JPS6235090A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPS6235090A
JPS6235090A JP17360385A JP17360385A JPS6235090A JP S6235090 A JPS6235090 A JP S6235090A JP 17360385 A JP17360385 A JP 17360385A JP 17360385 A JP17360385 A JP 17360385A JP S6235090 A JPS6235090 A JP S6235090A
Authority
JP
Japan
Prior art keywords
suction
cylinder
crank angle
suction pipe
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17360385A
Other languages
Japanese (ja)
Other versions
JPH0454838B2 (en
Inventor
Hideo Hirano
秀夫 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17360385A priority Critical patent/JPS6235090A/en
Publication of JPS6235090A publication Critical patent/JPS6235090A/en
Publication of JPH0454838B2 publication Critical patent/JPH0454838B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the pulsation width of a pressure in a suction chamber, by a method wherein a crank angle, at which a pressure wave, produced during a suction stroke and having an incoming velocity to the suction chamber, is reflected by an open end on the accumulator side and returned, is controlled in a specified range. CONSTITUTION:In the case of thetaSR=thetaS+12LsN/aS, wherein thetas(deg) is a suction starting crank angle, Ls(m) is the length of a suction line 13, N(rpm) is the number of revolutions of a shaft, aS(m/s) is a sound velocity in the suction line 13, and thetas(deg) is the return angle of a pressure wave produced on the cylinder 10 side of the suction line 13 during the starting of suction, a compressor is so constituted that the return crank angle is in a range of 296(deg)<=thetaSR<=406(deg). With this constitution, a crank angle theta(deg), at which a pressure wave produced at the pipe end on the cylinder 10 side of the suction line 13 during the suction stroke of a rotary compressor and an incoming velocity to the suction chamber of the cylinder 10 is reflected by the open end of the accumulator 9 side, is controlled in a specified range in the vicinity of a subsequent suction stroke starting crank angle, and this enables reduction of a pressure pulsation width of the suction chamber.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気調和装置に用いられるロータリ圧縮機に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a rotary compressor used in an air conditioner.

従来の技術 従来のこの種のロータリ圧縮機は、例えば特開昭57−
122192号公報に示されているように、第4図のよ
うな構造になっていた。
2. Description of the Related Art A conventional rotary compressor of this type is disclosed in, for example, Japanese Patent Application Laid-Open No.
As shown in Japanese Patent No. 122192, it had a structure as shown in FIG.

図中、1は密閉容器であシ、圧縮機要素2と、これをク
ランク軸4を介して駆動する電動機要素3が内蔵されて
いる。また、吸入マフラ5は密閉容器1の外側に配設さ
れ、この吸入マフラ5にその下部から内部に突入するよ
う取付けられた吸入接続管6は圧縮機要素2のシリンダ
7に連通されている。また、吸入接続管6の長さim)
は、次式で決定されている。
In the figure, reference numeral 1 denotes a closed container in which a compressor element 2 and an electric motor element 3 for driving the compressor element 2 via a crankshaft 4 are built-in. Further, the suction muffler 5 is disposed outside the closed container 1, and a suction connecting pipe 6 attached to the suction muffler 5 so as to protrude into the inside from the lower part thereof is communicated with the cylinder 7 of the compressor element 2. Also, the length of the suction connection pipe 6 (im)
is determined by the following formula.

る。Ru.

以下、その動作について説明する。The operation will be explained below.

ガス冷媒は、吸入マフラ5内の容積空間に入シ、吸入接
続管6を経てシリンダ7に吸入される。吸入ガスが吸入
接続管6を通過するとき諸々の要因により圧力脈動が生
じる。この圧力脈動は吸入接続管6の長さと吸入行程周
期、および吸入ガスの音速によシ影響を受ける。第5図
に、吸入接続管6と容積効率との関係(冷媒:R22)
を示したが、吸入接続管6を(1)式によって決定すれ
ば・過給効果が得られ容積効率が良くなる。
The gas refrigerant enters the volume space within the suction muffler 5 and is sucked into the cylinder 7 via the suction connection pipe 6. When the suction gas passes through the suction connection pipe 6, pressure pulsations occur due to various factors. This pressure pulsation is influenced by the length of the suction connection pipe 6, the suction stroke period, and the sonic velocity of the suction gas. Figure 5 shows the relationship between the suction connecting pipe 6 and volumetric efficiency (refrigerant: R22).
However, if the suction connection pipe 6 is determined by equation (1), a supercharging effect can be obtained and the volumetric efficiency can be improved.

発明が解決しようとする問題点 しかしながら上記のような構成では、確かに過給効果に
より容積効率は良くなるが、EERは悪くなる。(1)
式による吸入接続管6の長さにおいて、吸入行程におけ
るシリンダ7内の圧力脈動の脈動中は最大となる。位相
的に調べるとクランク角度が約1800すなわち吸入行
程の約半分の位置においてシリンダ7内の圧力は最低と
なる。すなわち、最大の過膨張が発生する。ロータリ圧
縮機においては、その構造上、クランク角度180°付
近において容積変化速度が最大となるため、過膨張によ
る損失仕事が必要以上に増加する。その結果、容積効率
の向上による冷媒循環量の増加分以上に入力が増加する
こととなシ、太き(EERを低下させ、かつ、圧力脈動
が最大であることにょシ、吸入接続管、及び吸入マフラ
ーからの騒音・振動が悪化するなどの問題を有する。
Problems to be Solved by the Invention However, in the above configuration, although the volumetric efficiency is certainly improved due to the supercharging effect, the EER is deteriorated. (1)
In the length of the suction connecting pipe 6 according to the formula, the pressure pulsation in the cylinder 7 during the suction stroke is at its maximum. When examined in terms of phase, the pressure within the cylinder 7 is at its lowest at a crank angle of about 1800, that is, about half of the suction stroke. That is, maximum overinflation occurs. In a rotary compressor, due to its structure, the rate of change in volume reaches its maximum near a crank angle of 180 degrees, so the loss of work due to overexpansion increases more than necessary. As a result, the input will not increase more than the increase in the amount of refrigerant circulated due to the improvement in volumetric efficiency. There are problems such as worsening noise and vibration from the intake muffler.

本発明は上記問題点に鑑み、EERが高く、かつ騒音・
振動の小さいロータリ圧縮機を提供するものである。
In view of the above problems, the present invention has high EER and low noise.
This provides a rotary compressor with low vibration.

問題点を解決するた塩の手段 上記問題点を解決するために本発明は、アキュムレータ
とシリンダを接続する吸入管と、シリンダにせん孔され
た吸入ポートよ構成る吸入管路において、吸入開始クラ
ンク角度をθs (deg )とし、吸入管路の長さを
Ls(m)とし、軸回1訳数をN(rpm)とし、吸入
管路における音速をa5(rn/s)とし、吸入開始時
に吸入管路のシリンダ側管端において発生する圧力波の
帰還クランク角度をθSR(deq )すなわち、 としたとき、 296(decr)≦θSR≦406 (deq ) 
−・・G3)の範囲になるように構成されるものである
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a suction pipe that connects an accumulator to a cylinder, and a suction port formed in the cylinder. is θs (deg), the length of the suction pipe is Ls (m), the number of shaft rotations is N (rpm), the sound velocity in the suction pipe is a5 (rn/s), and the suction pipe length is Ls (m). When the return crank angle of the pressure wave generated at the cylinder side pipe end of the pipeline is θSR (deq), that is, 296 (decr)≦θSR≦406 (deq)
-...G3).

作  用 本発明は上記した構成によシ、ロータリ圧縮機の吸入行
程開始時、吸入管路のシリンダ側管端において発生する
シリンダ吸入室へ流入する速度を持つ圧力波が、アキュ
ムレータ側の開口端において反射し帰還するクランク角
度を、吸入管路の長さと圧縮機回転数によυ次の吸入行
程開始クランク角度付近の一定範囲に制御し、吸入行程
におけるシリンダ吸入室の圧力脈動中を減少するもので
ある。
According to the above-described structure, the present invention has the advantage that, at the start of the suction stroke of the rotary compressor, a pressure wave generated at the cylinder-side pipe end of the suction pipe and having a velocity flowing into the cylinder suction chamber is transmitted to the accumulator-side open end. The crank angle that is reflected and returned at the pump is controlled within a certain range around the crank angle at which the next suction stroke starts, depending on the length of the suction pipe and the compressor rotation speed, thereby reducing pressure pulsations in the cylinder suction chamber during the suction stroke. It is something.

実施例 以下、本発明の一実施例のロータリ圧縮機について、図
面を参照しながら説明する。
EXAMPLE Hereinafter, a rotary compressor according to an example of the present invention will be described with reference to the drawings.

第1図は、本発明の実施例におけるロータリ圧縮機の断
面図を示すものである。
FIG. 1 shows a sectional view of a rotary compressor in an embodiment of the present invention.

図において、8はロータリ圧縮機、9はアキユムレータ
、10はシリンダである。11は吸入管、12はシリン
ダ10にせん孔された吸入ポート、吸入管11と吸入ポ
ート12によシ吸入管路13が構成されている。14は
軸、15はピストン、16は仕切シベーンで1、ピスト
ン15と仕切シベーン16によクシリンダ10内の空間
はシリンダ吸入室17とシリンダ圧縮室18に分けられ
ている。θBは吸入開始クランク角度(dog )であ
シ、Ljは吸入管路1aの長さくm)である。吸入開始
クランク角度Os(dog )、吸入管路13の長さL
s、圧縮機回転数すなわち軸14の回転数N。
In the figure, 8 is a rotary compressor, 9 is an accumulator, and 10 is a cylinder. 11 is a suction pipe, 12 is a suction port bored in the cylinder 10, and the suction pipe 11 and the suction port 12 constitute a suction pipe line 13. 14 is a shaft, 15 is a piston, 16 is a partition sheave 1, and the space inside the cylinder 10 is divided into a cylinder suction chamber 17 and a cylinder compression chamber 18 by the piston 15 and the partition sheave 16. θB is the suction start crank angle (dog), and Lj is the length (m) of the suction pipe 1a. Suction start crank angle Os (dog), length L of suction pipe 13
s, the compressor rotation speed, that is, the rotation speed N of the shaft 14;

吸入管路における音速は、(3)式を満たすように設定
されている。
The sound velocity in the suction pipe is set to satisfy equation (3).

以下、動作について説明する。The operation will be explained below.

軸14の回転に従いピストン15は回転し、クランク角
度がθs (dog )を過ぎるとシリンダ吸入室17
の容積は増加し、吸入行程が開始される。
The piston 15 rotates as the shaft 14 rotates, and when the crank angle passes θs (dog), the cylinder suction chamber 17
The volume of increases and the inhalation stroke begins.

すなわち、アキユムレータ9に流入したガス冷媒は、吸
入管11と吸入ポート12によシ構成された吸入管路1
3を経て、シリンダ吸入室17に吸入される。吸入行程
が開始されると、吸入管路13及びシリンダ吸入室17
において圧力脈動が発生する。
That is, the gas refrigerant that has flowed into the accumulator 9 flows through the suction pipe line 1 which is constituted by the suction pipe 11 and the suction port 12.
3 and is sucked into the cylinder suction chamber 17. When the suction stroke starts, the suction pipe line 13 and the cylinder suction chamber 17
Pressure pulsations occur at

シリンダ吸入室17の圧力脈動(過渡特性)は吸入行程
が急速であることから断熱変化と仮定すると、次のよう
に記述できる。
Assuming that the pressure pulsation (transient characteristics) in the cylinder suction chamber 17 is an adiabatic change since the suction stroke is rapid, it can be described as follows.

上記(4)式において、Pcsはシリンダ吸入室17の
圧ブバ tは時間、には断熱指数、qcsはシリンダ吸
入室17の冷媒重量、Vcsはシリンダ吸入室17の容
積である。
In the above equation (4), Pcs is the pressure of the cylinder suction chamber 17, t is the time, qcs is the weight of the refrigerant in the cylinder suction chamber 17, and Vcs is the volume of the cylinder suction chamber 17.

吸入管路13における圧力脈動は、連続の式、運動量保
存則、熱力学第一法JIIJによシ、次のように記述で
きる。
The pressure pulsations in the suction pipe 13 can be described as follows based on the equation of continuity, the law of conservation of momentum, and the first method of thermodynamics JIIJ.

一〇                      ・
・・・・・ヴ)ここで つ 上記(5)、(6)、(7)式において、ρは密度、V
は流速、Pは圧力、Dは管内径、fは管摩擦係数、Aは
仕事の熱当量、qは重力加速度、Cvは等容比熱、as
は音速である。
10・
...V) Here, in the above equations (5), (6), and (7), ρ is the density, V
is the flow rate, P is the pressure, D is the pipe inner diameter, f is the pipe friction coefficient, A is the heat equivalent of work, q is the gravitational acceleration, Cv is the isovolumic specific heat, as
is the speed of sound.

また、吸入管路13のシリンダ吸入室口端における冷媒
流入量は、シリンダ吸入室17内の冷媒重量の変化であ
シ、かつ吸入ポート12の開口端における冷媒の状態に
より記述できる。
Further, the amount of refrigerant flowing into the cylinder suction chamber mouth end of the suction pipe 13 can be described by the change in the weight of the refrigerant in the cylinder suction chamber 17 and the state of the refrigerant at the open end of the suction port 12.

上記(8)式において、Spは吸入ポート12の断面積
、ρ6は吸入ポート12の開口端における密度、vEは
吸入ポート12の開口端における流速2である。
In the above equation (8), Sp is the cross-sectional area of the suction port 12, ρ6 is the density at the open end of the suction port 12, and vE is the flow velocity 2 at the open end of the suction port 12.

従って、縫)、β)、(6)、け)、(8)式を連立し
て解くことによシ、シリンダ吸入室17の圧力脈動が得
られる。
Therefore, the pressure pulsation in the cylinder suction chamber 17 can be obtained by simultaneously solving the equations (1), (6), (8).

呼称出力550Wクラスのロータリ圧縮機について、J
IS−Aの定格温度条件及び電源周波数60)−1zで
解析を行なった。なお、冷媒は空気調和装置に通常使用
されているR22を用いた。
Regarding rotary compressors with a nominal output of 550W, J
The analysis was performed under IS-A rated temperature conditions and power supply frequency 60)-1z. Note that R22, which is commonly used in air conditioners, was used as the refrigerant.

第2図は、吸入管路3の長さLsに対するシリンダ吸入
室17の圧力脈動を示すグラフである。表1は、最低圧
力のクランク角度θbと吸入開始時に発生するシリンダ
吸入室17に流入する速度を持つ圧力波がアキュムレー
タ9側の開口端において反射し、帰還するクランク角度
θ8Rとの関係を示すものである。非常に良い相関があ
ることがわかる。すなわち、ObはθSRによシ決まる
FIG. 2 is a graph showing pressure pulsations in the cylinder suction chamber 17 with respect to the length Ls of the suction pipe line 3. Table 1 shows the relationship between the minimum pressure crank angle θb and the crank angle θ8R at which the pressure wave generated at the start of suction and flowing into the cylinder suction chamber 17 at a velocity is reflected at the open end on the accumulator 9 side and returns. It is. It can be seen that there is a very good correlation. That is, Ob is determined by θSR.

表−1 第3図は、O8Rと冷房能力Q、入力W、EERとの関
係をθSR:80 (dog )における値(EERは
最高)を基準とし、比として示すグラフである。
Table 1 FIG. 3 is a graph showing the relationship between O8R, cooling capacity Q, input W, and EER as a ratio based on the value at θSR:80 (dog) (EER is the highest).

ここでは、アキュムレータ9の上流側の吸入接続管(図
示せず)と吸入管路13との総和を1.80(m)とし
た。
Here, the total sum of the suction connection pipe (not shown) on the upstream side of the accumulator 9 and the suction pipe line 13 was set to 1.80 (m).

すなわち、EER比が0.99〜1.0に対するθSR
は 42(deg)≦O9R≦108(deg)29108
(de≦θSR≦406 (、deg )となる。
That is, θSR for EER ratio of 0.99 to 1.0
is 42 (deg)≦O9R≦108 (deg)29108
(de≦θSR≦406 (, deg).

前者は、吸入管路13の長さが短かく、ロータリ圧縮機
8め振動が直接アキュムレータ9に伝播されるため、振
動を小さくすることは難しい。
In the former case, the length of the suction pipe 13 is short and the vibrations of the rotary compressor 8 are directly propagated to the accumulator 9, so it is difficult to reduce the vibrations.

一方、後者は、前者に比′べ十分な吸入管路13の長さ
が得られる。例えば、θSR=300(deg)でLg
:1.1mとなる、その結果振動を抑制する手段、すな
わち配管の引きまわしや振動のモードを考えた適切な位
置への制振部材の付加などが可能になり、振動を十分小
さくできる。
On the other hand, the latter provides a sufficient length of the suction pipe 13 compared to the former. For example, when θSR=300 (deg), Lg
: 1.1 m. As a result, it becomes possible to use means to suppress vibrations, such as the routing of piping and the addition of damping members at appropriate positions considering the mode of vibration, thereby making it possible to sufficiently reduce vibrations.

また、O8Hの範囲が広く、50H2/601(2の電
源周波数の違いによるEERの悪化はない。かつ、イン
バータ駆動のように、広い回転数範囲での運転に対して
も、296 (deq )≦θSR≦406 (deg
)となるように、回転数範囲を設定するか又は、非常に
使用頻度の高い回転数域をこの範囲に合わせれば、回転
数によるEERの低下を十分緩和でき、寺社空気調和装
置の5EERを高めるすなわち、年間消費電力を少なく
することができる。
In addition, the range of O8H is wide, and there is no deterioration of EER due to the difference in power frequency of 50H2/601 (2).Also, even for operation in a wide rotation speed range such as inverter drive, 296 (deq) ≦ θSR≦406 (deg
), or by adjusting the rotation speed range that is very frequently used to this range, the decrease in EER due to rotation speed can be sufficiently alleviated and the 5EER of temple and shrine air conditioners can be increased. That is, annual power consumption can be reduced.

発明の効果 以上のように本発明は、アキュムレータとシリンダを接
続する吸入管と、シリンダにせん孔された吸入ポートよ
構成る吸入管路において、吸入開始クランク角度をIs
 (deg )とし、吸入管路の長さをLs(m)とし
、軸回転数をN (mpm )とし、吸入管路における
音速をas(m/−)とし、吸入開始時に吸入管路のシ
リンダ側管端において発生する圧力波の帰還クランク角
度をθSR(deq )すなわとしたとき、θSR(d
eg )が 266(deg)≦O8R≦406(deck)の範囲
になるように構成されるので、ロータリ圧縮機において
高EERかつ低騒音・低振動の両立が可能となり、かつ
電源周波数によるEERの低下を解決できるのみならず
、インバータ駆動の空気調和装置の5EERを高めるこ
とができるなどの効果を有する。
Effects of the Invention As described above, the present invention provides a suction starting crank angle Is in a suction pipe line that connects an accumulator and a cylinder, and a suction port formed in the cylinder.
(deg), the length of the suction pipe is Ls (m), the shaft rotation speed is N (mpm), the speed of sound in the suction pipe is as (m/-), and at the start of suction, the cylinder of the suction pipe is When the return crank angle of the pressure wave generated at the side pipe end is θSR(deq), θSR(d
Since the rotary compressor is configured so that eg) is in the range of 266 (deg)≦O8R≦406 (deck), it is possible to achieve both high EER and low noise and vibration in the rotary compressor, and the EER decreases depending on the power frequency. This not only solves the problem, but also has the effect of increasing the 5EER of an inverter-driven air conditioner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるロータリ圧縮機の断面
図、第2図は吸入行程におけるシリンダ吸入室の圧力脈
動を示す特性図、第3図は圧力波の帰還クランク角度に
対する基本特性を示す特性図、第4図は従来のロータリ
圧縮機の断面図、第5図は吸入接続管長に対する容積効
率を示す説明図である。 9・・・・・・アキュムレータ、10・・・・・・シリ
ンダ、11・・・・・・吸入管、12・・・・・・吸入
ポート、13・・・・・・吸入管路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名9−
−−アキユムし一タ lθ−シリンダ U−m−吸入管 第1 図         I2−  吸入ポートト1
3−  吸入管路 第2因 第3図 θ5R(dε9)
Fig. 1 is a sectional view of a rotary compressor according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing pressure pulsations in the cylinder suction chamber during the suction stroke, and Fig. 3 is a basic characteristic of the pressure wave with respect to the feedback crank angle. FIG. 4 is a sectional view of a conventional rotary compressor, and FIG. 5 is an explanatory diagram showing volumetric efficiency versus suction connection pipe length. 9...Accumulator, 10...Cylinder, 11...Suction pipe, 12...Suction port, 13...Suction pipe line. Name of agent: Patent attorney Toshio Nakao and 1 other person9-
--Akiyum Shitata lθ-Cylinder U-m-Suction pipe 1 Figure I2- Suction port 1
3- Suction pipe 2nd cause Figure 3 θ5R (dε9)

Claims (1)

【特許請求の範囲】 アキュムレータとシリンダを接続する吸入管と、シリン
ダにせん孔された吸入ポートより成る吸入管路において
、吸入開始クランク角度をθ_s(deg)とし、吸入
管路の長さをLs(m)とし、軸回転数をN(rpm)
とし、吸入管路における音速をa_s(m/s)とし、
吸入開始時に吸入管路のシリンダ側管端において発生す
る圧力波の帰還クランク角度をθ_S_R(deg)す
なわち θ_S_R=θ_s+(12LsN/a_s)としたと
き、θ_S_R(deg)が、 296(deg)≦θ_S_R≦406(deg)の範
囲になるように構成されるロータリ圧縮機。
[Claims] In a suction pipe line consisting of a suction pipe connecting an accumulator and a cylinder, and a suction port drilled in the cylinder, the suction start crank angle is θ_s (deg), and the length of the suction pipe is Ls ( m), and the shaft rotation speed is N (rpm).
and the speed of sound in the suction pipe is a_s (m/s),
When the return crank angle of the pressure wave generated at the cylinder side pipe end of the suction pipe line at the start of suction is θ_S_R (deg), that is, θ_S_R=θ_s+(12LsN/a_s), θ_S_R (deg) is 296 (deg)≦θ_S_R A rotary compressor configured to be within the range of ≦406 (deg).
JP17360385A 1985-08-07 1985-08-07 Rotary compressor Granted JPS6235090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17360385A JPS6235090A (en) 1985-08-07 1985-08-07 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17360385A JPS6235090A (en) 1985-08-07 1985-08-07 Rotary compressor

Publications (2)

Publication Number Publication Date
JPS6235090A true JPS6235090A (en) 1987-02-16
JPH0454838B2 JPH0454838B2 (en) 1992-09-01

Family

ID=15963664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17360385A Granted JPS6235090A (en) 1985-08-07 1985-08-07 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS6235090A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246423A (en) * 1988-08-08 1990-02-15 Olympus Optical Co Ltd Imaging optical system
JPH02181111A (en) * 1989-01-05 1990-07-13 Olympus Optical Co Ltd Endoscope
US4992767A (en) * 1989-02-03 1991-02-12 Hitachi Metals, Ltd. Magnet roll
US5071229A (en) * 1988-08-08 1991-12-10 Olympus Optical Co., Ltd. Imaging apparatus having electrooptic devices which comprise a variable focal length lens
US5150234A (en) * 1988-08-08 1992-09-22 Olympus Optical Co., Ltd. Imaging apparatus having electrooptic devices comprising a variable focal length lens
JP2009108739A (en) * 2007-10-29 2009-05-21 Hitachi Appliances Inc Rotary compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246423A (en) * 1988-08-08 1990-02-15 Olympus Optical Co Ltd Imaging optical system
US5071229A (en) * 1988-08-08 1991-12-10 Olympus Optical Co., Ltd. Imaging apparatus having electrooptic devices which comprise a variable focal length lens
US5150234A (en) * 1988-08-08 1992-09-22 Olympus Optical Co., Ltd. Imaging apparatus having electrooptic devices comprising a variable focal length lens
JPH02181111A (en) * 1989-01-05 1990-07-13 Olympus Optical Co Ltd Endoscope
US4992767A (en) * 1989-02-03 1991-02-12 Hitachi Metals, Ltd. Magnet roll
JP2009108739A (en) * 2007-10-29 2009-05-21 Hitachi Appliances Inc Rotary compressor

Also Published As

Publication number Publication date
JPH0454838B2 (en) 1992-09-01

Similar Documents

Publication Publication Date Title
US5829960A (en) Suction inlet for rotary compressor
JPS6235090A (en) Rotary compressor
RU2737072C2 (en) Compressor, method of its use and steam compression system
US20160305429A1 (en) Rotary compressor and compression unit thereof, and air conditioner
JP5338314B2 (en) Compressor and refrigeration equipment
JP4792675B2 (en) Hermetic compressor
JPH02256889A (en) Compressor
JPH1162862A (en) Rolling piston-type rotary compressor
JP2012172571A (en) Rotary compressor
JP5228719B2 (en) Two-stage compressor
JPS63106376A (en) Supercharge type compressor
JP2001207982A (en) Rotary compressor
CN112360738B (en) Variable-capacity compressor and air conditioner
CN218376878U (en) Rotary compressor and refrigeration cycle device
JP7381975B2 (en) Compressor and air conditioner
JPH04203387A (en) Rotary compressor
CN113266568B (en) Suction and exhaust structure, compressor and refrigeration equipment
CN214742067U (en) Compressor and air conditioning system
KR102324772B1 (en) A compressor
KR100534974B1 (en) Variable induction system
JPH0575915B2 (en)
CN112746962A (en) Compressor and air conditioning system
JPS59145385A (en) Ring type pump
JPH0223837Y2 (en)
JP2000161216A (en) Reciprocating compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees