is formed in the low-pressure stage D casing 17, and this discharge port 9 also serves to communicate with the intermediate-stage passage 10 of the casing 1.
[0019]
According to this embodiment, it is possible to disassemble only the high-pressure stage rotors 4 and 5 or only the low-pressure stage rotors 2 and 3. Furthermore, in order to disassemble the rotor, it is only necessary to disassemble one direction opposite to the drive shaft, and the work of extracting the rotor becomes easy. Of course, it is only necessary to assemble the high pressure stage and the low pressure stage from the same direction at the time of assembly, which not only improves the maintenance performance but also reduces the manufacturing cost.
[0020]
Since the high-pressure stage rotor and the low-pressure stage rotor can have similar shapes with the same twisting direction of the rotor, common design of the rotor is easy. Further, a gear transmission means is used to set the rotational speed of the prime mover (not shown) to the rotational speeds of the high-pressure stage and low-pressure stage rotors. The gear transmission means includes a bull gear 19 attached to or formed on the drive shaft 23, and pinion gears 20 and 21 that mesh with the bull gear and obtain a desired speed increase ratio. These gears 19, 20, and 21 are It is covered with a gear casing 22 provided adjacent to the casing 1. The pinion gears 20 and 21 are attached to the male rotor shaft ends of the low pressure stage and the high pressure stage. By appropriately combining the number of teeth of the gears 19, 20, and 21, the number of rotations of the prime mover can be easily set to a desired design number of rotations.
[0021]
【The invention's effect】
According to the present invention, in the oil-cooled screw compressor, since the working gas is sucked from the radial direction in the low pressure stage and the gas is sucked from the axial direction in the high pressure stage, the oil cooling type is highly efficient and compact in the axial direction. A screw compressor is obtained. Further, according to the present invention, an oil-cooled screw compressor that can be easily maintained can be obtained. Furthermore, according to the present invention, it is easy to design a series of rotors, and it is possible to reduce manufacturing costs by sharing parts.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an embodiment of an oil-cooled screw compressor according to the present invention.
2 is an AA cross-sectional view of the oil-cooled screw compressor shown in FIG.
[Explanation of symbols]
1; casing, 2; low-pressure stage male rotor,
3; low-pressure stage female rotor, 4; high-pressure stage male rotor,
5; high-pressure stage female rotor, 6; suction port,
7; Cylindrical roller bearing, 8; Low pressure radial discharge port,
9; Low pressure axial discharge port, 10; Intermediate passage,
11: High-pressure stage suction port, 12: Cylindrical roller bearing,
13; Angular contact ball bearings, 14; Angular contact ball bearings,
15; high-pressure radial discharge port,
16; high-pressure stage axial discharge port,
17; low pressure stage D casing,
18; high-pressure stage D casing,
19; Bull gear, 20; Low-pressure stage pinion gear,
21; high-pressure stage pinion gear, 22; gear casing,
23; drive shaft, 24; oil seal,
25; Bearing.

Claims (3)

同一のケーシング内に雄ロータと雌ロータの対を2組回転自在に並べて収納し、一方のロータ対が低圧段、他方のロータ対が高圧段を形成し、前記高圧段のロータ対が前記低圧段のロータ対よりも短い油冷式スクリュー圧縮機において、
前記低圧段は作動ガスの吸込み方向がラジアル方向であり、前記高圧段は作動ガスの吸込み方向がアキシャル方向であり、
前記高圧段と前記低圧段は、ともに吐出方向が軸方向であり、
前記低圧段と前記高圧段に挟まれた空間に設けられ、前記低圧段から吐出される吐出ガスを前記高圧段に導く中間段通路と、
前記中間段通路と前記高圧段の吸込側との間に位置し、中間段通路を通過したガスの方向を転換する方向転換部と、
前記ケーシングの吐出側に取り付けられる複数のDケーシングと、
前記ケーシングの吸込み側に取り付けられるギヤケーシングとを備え、
前記高圧段と前記低圧段の吐出側の端面を揃えたことを特徴とする油冷式スクリュー圧縮機。
The pair of male and female rotors within the same casing housed side by side in a freely 2 sets rotation, one rotor pair the low pressure stage, the other rotor pair is formed a high-pressure stage, the high-pressure stage of the twin rotors are said low pressure In an oil-cooled screw compressor shorter than the stage rotor pair ,
Said low pressure stage is a suction direction radial of the working gas, the high pressure stage Ri suction direction axial der of the working gas,
In both the high pressure stage and the low pressure stage, the discharge direction is the axial direction,
An intermediate stage passage provided in a space sandwiched between the low pressure stage and the high pressure stage, and leading discharge gas discharged from the low pressure stage to the high pressure stage;
A direction changing portion that is located between the intermediate stage passage and the suction side of the high pressure stage and changes the direction of the gas that has passed through the intermediate stage passage;
A plurality of D casings attached to the discharge side of the casing;
A gear casing attached to the suction side of the casing;
An oil-cooled screw compressor characterized in that end faces on the discharge side of the high-pressure stage and the low-pressure stage are aligned .
前記ケーシングの上部に前記低圧段をなす雄ロータと雌ロータ対を水平に配列し、前記中間段通路を前記ロータ対の下部に配置し、さらにその下部に高圧段の雄ロータと雌ロータ対を水平に配列したことを特徴とする請求項1に記載の油冷式スクリュー圧縮機。The male rotor and female rotor pair forming the low pressure stage are horizontally arranged at the upper part of the casing, the intermediate stage passage is disposed at the lower part of the rotor pair, and the male rotor and female rotor pair of the high pressure stage is further provided at the lower part thereof. The oil-cooled screw compressor according to claim 1, wherein the oil-cooled screw compressor is arranged horizontally. 前記ケーシングの吐出側に、高圧段のロータ対を支持する軸受を保持する高圧段Dケーシングと、低圧段のロータ対を支持する軸受を保持する低圧段Dケーシングとを設け、この低圧段Dケーシングに、低圧段から吐出される吐出ガスを前記ケーシングの中段に形成された前記中間段通路に導く空間形成し、前記高圧段Dケーシングには吐出口を形成したことを特徴とする請求項1又は2に記載の油冷式スクリュー圧縮機。On the discharge side of the casing, a high-pressure stage D casing that holds a bearing that supports a high-pressure stage rotor pair and a low-pressure stage D casing that holds a bearing that supports a low-pressure stage rotor pair are provided. to claim 1, which forms a space which leads to the intermediate stage passage formed a discharge gas discharged from the low pressure stage to the middle stage of the casing, the high pressure stage D casing is characterized by the formation of the discharge ports Or the oil-cooled screw compressor of 2 .
JP28067498A 1998-10-02 1998-10-02 Oil-cooled screw compressor Expired - Lifetime JP4248055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28067498A JP4248055B2 (en) 1998-10-02 1998-10-02 Oil-cooled screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28067498A JP4248055B2 (en) 1998-10-02 1998-10-02 Oil-cooled screw compressor

Publications (2)

Publication Number Publication Date
JP2000110760A JP2000110760A (en) 2000-04-18
JP4248055B2 true JP4248055B2 (en) 2009-04-02

Family

ID=17628359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28067498A Expired - Lifetime JP4248055B2 (en) 1998-10-02 1998-10-02 Oil-cooled screw compressor

Country Status (1)

Country Link
JP (1) JP4248055B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829665B1 (en) * 2005-07-06 2008-05-16 가부시키가이샤 고베 세이코쇼 Two stage type screw compressor
JP6276118B2 (en) * 2014-06-20 2018-02-07 株式会社神戸製鋼所 Screw compressor
ES2709763T3 (en) 2016-10-28 2019-04-17 Almig Kompressoren Gmbh Two stage oil injected screw air compressor
CN115751772B (en) * 2022-11-15 2023-09-15 大同云清科技有限公司 Screw two-stage compressed air source heat pump

Also Published As

Publication number Publication date
JP2000110760A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
JP4673136B2 (en) Screw compressor
US8936450B2 (en) Roots fluid machine with reduced gas leakage
KR101074633B1 (en) The water cooling dry vacuum pump which has two phase screw type
JP3971369B2 (en) Motor pump unit
US6497564B2 (en) Balanced rotors positive displacement engine and pump method and apparatus
SE462232B (en) SCREW COMPRESSOR WITH OIL DRAINAGE
JP4248055B2 (en) Oil-cooled screw compressor
AU2016216518A1 (en) Dry screw driver
EP2264319B1 (en) Oil free screw compressor
US6200116B1 (en) Vacuum pumps
JP3240851B2 (en) Dry screw fluid machine
CN112780553A (en) Rotor subassembly, compressor and air conditioner
US6685453B2 (en) Fluid transfer machine with drive shaft lubrication and cooling
CN113167275A (en) Screw compressor
JP2007263122A (en) Evacuating apparatus
CN215890463U (en) Compressor and air conditioner
JP2618825B2 (en) Intercoolerless air-cooled 4-stage roots vacuum pump
JP3403452B2 (en) Oilless screw compressor
CN1091834C (en) Power machine with rolling rotor
JP2005256845A5 (en)
KR102031851B1 (en) Motor operated compressor
CN216714708U (en) Built-in exhaust supercharger type composite screw vacuum pump
CN111448392B (en) Compressor
JP4089037B2 (en) Oil-cooled two-stage screw compressor
JP2019039387A (en) Oil-cooled two-stage screw compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

EXPY Cancellation because of completion of term