JP2009105087A - 半導体製造装置、半導体製造方法及び記憶媒体 - Google Patents

半導体製造装置、半導体製造方法及び記憶媒体 Download PDF

Info

Publication number
JP2009105087A
JP2009105087A JP2007272918A JP2007272918A JP2009105087A JP 2009105087 A JP2009105087 A JP 2009105087A JP 2007272918 A JP2007272918 A JP 2007272918A JP 2007272918 A JP2007272918 A JP 2007272918A JP 2009105087 A JP2009105087 A JP 2009105087A
Authority
JP
Japan
Prior art keywords
gas
gas supply
film
reaction vessel
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007272918A
Other languages
English (en)
Other versions
JP4905315B2 (ja
Inventor
Tetsushi Ozaki
徹志 尾崎
Kazuhide Hasebe
一秀 長谷部
Tetsuya Shibata
哲弥 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007272918A priority Critical patent/JP4905315B2/ja
Priority to KR1020080102110A priority patent/KR101533846B1/ko
Publication of JP2009105087A publication Critical patent/JP2009105087A/ja
Application granted granted Critical
Publication of JP4905315B2 publication Critical patent/JP4905315B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】高温でのアニールを行わなくともα-アルミナを含み、且つ面内均一性の高いアルミナ膜を成膜することができる半導体製造装置等を提供する。
【解決手段】半導体装置を製造するための基板Wにα-アルミナを含むアルミナ膜を成膜する半導体製造装置であって、基板保持具(ウエハボート25)は、複数の基板Wを棚状に保持して縦型の反応容器2内に搬入する。第1のガス供給手段31は基板保持具25に保持されている各基板Wに対応する高さ位置に塩化アルミニウムを含む原料ガスを供給し、第2のガス供給手段34は同様の高さ位置に水蒸気を含む酸化ガスを供給する。制御部5は、排気手段41、42により排気され、加熱手段により処理雰囲気を800℃以上、1,000℃以下の範囲内の温度に加熱された反応容器2内に、前記原料ガスと酸化ガスとを同時に供給して反応させるための制御信号を出力する。
【選択図】図2

Description

本発明は、半導体装置を製造するための基板にα-アルミナ(α-Al23;α型酸化アルミニウム)を含むアルミナ膜を成膜する半導体製造装置、半導体製造方法及びこの方法を実施するプログラムを格納した記憶媒体に関する。
半導体デバイスの高集積化、微細化が進みつつあり、またデバイス構造についても多様化の傾向にあるが、これに伴って特性や製造工程などの面においてより適切な膜の選定、開発に力が注がれている。
例えばMONOS(Metal-Oxide-Nitride-Oxide-Semiconductor)型のフラッシュメモリにて使用されているメモリ素子100は、図1に示すようにソース電極101、ドレイン電極102間のシリコン層(シリコン基板110)の上にトンネル酸化膜103、チャージトラップ層104、ブロッキング絶縁膜105及びコントロールゲート106を積層して構成されている(このコントロールゲート106がポリシリコンより形成されているメモリ素子100をSONOS(Silicon-Oxide-Nitride-Oxide-Semiconductor)型ともいう)。チャージトラップ層104は例えばシリコン窒化膜(Si)により形成されており、ブロッキング絶縁膜105としては、このシリコン窒化膜に対するバンドギャップが大きく、またリーク電流の少ない膜が用いられる。
一方、従来用いられているフローティングゲート型のフラッシュメモリは、電荷を貯めるフローティングゲートと制御電圧を印加するコントロールゲートとの間を、シリコン窒化膜の両面をシリコン酸化膜により挟んだいわゆるONO膜と呼ばれている3層構造のゲート絶縁膜で絶縁している。
ところで最近において既述のMONOS型のメモリ素子100では、ブロッキング絶縁膜105としてα-Al23を利用する技術が検討されている。α-Al23はコランダム結晶構造を有し、鉱物中に多く存在しているが、バンドギャップが8.8eV程度シリコン窒化膜に対して大きく、また誘電率が高いことから膜厚を大きくできるのでリーク電流も抑えられ、ブロッキング絶縁膜105としては好適に用いることができる。そしてα-Al23を用いればブロッキング絶縁膜が一層構造になるため、ゲート絶縁膜にONO膜を採用したフローティングゲート型のフラッシュメモリに比べても製造工程を簡略化できる利点がある。
α-Al23は例えばTMA(トリメチルアルミニウム)を原料として300℃程度のプロセス温度でオゾンガスと反応させて成膜を行い、その後1,100℃以上の高温でアニールすることにより得られる。Al23は300℃程度で成膜した段階ではアモルファスであり、α-Al23型に相転移するためには1,100℃以上の高温でアニールする必要がある。なおTMAを用いて300℃よりも高い温度で成膜すると、処理容器内に供給されたTMAは半導体ウエハの中心部に達する前に気相で熱分解され、処理容器の壁面や半導体ウエハのエッジへの吸着に殆ど消費されてしまい、半導体ウエハの全面に均一なアルミナ膜を成膜することができない。
一方、半導体ウエハを1,100℃もの高温でアニールすると、それまで積層されてきた部分に予定としていない熱履歴が残り、例えばイオン注入した不純物の活性度が設計値から変わってきてしまう。このためアニール温度は実際の製造プロセスにおいては1,000℃程度までしか設定できないが、そうするとこのアルミナ膜はγ-Al23、θ-Al23、η-Al23等、スピネル構造の結晶を含むAl23にしかならず、α-Al23を殆ど形成することができない。この結果、シリコン窒化膜に対するバンドギャップが8.2eV程度と低くなり、α-Al23を用いることにより狙っている特性が得られなくなる。このようなプロセス上の問題からフラッシュメモリのMONOS構造におけるα-Al23の適用化が阻まれている。
なお特許文献1には、塩化アルミニウム(AlCl)、塩化チタン(TiCl)を処理容器内で交互に水蒸気と反応させて、アルミナ膜と酸化チタン膜とが交互に積層されたATO膜を成膜する技術が記載されている。しかしながら当該技術には特にα-Al23を含んだアルミナ膜を成膜する技術は記載されておらず、上述の問題を解決することはできない。
また特許文献2には、塩化アルミニウムと水分とを反応させて切削工具の表面にアルミナ膜を成膜する技術が記載されているが、当該技術においてもα-Al23を含むアルミナ膜を成膜する方法については記載されていない。特に、半導体素子の製造に適用するにあたっては半導体ウエハ表面に均一な膜厚のアルミナ膜を成膜することが要求されるが、特許文献2にはこのような課題を解決する技術は記載されておらず、仮に本技術を用いて成膜したアルミナ膜にα-Al23が含まれているとしても、半導体デバイスの製造に適用することはできない。
特開2001-234345号公報:第0026段落 特開平10−96081号公報:第0004段落
本発明はこのような事情のもとになされたものであり、その目的は、高温でのアニールを行わなくともα-アルミナを含み、且つ面内均一性の高いアルミナ膜を成膜することができる半導体製造装置、半導体製造方法及びこの方法を実施するプログラムを格納した記憶媒体を提供することにある。
本発明に係わる半導体製造装置は、半導体装置を製造するための基板にα-アルミナを含むアルミナ膜を成膜する半導体製造装置であって、
縦型の反応容器と、
複数の基板を棚状に保持して前記縦型の反応容器内に搬入するための基板保持具と、
前記反応容器内にて基板保持具に保持されている各基板に対応する高さ位置に、塩化アルミニウムを含む原料ガスを供給するためのガス供給孔を設けた第1のガス供給手段と、
前記反応容器内にて基板保持具に保持されている各基板に対応する高さ位置に、水蒸気を含む酸化ガスを供給するためのガス供給孔を設けた第2のガス供給手段と、
前記反応容器の周囲を囲むように設けられた加熱手段と、
前記反応容器内を排気するための排気手段と、
この加熱手段により処理雰囲気を800℃以上、1,000℃以下の範囲内の温度に加熱し、前記原料ガスと酸化ガスとを同時に供給して反応させるための制御信号を出力する制御部と、を備えたことを特徴とする。
ここで前記第1のガス供給手段及び第2のガス供給手段は、各々前記反応容器の下部から基板保持部の上端部に亘って立ち上げられた配管により構成され、前記ガス供給孔は、当該配管の管壁部に、前記基板保持具に保持された基板に向けて開口していることが好ましい。またこの半導体製造装置は、前記原料ガスに含まれる塩化アルミニウムの供給量が30cc/分以上、300cc/分以下の範囲内であり、前記原料ガスに含まれる塩化アルミニウムの供給量に対する前記酸化ガスに含まれる水蒸気の供給量比が1.3以上、1.7以下の範囲内である場合に好適である。
更に上述の各半導体製造装置にて成膜されるアルミナ膜は、高誘電体からなる絶縁膜、特にトンネル酸化膜、チャージトラップ層、ブロッキング絶縁膜及びコントロールゲートが下からこの順に積層されたメモリ素子において、前記ブロッキング絶縁膜として用いるのに適している。
また他の発明に係る半導体製造方法は、半導体装置を製造するための基板にα-アルミナを含むアルミナ膜を成膜する半導体製造方法であって、
複数の基板を棚状に保持して縦型の反応容器内にこれらの基板を搬入する工程と、
前記反応容器内の処理雰囲気を800℃以上、1,000℃以下の温度に加熱する工程と、
前記反応容器内を排気しながら、前記反応容器内にて基板保持具に保持されている各基板に対応する高さ位置に設けられたガス供給孔を有する第1のガス供給手段及び第2のガス供給手段を用いて、第1のガス供給手段のガス供給孔からは塩化アルミニウムを含む原料ガスを供給すると共に、第2のガス供給手段のガス供給孔からは水蒸気を含む酸化ガスを供給し、これら原料ガスと酸化ガスとを反応させて各基板の表面にアルミナ膜を成膜する工程と、を含むことを特徴とする。
この半導体製造方法は、前記原料ガスに含まれる塩化アルミニウムの供給量が30cc/分以上、300cc/分以下の範囲内であり、また前記原料ガスに含まれる塩化アルミニウムの供給量に対する前記酸化ガスに含まれる水蒸気の供給量比が1.3以上、1.7以下の範囲内であることが好ましい。
また上述の各半導体製造方法にて製造されるアルミナ膜は、高誘電体からなる絶縁膜として用いられ、特にトンネル酸化膜、チャージトラップ層、ブロッキング絶縁膜及びコントロールゲートが下からこの順に積層されたメモリ素子において、前記ブロッキング絶縁膜として用いる場合に適している。
この他、本発明に係る記憶媒体は、アルミナ膜の成膜装置に用いられ、コンピュータ上で動作するプログラムを格納した記憶媒体であって、上述したいずれかの半導体製造方法を実行するためにステップが組まれていることを特徴とする
本発明によれば、塩化アルミニウムを含む原料ガスと、水蒸気を含む酸化ガスとを800℃〜1,000℃の温度にて反応させてα-Al23を含むアルミナ膜を成膜している。また、上述の温度範囲においては、塩化アルミニウムと水蒸気との反応速度が極めて大きいが、縦型の反応容器内にて上下に並べた基板群の横から各基板に対して原料ガスと酸化ガスとを別々の供給手段により供給しているため、基板の中央領域まで両方のガスが別々に行き渡って反応するので面内均一性の高いアルミナ膜を得ることができる。
本実施の形態に係る半導体製造装置の構成を説明する前に本発明の主旨について簡単に説明する。背景技術でも説明したように、TMAを原料として300℃程度の比較的低い温度で成膜されるアルミナ膜は、成膜後に1,100℃以上の温度でアニールを行い、アモルファス状のAl23を結晶化し相転移させてα-Al23を得ていた。そこで本発明者らは、TMAの成膜温度(300℃)より高温であり、且つアモルファス状やγ-Al23等のスピネル構造のAl23にて行われるアニール温度(1,100℃)より低温の温度範囲内でアルミナ膜を成膜することにより、アニールを行わずにα-Al23を得ることの可能な物質を探索したところ、塩化アルミニウム(AlCl)を800℃〜1,000℃の温度範囲で酸化ガスと反応させることにより、α-Al23を含むアルミナ膜を成膜できるとの知見を得た。このような知見に基づいて本実施の形態に係る半導体製造装置は、AlClを原料ガスとし、アニール工程を経ずにα-Al23を含むアルミナ膜を成膜できるように構成されている。
また800℃〜1,000℃の比較的高い温度でAlClを反応させる場合には、AlClと反応させる酸化ガスについてもこの温度範囲にて活性を示す必要がある。この点、TMAの酸化ガスとして従来用いられていたオゾンガスは、このような温度範囲にて活性を失ってしまう傾向が知られている。そこで本実施の形態に係る半導体製造装置は、800℃〜1,000℃の比較的高い温度範囲でも活性を失わない水蒸気を酸化ガスとして採用している点にも特徴を有している。
以下、本発明をバッチ式の半導体製造装置である縦型熱処理装置に適用した実施の形態について図2の縦断面図を用いて説明する。本実施の形態に係る半導体製造装置(以下、成膜装置1という)は、原料ガスと酸化ガスとを同時に連続して供給して両ガスを反応させるCVD(Chemical Vapor Deposition)プロセスによりウエハWへの成膜を行う装置として構成されている。
図2中2は、例えば石英により縦型の円筒状に形成された処理容器を成す反応容器である。この反応容器2の下端は、炉口として開口され、その開口部21の周縁部にはフランジ22が反応容器2と一体に形成されている。この反応容器2の下方には、フランジ22の下面に当接して開口部21を気密に閉塞する、例えば石英製の蓋体23が図示しないボートエレベータにより上下方向に開閉可能に設けられている。蓋体23の中央部には、回転軸24が貫通して設けられ、その上端部には基板保持具であるウエハボート25が搭載されている
ウエハボート25は、3本以上例えば4本の支柱26を備えており、複数枚例えば125枚の被処理体であるウエハWを棚状に保持できるように、前記支柱26には基板保持部を構成する多数の溝(スロット)が形成されている。但し、125枚のウエハWの保持領域の内、上下両端部については複数枚のダミーウエハが保持され、その間の領域に製品ウエハWが保持されることになる。前記回転軸24の下部には、当該回転軸24を回転させる駆動部をなすモータMが設けられており、モータMは回転軸24を介してウエハボート25全体を回転させることができる。また蓋体23の上には前記回転軸24を囲むように保温ユニット27が設けられている。
反応容器2内には、2本のL字型の配管からなるガス供給手段であるインジェクタ31、34、即ち処理ガスを供給するための第1のガスインジェクタ31と、酸化ガス及び不活性ガスを供給するための第2のガスインジェクタ34とが反応容器2下部のフランジ22を介して挿入されている。図2に示すように第1のガスインジェクタ31は、その先端部がウエハボート25の上端部まで立ち上げられていて、この立ち上げ部分の配管の管壁には、ウエハボート24に保持された各ウエハWに対応した高さ位置にガス供給孔311が設けられている。ここで「各ウエハWに対応する高さ位置」は、各ガス供給孔311の高さ位置がウエハボート25に保持された各ウエハWと厳密に一致する場合に限定されず、例えばガス供給孔311とウエハWとの高さ位置が上下方向に数mmずれていてもよいし、更に例えばウエハW数枚毎に1つのガス供給孔311を設けるよう構成してもよい。
第1のガスインジェクタ31は上流側にて原料ガス供給路32と接続されており、当該原料ガス供給路32の更に上流側にはバルブV1、V2及びマスフローコントローラMFC1を介して原料ソース供給源33が接続されている。原料ソース供給源33の内部には、例えば固体状の無水塩化アルミニウム(AlCl)が格納されており、例えば抵抗発熱体からなる図示しない加熱手段によりAlClの容器を加熱することにより、AlClを昇華させて、AlClガス(原料ガス)を得られるように構成されている。ここで原料ガス供給路32、原料ソース供給源33や各種バルブV1、V2、マスフローコントローラMFC1は原料ガス供給部3aを構成している。
一方、第2のガスインジェクタ34は、既述の第1のガスインジェクタ31とほぼ同様の構成を備えており、ウエハボート25の上端部まで立ち上げられると共に、この立ち上げ部分には多数のガス供給孔341が設けられていて、ウエハボート25に保持された各ウエハWに対応する高さ位置にガスを供給可能な構成となっている。ここで「各ウエハWに対応する高さ位置」については、第1のガスインジェクタ31のガス供給孔311の場合と同様に、ガス供給孔341とウエハWとの高さ位置が上下方向に数mmずれていてもよいし、ウエハW数枚毎に1つのガス供給孔341を設けるよう構成してもよい。
また図2に示すように第2のガスインジェクタ34は、既述の第1のガスインジェクタ31に設けられた各ガス供給孔311の開口する方向に対して、ウエハボート25上のウエハWの直径方向に対向する位置に当該第2のガスインジェクタ34の各ガス供給孔341が開口するように反応容器2内に設置されている。
この第2のガスインジェクタ34は上流側にて2本に分岐し、各々酸化ガス供給路35及び不活性ガス供給路39と接続されている。酸化ガス供給路35の更に上流側にはバルブV5を介して水蒸気発生装置36が接続されている。更に当該水蒸気発生装置36には、各々マスフローコントローラMFC3、MFC4及びバルブV6、V7を介して水素ガス供給源37及び酸素ガス供給源38が設けられており、各々水素ガス、酸素ガスを水蒸気発生装置36へと供給することができる。
ここで水蒸気発生装置36は、内部を通過するガスを加熱する加熱手段を備えると共に、ガスの流路には例えば白金等の触媒が設けられ、酸素ガス及び水素ガスを例えば500℃以下の所定温度に加熱しながら触媒に接触させて水蒸気を発生させるように構成されている。この水蒸気発生装置36は、例えば減圧された反応容器2内に供給される水蒸気の濃度を、水蒸気及び酸素ガスに対する水蒸気の濃度で1体積%〜90体積%の範囲で変化させることができる。なお水蒸気の供給にあたっては、このような触媒を用いた水蒸気の供給に替えて、水を気化させて水蒸気を得る気化器を用いてもよいことは勿論である。
また第2のインジェクタ34から分岐した既述の不活性ガス供給路39の上流側には、前後にバルブV3、V4の設けられたマスフローコントローラMFC2を介して、不活性ガスである例えば窒素ガスをボンベ内等に格納した窒素ガス供給源30が設けられている。なお、以上に説明した各種ガス供給路35、39やバルブV3〜V7、ガス供給源37、38、30や水蒸気発生装置36は、ガス供給部3bを構成している。
また反応容器2の上方には、反応容器2内を排気するための排気口4が形成されている。この排気口4には、反応容器2内を所望の真空度に減圧排気可能な真空ポンプ41及び圧力調整手段42を備えた排気管43が接続されている。これら真空ポンプ41及び圧力調整手段42は排気手段を構成している。反応容器2の周囲には、反応容器2内を加熱するための加熱手段であるヒータ44を備えた加熱炉45が設けられている。前記ヒータ44としては、コンタミネーションがなく昇降温特性が優れたカーボンワイヤー等を用いることが好ましい。
更に、成膜装置1は、既述のヒータ44や圧力調整手段42及び各ガス供給部3a、3bの動作を制御する制御部5を備えている。制御部5は例えば図示しないCPUとプログラムとを備えたコンピュータからなり、プログラムには当該成膜装置1によってウエハWへの成膜処理を行うのに必要な動作、例えばヒータ44の温度コントロールや反応容器2内の圧力調整及び反応容器2への処理ガスや酸化ガスの供給量調整に係る制御等についてのステップ(命令)群が組まれている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリカード等の記憶媒体に格納され、そこからコンピュータにインストールされる。
次に成膜装置1を用いて実施する成膜方法の一例について、図3に示したシーケンス図を参照しながら説明する。シーケンス図中、図3(a)は反応容器2内の処理温度を示し、図3(b)は反応容器2への原料ガス(AlCl)の供給タイミング、図3(c)は酸化ガス(水蒸気)の供給タイミング、図3(d)はパージガス(窒素ガス)の供給タイミングを示している。
先ず被処理体であるウエハW、例えば図4(a)に示すようなP型シリコン基板110上にソース電極101やドレイン電極102が形成され、その上にトンネル酸化膜103となるシリコン酸化膜103aや、チャージトラップ層104となるシリコン窒化膜104aが積層されたウエハWを所定枚数ウエハボート25に保持させ、次いで図3(a)に示すように、例えば温度が150℃程度に維持された反応容器2内に、図示しないボートエレベータを上昇させることによりウエハボート25を搬入(ロード)する。
続いて反応容器2の下端開口部21が蓋体23により塞がれたら、図3(a)に示すように、反応容器2内の温度を例えば200℃/分の昇温速度で、例えば800℃以上、1,000℃以下の温度範囲の例えば950℃まで昇温させると共に、排気口4を通じて反応容器2内を真空ポンプ41により例えば13.3Pa(0.1torr)〜1.3×10Pa(10torr)以下の範囲内の例えば33.3Pa(0.25Torr)程度の圧力となるように排気する。
反応容器2内の昇温及び排気を完了したら、真空ポンプ41の稼動を継続しながらウエハW上に成膜を行う工程に移る。先ず図3(b)に示すように、AlClガスを例えば30sccm〜300sccmの範囲の例えば30sccmの流量で反応容器2内に連続的に供給する。このとき、AlClガスは第1のガスインジェクタ31中を上昇しながら昇温され、ウエハボート25に棚状に保持された各ウエハWに対応した高さ位置にて、各ガス供給孔311からウエハWに向けて吐出される。
この第1のガスインジェクタからのAlClガスの供給と並行して、第2のガスインジェクタからは、図3(c)に示すように例えば濃度が90体積%の水蒸気を、20〜500sccmの範囲の例えば50sccmの流量にて連続的に供給する。このとき、水蒸気についても第2のガスインジェクタ34中を上昇しながら昇温され、ウエハボート25に棚状に保持された各ウエハWに対応した高さ位置にて、各ガス供給孔341からウエハWに向けて吐出される。
このように反応容器2内にAlClガスと水蒸気とを同時に連続供給すると、これらのガスは以下の(1)式に示す反応式に基づいて反応しAl23が形成される。
2AlCl+3HO→Al+6HCl …(1)
ここでAlの形成される反応容器2内の雰囲気は、既述のように800℃〜1,000℃の範囲の950℃の温度雰囲気となっているが、当該温度範囲においてはAlClガスの蒸気圧が高く、反応容器2内にAlClガスを単独で供給すると、AlClガスはウエハW上に殆ど吸着することなく反応容器2から排出されてしまう。
そこで、本実施の形態に係る成膜装置1においては、既述のようにウエハボート25の上端部まで立ち上げられ、このウエハボート25に棚状に保持された各ウエハWに対応した高さ位置に設けられたガス供給孔311よりAlClガスを供給する一方で、このAlClガスの供給と同時に酸化ガスである水蒸気を供給している。このようにAlClガスと水蒸気とを同時に供給することにより、(1)式に示した反応をウエハWの表面近傍で進行させ、生成されたAlをウエハW表面に堆積させることにより、ウエハW表面にアルミナ膜を成膜することが可能となる。
また(1)式に示したAlClガスと水蒸気との反応は反応速度が極めて大きいため、これらのガスは接触すると速やかにAlを形成する。このため、例えば隣り合うように並べた2つのガスインジェクタ31、34からAlClガス、水蒸気を供給するように構成すると、ガス供給孔311、341から供給されたこれらのガスがインジェクタ31、34近傍の反応容器2の壁面やウエハWの周縁部近傍にて直ちに反応してしまうため、ウエハWの全面にアルミナ膜を成膜することができなくなってしまう。
そこで本実施の形態に係る成膜装置2では、既述のように第1のインジェクタのガス供給孔311、第2のガスインジェクタ34のガス供給孔341が、ウエハボート25上のウエハWの直径方向に対向するように設けられている。このため、ガス供給孔311、341から供給された各々のガスをウエハW径方向に拡散させてながら接触させることができるので、ウエハWの径方向に均一なアルミナ膜を成膜することができる。また、この成膜期間中は、モータMによりウエハボート25を回転させているため、ウエハWの周方向においても均一なアルミナ膜を成膜することができる。
また本実施の形態に係る成膜装置1においては、各ガス供給孔311、341をウエハWの直径方向に対向させることにより、均一な膜厚のアルミナ膜を成膜する既述の装置構成に加え、プロセス条件においても均一な膜厚のアルミナ膜を成膜するための調整が行われている。即ち、(1)式に示した反応においては、AlClガス、水蒸気のいずれか一方、または双方の供給量が多過ぎると反応が急激に右側へ進行してしまい、各ガスがウエハW表面に十分に行き渡る前にAlが形成され、やはり不均一な膜厚の(面内均一性の悪い)アルミナ膜が形成されてしまう。一方、これらのガスの供給量比をバランス良く供給し、ウエハW表面に均一にアルミナ膜が形成されるようにしても、これらのガスの供給量が少なすぎる場合には、成膜時間が長くなってしまうというデメリットがある。
そこで本実施の形態に係る成膜装置1は、後述の実施例にて実験結果を示すように、(イ)AlClガスの供給量を例えば30sccm〜300sccmの範囲内の例えば30sccm、(ロ)前記AlClガスの供給量に対する水蒸気の供給量比を例えば1.3〜1.7の範囲内の例えば1.7(50sccm)に設定することにより、現実的な成膜時間の範囲内で均一なアルミナ膜を成膜できるように設定されている。
また当該成膜装置1においては800℃〜1,000℃の範囲の950℃という比較的高い温度にて成膜を行うところ、このような温度範囲ではオゾンガス等の不安定な酸化ガスは酸化ガスとしての活性を失ってしまう傾向がある。これに対して本実施の形態に係る成膜装置1においては、酸化ガスとして水蒸気を採用しており、水蒸気は上述の温度範囲においても安定的な酸化力を有しているため、TMAを用いた従来法と遜色のない成膜速度にてアルミナ膜105aを成膜することができる。
このような装置条件、プロセス条件の下、AlClガスと水蒸気とを例えば30分間連続供給することによって、図4(b)に示すようにウエハWの表面にはアルミナ膜105aが成膜される。ここでTMAを用いた従来の成膜法の成膜温度300℃と比較して温度の高い、800℃〜1,000℃の範囲の950℃という温度にて成膜を行うため、成膜中にアルミナ膜105aが結晶化し、この結晶化したアルミナ膜105aには比較的多くのα-Al23が含まれていることを発明者らは把握している。この結果、例えば全てがγ-Al23で構成されているアルミナ膜に比べてシリコン窒化膜104aに対する当該アルミナ膜105a全体の平均的なバンドギャップが高くなるので、リーク電流を低減することが可能となる。
また800℃〜1,000℃の範囲内の温度は、アルミナ膜105aの下層側に積層されている部分(各電極101、102の形成されたP型シリコン基板110やシリコン酸化膜103a、シリコン窒化膜104a)に与える熱履歴の影響が比較的小さくて済む。
成膜装置1の動作説明に戻ると、以上に説明した工程によりシリコン窒化膜104a上にアルミナ膜105aが形成されたら、図3(b)、図3(c)に示すように反応容器2内へのAlClガス及び水蒸気の供給を停止して、図3(d)に示すように不活性ガス供給路39よりパージガス(窒素ガス)を供給しながら反応容器2内の圧力を大気圧に戻すと共に、反応容器2内の温度を例えば200℃まで下降させた後、パージガスの供給を停止してウエハボート25を反応容器2から搬出(アンロード)する。以上に説明した一連の工程は、制御部5に格納されたプロセスレシピに基づいて、ヒータ44、圧力調整手段42及び各ガス供給部3a、3b等を制御して行われる。
反応容器2から搬出されたウエハWには、その後、図4(c)に示すようにアルミナ膜105aの上にコントロールゲート106となるポリシリコン膜106aが形成される。しかる後、これらの積層構造体からフォトリソグラフィ等によりトンネル酸化膜103〜コントロールゲート106のゲート構造を得て、更に各電極101、102及びコントロールゲート106に信号線を接続することにより、図1に示す構造を有するフラッシュメモリのメモリ素子100が形成される。
以上に説明した実施の形態に係る成膜装置1によれば以下の効果がある。原料ガスであるAlClガスと、酸化ガスである水蒸気とを800℃〜1,000℃の温度にて反応させることにより、α-Al23を含むアルミナ膜105aを成膜している。また、上述の温度範囲においては、塩化アルミニウムと水蒸気との反応速度が極めて大きいが、当該成膜装置1の反応容器2内にて上下に並べたウエハW群の横から各ウエハWに対して原料ガスと酸化ガスとを別々のガスインジェクタ31、34により供給しているため、ウエハWの中央領域まで両方のガスが別々に行き渡って反応するので面内均一性の高いアルミナ膜105aを得ることができる。
なお、本実施の形態に係る成膜装置1により成膜されるアルミナ膜105aも、実施の形態中に示したMONOS型のフラッシュメモリのブロッキング絶縁膜105として利用される場合だけに限定されない。例えば、DRAMのキャパシタの絶縁膜にも本実施の形態に係る成膜装置1により成膜されたアルミナ膜105は適用することができる。
(実験1)
図2に示した成膜装置1を用い、AlClガスと水蒸気とを反応させてウエハW上にアルミナ膜105aを成膜し、その結晶構造を調べた。また比較例として、TMAを用いる従来法により成膜したアルミナ膜105aをアニール処理した後、その結晶構造を調べた。アルミナ膜105aの成膜は、以下に示す(実施例1)については原料ガス及び酸化ガスを連続供給するCVD法により行い、(比較例1)については原料ガスと酸化ガスとを交互に繰り返し供給するMLD法により行った。
A.実験条件
(実施例1)
原料ガス:AlClガス
酸化ガス:水蒸気
プロセス温度:950℃
プロセス圧力:33.3Pa(0.25Torr)
原料ガス供給量:30sccm
酸化ガス供給量:50sccm
成膜時間:30分

(比較例1)
成膜条件
原料ガス:TMAガス
酸化ガス:オゾンガス
プロセス温度:300℃
プロセス圧力:
TMAガス 40.0Pa(0.3Torr)
オゾンガス 133.3Pa(1.0Torr)
原料ガス供給量:300sccm
酸化ガス供給量:200g/Nm(酸素ガス10slm中の濃度)
成膜時間:
TMAガス 15秒/cycle
オゾンガス 20秒/cycle
合計200cycle
アニール条件
プロセス雰囲気:窒素雰囲気
プロセス温度:1,000℃
プロセス圧力:1.01×10Pa(大気圧)
アニール時間:60分
B.実験結果
図5は(実施例1)、(比較例1)において得られたアルミナ膜105aに含まれるAl23の結晶構造の組成比をまとめたグラフである。グラフの左側に示したカラムは(実施例1)にて得られたアルミナ膜105aの組成比を示し、右側に示したカラムは(比較例1)の組成比を示している。各アルミナ膜の組成比は、TEM(Transmission Electron Microscope)より取得した画像データを解析することにより求めた。
(実施例1)の結果によれば、AlClガスと水蒸気とを950℃のプロセス温度にて反応させることにより得られたアルミナ膜105aには、θ相、α相、η相、γ相の4種類の結晶構造が含まれていた。これらのうち、本実施の形態の目的物質であるα-Al23(α相)は、θ相、η相に次いで3番目に多く、アルミナ膜105a全体に対して18%含まれていた。
これに対して、TMAを用いた成膜とその後のアニールとを組み合わせた(比較例1)にて得られたアルミナ膜105aでは、χ相やθ相をはじめとする6種類の結晶構造が含まれていたが、目的物質であるα-Al23(α相)は、これら6種類の結晶構造の中で最も少なく、全体の3%しか含まれていなかった。
これらの結果から、(実施例1)、(比較例1)夫々の実験にて得られたアルミナ膜105aを比較すると、AlClガスと水蒸気とから成膜した(実施例1)にて得られたアルミナ膜105aには、(比較例1)の約6倍ものα-Al23が含まれている。この結果(実施例1)にて成膜されたアルミナ膜105aの平均的なバンドギャップが(比較例1)の場合に比較して高くなり、当該(実施例1)のアルミナ膜105aを用いてMONOS型のフラッシュメモリを構成したときのリーク電流を低減することが可能となることが分かる。
(実験2)
図2に示した成膜装置1を用い、AlClガスと水蒸気とを反応させてアルミナ膜105aの成膜を行う際に、AlClガスの供給量を固定して水蒸気の供給量を変化させ、成膜されたアルミナ膜の膜厚及び、ウエハWの中央部と周縁部との間の膜厚の均一性を調べた。
A.実験条件
原料ガス:AlClガス
酸化ガス:水蒸気
プロセス温度:950℃
プロセス圧力:33.3Pa(0.25Torr)
原料ガス供給量:30sccm
成膜時間:5分
(実施例2)
酸化ガス供給量(100体積%換算)
:40sccm
供給量比R(水蒸気供給量/AlClガス供給量)
:1.33
(実施例3)
酸化ガス供給量(100体積%換算)
:50sccm
供給量比R:1.67
(比較例2)
酸化ガス供給量(100体積%換算)
:25sccm
供給量比R:0.83
(比較例3)
酸化ガス供給量(100体積%換算)
:75sccm
供給量比R:2.50
B.実験結果
図6は、(実験2)における各実施例、比較例にて得られたアルミナ膜105aのウエハW上の所定領域における膜厚をプロットした結果を示している。図中、横軸は成膜中の水蒸気供給量を示し、縦軸は成膜されたアルミナ膜105aの膜厚を示している。黒塗りの丸「●」のプロットは、これら実施例及び比較例にて得られたアルミナ膜105aのウエハW周縁部24点の計測点における膜厚の平均値であり、黒塗りの三角「▲」のプロットは、ウエハW中央部の計測点25点の平均膜厚である。また黒塗りのひし形「◆」のプロットは、これらウエハW全体の計測点49点の平均膜厚である。なお破線の囲みは、同一の実施例、比較例にて得られた計測結果であることを示している。
図6によれば、(実施例2、3)及び(比較例2、3)のいずれにおいてもウエハW周縁部の膜厚が中央部の膜厚よりも厚くなる傾向が現れている。これは、図2に示したように各ガスインジェクタ31、34からはAlガスや水蒸気がウエハWの周縁部へと供給されるため、ガスの供給部付近で先に成膜が進行し、供給部から遠いウエハW中央部と比較して膜厚が厚くなったものと考えられる。
しかしながら(実施例2)(供給量比R=1.33)、(実施例3)(R=1.67)においては、ウエハW周縁部と中央部との膜厚の差がおよそ5nm程度であるのに対して、水蒸気の供給量が最も多い(比較例2)(R=2.50)においては、この膜厚差がおよそ20nmに4倍も広がっている。これは、水蒸気の供給されるガスインジェクタ34付近に過剰の水蒸気が供給されたことにより、当該インジェクタ34に近いウエハW周縁部において(1)式の反応が急激に進行する一方で、ウエハW中央部に行き渡るべきAlClガスまでも当該周縁部にて消費されてしまったためであると考えられる。このことは、ウエハW全体の膜厚を(実施例3)と(比較例3)との間で比較すると、さほど大きな差は見られず、ウエハW上に成膜されたアルミナの総量には大きな差がないことからも説明できる。
一方、水蒸気の供給量の少ない(比較例1)(R=0.83)においては、(比較例3)のようなウエハW周縁部と中央部との間の顕著な膜厚の差は見られないが、ウエハW全体の膜厚が実施例2の半分以下となってしまい成膜速度が遅い。これは、AlClガスの供給量に対して水蒸気の供給量が少なすぎるため、(1)式の反応が右側へ進みにくいためであると考えられる。以上のことから、成膜速度が遅すぎず、且つ膜厚の面内均一性を良好にするためには、AlClガスの供給量を例えば30sccm〜50sccmの範囲内の30sccmとした場合に、AlClガスの供給量に対する水蒸気の供給量比を例えば1.3〜1.7の範囲内に調整することが適切であるといえる。
本発明のアルミナ膜が用いられるMONOS型メモリ素子の構造を示す断面図である。 本発明の成膜方法を実施する成膜装置を示す縦断断面図である。 前記成膜装置の作用を示すシーケンス図である。 前記MONOS型メモリ素子の製造過程を示す縦断面図である。 異なる原料ガスを用いて成膜したアルミナ膜の結晶構造の組成比を示す特性図である。 前記成膜装置のプロセス条件を変化させて成膜したアルミナ膜の膜厚の変化を示す特性図である。
符号の説明
MFC1〜MFC4
マスフローコントローラ
V1〜V7 バルブ
W ウエハ
1 成膜装置
2 反応容器
3a 原料ガス供給部
3b ガス供給部
4 排気口
5 制御部
21 開口部
22 フランジ
23 蓋体
24 回転軸
25 ウエハボート
26 支柱
27 保温ユニット
30 窒素ガス供給源
31 第1のガスインジェクタ
32 原料ガス供給路
33 原料ソース供給源
34 第2のガスインジェクタ
35 酸化ガス供給路
36 水蒸気発生装置
37 水素ガス供給源
38 酸素ガス供給源
39 不活性ガス供給路
41 真空ポンプ
42 圧力調整手段
43 排気管
44 ヒータ
45 加熱炉
100 メモリ素子
101 ソース電極
102 ドレイン電極
103 トンネル酸化膜
103a シリコン酸化膜
104 チャージトラップ層
104a シリコン窒化膜
105 ブロッキング絶縁膜
105a アルミナ膜
106 コントロールゲート
106a ポリシリコン膜
110 シリコン基板
311、341
ガス供給孔

Claims (12)

  1. 半導体装置を製造するための基板にα-アルミナを含むアルミナ膜を成膜する半導体製造装置であって、
    縦型の反応容器と、
    複数の基板を棚状に保持して前記縦型の反応容器内に搬入するための基板保持具と、
    前記反応容器内にて基板保持具に保持されている各基板に対応する高さ位置に、塩化アルミニウムを含む原料ガスを供給するためのガス供給孔を設けた第1のガス供給手段と、
    前記反応容器内にて基板保持具に保持されている各基板に対応する高さ位置に、水蒸気を含む酸化ガスを供給するためのガス供給孔を設けた第2のガス供給手段と、
    前記反応容器の周囲を囲むように設けられた加熱手段と、
    前記反応容器内を排気するための排気手段と、
    この加熱手段により処理雰囲気を800℃以上、1,000℃以下の範囲内の温度に加熱し、前記原料ガスと酸化ガスとを同時に供給して反応させるための制御信号を出力する制御部と、を備えたことを特徴とする半導体製造装置。
  2. 前記第1のガス供給手段及び第2のガス供給手段は、各々前記反応容器の下部から基板保持部の上端部に亘って立ち上げられた配管により構成され、前記ガス供給孔は、当該配管の管壁部に、前記基板保持具に保持された基板に向けて開口していることを特徴とする請求項1に記載の半導体製造装置。
  3. 前記原料ガスに含まれる塩化アルミニウムの供給量が30cc/分以上、300cc/分以下の範囲内であることを特徴とする請求項1または2に記載の半導体製造装置。
  4. 前記原料ガスに含まれる塩化アルミニウムの供給量に対する前記酸化ガスに含まれる水蒸気の供給量比が1.3以上、1.7以下の範囲内であることを特徴とする請求項3に記載の半導体製造装置。
  5. 前記アルミナ膜は、高誘電体からなる絶縁膜として用いられるものであることを特徴とする請求項1ないし4のいずれか一つに記載の半導体製造装置。
  6. 前記アルミナ膜は、トンネル酸化膜、チャージトラップ層、ブロッキング絶縁膜及びコントロールゲートが下からこの順に積層されたメモリ素子において、前記ブロッキング絶縁膜として用いられることを特徴とする請求項5に記載の半導体製造装置。
  7. 半導体装置を製造するための基板にα-アルミナを含むアルミナ膜を成膜する半導体製造方法であって、
    複数の基板を棚状に保持して縦型の反応容器内にこれらの基板を搬入する工程と、
    前記反応容器内の処理雰囲気を800℃以上、1,000℃以下の温度に加熱する工程と、
    前記反応容器内を排気しながら、前記反応容器内にて基板保持具に保持されている各基板に対応する高さ位置に設けられたガス供給孔を有する第1のガス供給手段及び第2のガス供給手段を用いて、第1のガス供給手段のガス供給孔からは塩化アルミニウムを含む原料ガスを供給すると共に、第2のガス供給手段のガス供給孔からは水蒸気を含む酸化ガスを供給し、これら原料ガスと酸化ガスとを反応させて各基板の表面にアルミナ膜を成膜する工程と、を含むことを特徴とする半導体製造方法。
  8. 前記原料ガスに含まれる塩化アルミニウムの供給量が30cc/分以上、300cc/分以下の範囲内であることを特徴とする請求項7に記載の半導体製造方法。
  9. 前記原料ガスに含まれる塩化アルミニウムの供給量に対する前記酸化ガスに含まれる水蒸気の供給量比が1.3以上、1.7以下の範囲内であることを特徴とする請求項8に記載の半導体製造方法。
  10. 前記アルミナ膜は、高誘電体からなる絶縁膜として用いられるものであることを特徴とする請求項7ないし9のいずれか一つに記載の半導体製造方法。
  11. 前記アルミナ膜は、トンネル酸化膜、チャージトラップ層、ブロッキング絶縁膜及びコントロールゲートが下からこの順に積層されたメモリ素子において、前記ブロッキング絶縁膜として用いられることを特徴とする請求項10に記載の半導体製造方法。
  12. アルミナ膜の成膜装置に用いられ、コンピュータ上で動作するプログラムを格納した記憶媒体であって、
    前記プログラムは請求項7ないし11のいずれか一つに記載された半導体製造方法を実行するためにステップが組まれていることを特徴とする記憶媒体。
JP2007272918A 2007-10-19 2007-10-19 半導体製造装置、半導体製造方法及び記憶媒体 Expired - Fee Related JP4905315B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007272918A JP4905315B2 (ja) 2007-10-19 2007-10-19 半導体製造装置、半導体製造方法及び記憶媒体
KR1020080102110A KR101533846B1 (ko) 2007-10-19 2008-10-17 반도체 디바이스 제조 장치 및 반도체 디바이스 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272918A JP4905315B2 (ja) 2007-10-19 2007-10-19 半導体製造装置、半導体製造方法及び記憶媒体

Publications (2)

Publication Number Publication Date
JP2009105087A true JP2009105087A (ja) 2009-05-14
JP4905315B2 JP4905315B2 (ja) 2012-03-28

Family

ID=40706512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272918A Expired - Fee Related JP4905315B2 (ja) 2007-10-19 2007-10-19 半導体製造装置、半導体製造方法及び記憶媒体

Country Status (2)

Country Link
JP (1) JP4905315B2 (ja)
KR (1) KR101533846B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232189B2 (en) 2009-12-26 2012-07-31 Canon Anelva Corporation Dielectric film manufacturing method
US20160208382A1 (en) * 2015-01-21 2016-07-21 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272399A (en) * 1975-12-13 1977-06-16 Fujitsu Ltd Method and apparatus for growth of single crystals of al2o3 from gas p hase
JPS55113874A (en) * 1971-05-26 1980-09-02 Gen Electric High strength * high abrasion resistance coated super alloy product
JP2004296537A (ja) * 2003-03-25 2004-10-21 Rohm Co Ltd 成膜装置
JP2004292852A (ja) * 2003-03-25 2004-10-21 Denso Corp 薄膜成膜装置および方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776054B2 (ja) * 2000-02-04 2011-09-21 株式会社デンソー 原子層成長による薄膜形成方法
US7455918B2 (en) * 2004-03-12 2008-11-25 Kennametal Inc. Alumina coating, coated product and method of making the same
KR100841866B1 (ko) * 2005-02-17 2008-06-27 가부시키가이샤 히다치 고쿠사이 덴키 반도체 디바이스의 제조 방법 및 기판 처리 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113874A (en) * 1971-05-26 1980-09-02 Gen Electric High strength * high abrasion resistance coated super alloy product
JPS5272399A (en) * 1975-12-13 1977-06-16 Fujitsu Ltd Method and apparatus for growth of single crystals of al2o3 from gas p hase
JP2004296537A (ja) * 2003-03-25 2004-10-21 Rohm Co Ltd 成膜装置
JP2004292852A (ja) * 2003-03-25 2004-10-21 Denso Corp 薄膜成膜装置および方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232189B2 (en) 2009-12-26 2012-07-31 Canon Anelva Corporation Dielectric film manufacturing method
US20160208382A1 (en) * 2015-01-21 2016-07-21 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
KR101533846B1 (ko) 2015-07-03
JP4905315B2 (ja) 2012-03-28
KR20090042159A (ko) 2009-04-29

Similar Documents

Publication Publication Date Title
US8202809B2 (en) Method of manufacturing semiconductor device, method of processing substrate, and substrate processing apparatus
US9748104B2 (en) Method of depositing film
US8415258B2 (en) Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
JP5959307B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
TWI464802B (zh) 藉由化學氣相沉積之低溫介電膜形成
US9039838B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
US8367557B2 (en) Method of forming an insulation film having low impurity concentrations
JP6196833B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP5661262B2 (ja) 成膜方法および成膜装置
JP2013102130A (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6529348B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6147480B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US20130239893A1 (en) Stabilization method of film forming apparatus and film forming apparatus
JP2011243620A (ja) 成膜方法および成膜装置
KR102396170B1 (ko) 반도체 장치의 제조 방법 및 성막 장치
US9552981B2 (en) Method and apparatus for forming metal oxide film
JP2009132961A (ja) 成膜方法、成膜装置及び記憶媒体
TW200402790A (en) Method of oxidizing member to be treated
JP5770892B2 (ja) 半導体装置の製造方法、基板処理方法および基板処理装置
JP6291297B2 (ja) 成膜方法、成膜装置及び記憶媒体
JP4905315B2 (ja) 半導体製造装置、半導体製造方法及び記憶媒体
JP2009088236A (ja) 成膜方法、成膜装置及び記憶媒体
JP2005159316A (ja) 半導体装置の製造方法及び成膜装置並びに記憶媒体
JP2016065287A (ja) 半導体デバイスの製造方法、基板処理装置およびプログラム
JP2019102780A (ja) 半導体装置の製造方法及び成膜装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees