JP2009093353A - Rfidタグ - Google Patents

Rfidタグ Download PDF

Info

Publication number
JP2009093353A
JP2009093353A JP2007262290A JP2007262290A JP2009093353A JP 2009093353 A JP2009093353 A JP 2009093353A JP 2007262290 A JP2007262290 A JP 2007262290A JP 2007262290 A JP2007262290 A JP 2007262290A JP 2009093353 A JP2009093353 A JP 2009093353A
Authority
JP
Japan
Prior art keywords
connection electrode
antenna
circuit
conductor
rfid tag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007262290A
Other languages
English (en)
Other versions
JP5103127B2 (ja
Inventor
Takeshi Takei
健 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007262290A priority Critical patent/JP5103127B2/ja
Priority to US12/285,303 priority patent/US7902986B2/en
Publication of JP2009093353A publication Critical patent/JP2009093353A/ja
Application granted granted Critical
Publication of JP5103127B2 publication Critical patent/JP5103127B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

【課題】アンテナと半導体チップの物理的結合時に発生する容量成分の製造時の変動を抑えること。
【解決手段】アンテナが一対の接続電極とこれらの各接続電極の引き出し導体を具備し、RFIDチップが一対の接続電極を具備し、アンテナの接続電極が対応するRFIDの接続電極に平面的に包含され、引き出し導体を対向方向と逆向きに引き出す。
【選択図】図1

Description

本発明は、RFIDタグに係り、特に、基地局が発射した電磁波が不特定物体あるいは端末局に散乱されて再び基地局に到来し、該到来電磁波を基地局が受信し、該物体あるいは端末局固有の情報を識別するRF−IDを用いた無線通信システムに用いられる、端末局の構成に関する。
散乱波を直接搬送波として用いるシステムでは、方向分割二重(ディレクション・デバイド・デュプレックス:DDD)とでも呼ぶことができる従来技術が知られており、この技術ではサーキュレータを用いて基地局から出て行く電磁波と基地局に入ってくる電磁波の方向性の違いを用いて等価的に送信波と受信波を二重化している。この技術については、非特許文献1に詳細に述べられている。
また、特許文献1には、ICチップとアンテナコイルを備えた半導体装置における、アンテナ側のパッド部と半導体側のパッド部の接続法が述べられている。
また、特許文献2には、アンテナパタンと回路チップとを備えたRFIDタグにおいて、先端が三角形状のパッドを採用した電気的な接続構造が述べられている。
さらに、特許文献3には、ICチップに設けられている一対の電極を、基材の長手方向にほぼ垂直に配置したものが開示されている。
また、特許文献4には、ダイポールアンテナの長さが共通の無線タグを用意し、使用時にはこの無線タグのダイポールアンテナの長さを、無線タグを取り付ける物質を伝搬する電波の波長に合うように調整できるようにしたものが開示されている。
また、特許文献5には、無線通信用の両面電極チップと送受信アンテナとを備えた半導体装置において、少なくとも、整流回路部及びクロック回路部を含むアナログ回路部の内、導電性バンプとの間に電気的不要結合が生じ得る領域を選択的に除く領域に、導電性バンプを形成したものが開示されている。
特開2000−99673号公報 特開2006−268090号公報 特開2000−200328号公報 特開2006−270766号公報 特開2005−347635号公報 Klaus Finkenzellar著、RFIDハンドブック第2版、ソフト工学研究所訳、日刊工業新聞社刊、2004年5月、45頁
不特定多数の物体を遠隔で識別する技術は、物流の量的増加および流通速度の高速化に伴い、近年富にその有用性が期待されている。このような、大量且つ高速に物体を識別するためには、それら複数の物体の位置関係が特定できないために、該物体に浸潤する情報伝達手段の適用が必要不可欠になる。このような用途に対しては、無線技術が適しており特に電磁波を用いる物体の検出、同物体の有する情報の伝達が、例えば、無線タグシステムとして既に実現に供している。しかしながら、物流の高速化・大容量化に伴い、該電磁波を用いた物体検出・情報伝達の能力、換言すれば、同システムにおいて電磁波の到達する距離を向上させることが、普遍的社会要請となっている。電磁波は伝達距離と共にその距離の2〜3乗程度に比例して減衰するため、該伝達距離が増加すると基地局から放射された電磁波が再び該基地局に到来する際にはその電力が著しく減少しており、種々の擾乱因子に対して極めて耐性の低いものとなっている。このようなシステムでは基地局から到来した電磁波のエネルギーをなるべく変換損少なく基地局へと再放射させるために、一般には識別すべき物体からの散乱電磁界そのものを情報伝送のための搬送波として使う方法が一般的である。何らかの手段で新たな搬送波を生成するためには電磁波の高周波電力を何らかの手段のための電源電力に変換する必要が生じ、その際は必ず変換損が現実には生じてしまう。電磁波を用いた無線伝送では搬送波に与えるべき電力で電磁波の到達距離が制限ざれてしまうので、搬送波生成の電力効率を最大にすることが、システムにおける電磁波の到達距離、換言すればシステムの適用限界を最大にすることに繋がる。
非特許文献1に開示された従来技術では、サーキュレータを通過する逆方向の電磁波が互いに独立であることを用いて、基地局は送信波と受信波を区別しているので、電磁波は放射界を利用する事となる。放射界は、他の二つの界である誘導界と近傍界に比べて遠くまで電力を伝達することが出来るが、電磁波のエネルギーを授受するアンテナの寸法が波長程度あることが望ましい。
このように、基地局から送出された送信電力は端末局により一種の振幅変調を受け、該振幅変調によって新たに発生する側帯波の電力を基地局は認識して、端末局の有無を含めた情報を感知する。このため、端末局の振幅変調の変調度を大きく取ることが、基地局と端末局の通信距離を拡大するためには極めて重要である。振幅変調の変調度は、端末局のアンテナに対する高周波的負荷の変化を大きくすることで、大きくすることができる。このために、端末局のアンテナと高周波回路のインピーダンス整合を十分良好にする必要がある。識別すべき対象が多量にある場合、端末局の数も多量となり、具体的な該端末局の製造を考えれば、量産可能で且つ、該アンテナと高周波回路の良好なインピーダンス整合を可能とするアンテナと高周波回路あるいは同高周波回路を含む半導体チップとを、結合する構造を見出す必要がある。
一般に、印刷技術を用いて外部アンテナおよび半導体チップを寸法精度良く量産する技術は、既に確立されている。しかしながら、外部アンテナと半導体チップあるいは高周波回路を寸法良く結合する量産手法は、印刷技術が使えないため、あるいは機械的アライアンスを取る必要があるために、現状確立されているとは言えない。
例えば、特許文献1には、アナログ回路やデジタル回路が形成されたICチップの周辺部に半導体側のパッド部(バンプ)が設けられ、この半導体側のパッド部に対して面積の大きなアンテナ側のアンテナパッド(接続導体)を接続する方法(図1ないし図8)や、アンテナ側のリード端子の先細部(接続導体)を半導体側のパッド部に接続する方法(図16ないし図18)などが述べられている。しかし、これらの接続法では、接続導体が半導体チップ内に形成されるアナログ回路やデジタル回路と対向しないとは保障できない。特に、半導体チップ側の接続導体からみて、半導体回路が構成されるべき半導体チップ中心部への、アンテナ側の接続導体の進入が抑制されていない。
RFIDタグは、通常、半導体チップに比較してアンテナ側のサイズが大きいため、アンテナの最小寸法を基準として機械的アライアンスなどが採用されている。しかし、今後、RFIDタグのより一層の高機能化やコスト低減の要求に応えるために、半導体チップ内での回路の集積化は今後さらに進むと予想される。その場合、アンテナ側を優先した接続方法では、アンテナ側の接続導体が半導体チップ内のアナログ回路やデジタル回路と対向する事態の発生を回避することは、より困難に成り、この問題が深刻になってくると考えられる。
特許文献2ないし特許文献4に開示された接続構造も、特許文献1に開示されたものと同様な構成であり、同様な課題を有している。
従って、極めて高い寸法精度で、アンテナと半導体チップあるいは高周波回路を結合できないために、十分にアンテナと半導体チッブあるいは高周波回路間の良好なインピーダンス整合状態を量産工程で歩留まり良く実現できないといった問題があった。
また、半導体チップは一体の真性半導体の上に形成されたアース電位を有する不純物半導体の上に積層構造で形成されるために、一般に半導体チップの上に形成される回路は不平衡回路である。また、自由空間を伝わってRFIDに到達する電磁波は平衡姿態である。このため、自由空間に存在する電磁波のエネルギーを効率よく半導体チップ上に形成された高周波回路に導くために、何処かで平衡−不平衡の変換を実現する構造を作り込まないと、平衡−不平衡のミスマッチングにより結果として、アンテナと半導体チッブあるいは高周波回路間の高効率な電力伝送が実現されないという問題が生じる。
特許文献2には、上記の通り、外部アンテナとRFIDチップの良好なインピーダンス整合状態を実現する接続を実現するための構造についての記述がある。しかし、平衡−不平衡のミスマッチングに起因する、外部アンテナとRFIDチップ間での高効率な電力伝送が妨げられる点についての配慮は無い。
特許文献5では、半導体チップのアナログ回路と対向面を持たないように、両面電極チップの両面にアンテナ結合用の導体である導電性パンプを形成している。特許文献5の構成では、不平衡回路であるチップのアース面に相当する結合用の導体の面積が大きくなる。
本発明の目的は、極めて高精度な機械的アライアンスが期待できない、量産工程において、歩留まり良く、十分にアンテナと半導体チッブあるいは高周波回路間の良好なインピーダンス整合状態を実現する手段を提供することにある。
更に、本発明の他の目的は、そのような、アンテナと半導体チッブあるいは高周波回路間の良好なインピーダンス整合状態を実現できる、換言すれば、基地局と端末局の距離を比較的大きく取れるRFIDシステムに好適なRFIDタグの新たな構造を提供することにある。
更に、本発明の他の目的は、端末局の数が大きい場合でも、大量の端末局を良好な性能を維持したまま歩留まり良く製造可能とするRFIDタグを提供することにある。
本発明の代表的なものの一例を示せば以下の通りである。即ち、本発明のRFIDタグは、RFIDチップと外部アンテナで構成されて成り、前記外部アンテナが一対の接続電極と該各接続電極の引き出し導体とを具備して成り、前記RFIDチップが一対の接続電極を具備して成り、前記外部アンテナの前記各接続電極の平面形状は、各々対応する前記RFIDチップの接続電極の平面形状に包含されており、前記アンテナの引き出し導体の引き出し方向に対して直角な方向において、該引き出し導体の幅が、前記アンテナの接続電極の寸法より小さいことを特徴とする。
本発明によれば、アンテナと半導体チップの物理的結合時に発生する容量成分の製造時の変動を抑えることができるので、RFIDタグの量産時の製造歩留まりを向上することができる。
本発明の代表的な実施例によれば、RFIDタグは、RFIDチップと外部アンテナで構成されて成り、前記外部アンテナが一対の接続電極と該各接続電極の引き出し導体とを具備して成り、前記RFIDチップが一対の接続電極を具備して成り、前記外部アンテナの前記各接続電極の平面形状は、各々対応する前記RFIDチップの接続電極の平面形状に包含されており、前記アンテナの引き出し導体の引き出し方向に対して直角な方向において、該引き出し導体の幅が、前記アンテナの接続電極の寸法より小さい。これにより、RFIDタグの量産時の製造歩留まりを向上させ、アンテナと半導体チップの物理的結合時に発生する容量成分の製造時の変動を抑えることができる。
高精度な機械的アライアンスの保証が期待できない製造工程を念頭に置けば、このアライアンス精度の影響をなるべく受けない電気的結合構造を採用することが解決の一方法である。電気的結合は高周波領域では電磁界の空間的広がりのために、直接機械的に接触していなくとも電磁結合により、本来望ましくない導電体間でも生じる。従って、この不用ともいえる電磁結合を可能な限り排除できる、アンテナと半導体チッブあるいは高周波回路間の結合構造を提供すれば良いことになる。電磁界には、放射界、誘導界、静電界の3つの姿態があり、距離が近い場合には、静電界が主体的となる。従って、静電界による不要な電磁結合を極力回避する結合構造を考案すればよい。静電界はコンデンサの結合様式に他ならないから、面状に導体が対向する(オーバーラップする)部分を本来必要である部分を除き極力排除することにより本発明の課題は解決される。
アンテナと半導体チップのアライアンスの精度に期待できないのであれば、アンテナと半導体チップの位置合わせ誤差を吸収できる接続構造を実現すればよい。アンテナと半導体チップの結合は、その各々に接合電極を設けて、それをバンプ等の仲介導体によって電気的に結合する方法が採られる。この接続方法は、製造コストが安く大量生産に向くため、RFIDタグに広く適用されている。半導体チップには、多数の回路が集積されているため、アンテナの接続電極が面的に半導体チップの接続電極からはみ出ると、この半導体チップ上の回路とアンテナの接続電極が対向する可能性がある。このため、平面形状において、半導体チップの接続電極の面積をアンテナの接続電極の面積より大きくして、アンテナの接続電極が半導体チップの接続電極に面的に包含されるようにすればよい。
アンテナと半導体チップの接続電極間には容量が発生するので、この容量成分を抑制するためにもアンテナの接続電極にはこの接続電極の寸法より細い幅の引き出し導体を形成し、このアンテナの接続電極とアンテナ本体を電気的に結合する。幅の狭い導体線路は誘導性であり、且つ接続電極による容量と従属に接続されるので、この接続電極によって生じる容量成分を相殺する効果を有する。
アンテナと半導体チップのアライアンスに十分な精度が取れないために、引き出し導体の半導体チップの接続電極との対向面積が、このアライアンスの誤差により変化する。引き出し電極の引き出し方向を対向する反対方向とすれば、二つある引き出し導体のうち、一方の半導体チップの接続電極との対向面積が増えれば、他方の半導体チップの接続電極との対向面積が減るので、全体として、アンテナに直列に装荷される引き出し導体による容量成分は変わらず、アンテナと半導体チップのアライアンス精度に影響を受けにくい、このアンテナと半導体チップとの電気的結合が実現される。
本発明の他の代表的な実施例によれば、RFIDタグは、RFIDチップがアナログ回路とデジタル回路を備えて成り、外部アンテナが一対の接続電極と該各接続電極の引き出し導体とを具備して成り、前記外部アンテナの引き出し導体が、前記平面形状に垂直な面において、前記アナログ回路および前記デジタル回路の少なくとも1つの回路と対向しない。
半導体チップ内の回路レイアウト上の制限から、アンテナの引き出し導体が、半導体チップに形成されるどの回路とも対向することなくチップ外部に引き出せない場合もある。半導体チップがアナログ回路とデジタル回路を具備している場合は、デジタル回路の上部をこの引き出し導体を通過させるようにする。一般にデジタル回路はアナログ回路に比べて動作インピーダンスが高いため、回路を構成する伝送線路が高インピーダンスで線路の幅が狭く、この引き出し導体との対向により生じる容量が、より動作インピーダンスの低いアナログ回路の場合と比べて小さくできる。アナログ回路の中で通常最も動作インピーダンスを低くするべき回路は電源回路なので、アナログ回路の上部を引き出し電極を通過させる場合は電源回路の上部は避ける必要がある。
半導体チップは一体の真性半導体の上に形成されたアース電位を有する不純物半導体の上に積層構造で形成されるために、一般に半導体チップの上に形成される回路は不平衡回路である。また、自由空間を伝わってRFIDに到達する電磁波は平衡姿態である。このため、自由空間に存在する電磁波のエネルギーを効率よく半導体チップ上に形成された高周波回路に導くためには、何処かで平衡−不平衡の変換を実現する構造を作り込まないと、平衡−不平衡のミスマッチングにより結果として、アンテナと半導体チッブあるいは高周波回路間の高効率な電力伝送が実現されないという問題が生じる。この問題に対しては、外部アンテナの内部に平衡−不平衡変換構造を作り込むか、半導体チップとは別に平衡型の高密度実装高周波回路を設置し、該高密度実装高周波回路の内部に同平衡−不平衡変換構造を作り込むことでこの問題は解決される。
本発明の他の代表的な実施例によれば、RFIDタグは、RFIDチップがアナログ回路とデジタル回路を備えて成り、デジタル回路が、RFIDチップのアース電位に接続された接続電極の近傍に配置されている。
この場合は回路の中で、もっとも基準電位が安定しているのは、半導体チップのアース電位に接続されている接続電極である。また、デジタル回路とアナログ回路では回路が発生する周波数軸上の不要信号(雑音)は、一般に時系列的、パルス的信号を扱うデジタル回路のほうが多い。このため、デジタル回路は基準電位が安定している、半導体チップのアース電位に接続されている接続電極近傍に設置することが望ましい。
本発明の一実施例を、図1ないし図4を用いて説明する。図1は本発明の一実施例になるRFIDタグの構成例を示す平面図である。矩形の半導体チップ(RFIDチップ)1に、半導体チップ側のアース電位に接続されていないホット接続電極2、半導体チップ側のアース電位に接続されているアース接続電極3、アンテナ側ホット接続電極4、アンテナ側アース接続電極5、アンテナ側ホット引き出し導体6、アンテナ側アース引き出し導体7が形成されている。外部アンテナ側の各接続電極4、5の平面形状は、夫々対応する半導体チップ側の各接続電極2、3の平面形状に包含されている。すなわち、矩形の接続電極4のサイズは、矩形の接続電極2の平面形状内に包含されており、矩形の接続電極5のサイズは、矩形の接続電極3の平面形状内に包含されている。また、半導体チップ側の接続電極の平面形状内に外部アンテナ側の接続電極の平面形状が包含された状態で、各接続電極2、3上に外部アンテナ側の各接続電極5、6が電気的に接続されている。すなわち、接続電極2と4、接続電極3と5は、図1のX,Y軸方向の面内において、夫々半導体チップ側の電極の面積が外部アンテナ側の電極の面積よりも実質的に大きく、かつ、X,Y軸方向に直角なZ軸方向において両面が対向し、半導体チップ側の電極の面内に外部アンテナ側の電極が位置している。なお、本実施例では、接続電極2と4、接続電極3と5は、同じ矩形、換言すると相似形となっている。
アンテナの引き出し導体6,7のY方向における幅は、アンテナの接続電極4、5の幅より小さい。すなわち、アンテナ側ホット引き出し導体6のY軸方向の幅W6は接続電極4のサイズ(辺の長さW4)よりも小さく、アンテナ側アース引き出し導体7のY軸方向の幅W7は接続電極5のサイズ(辺の長さW5)よりも小さい。また、二つの引き出し導体6,7は対向して反対方向に、すなわち図1のX方向でかつ互いに逆向きに引き出されている。14はRFIDタグの高周波回路部であり、導体15(15a,15b)を介して接続電極2、3に接続されている。接続電極3は導体16を介してアースに接続されている。17は半導体チップ1上に実装される各部材の位置決め用のマーカーである。
図2は、図1に示したRFIDタグの要部の縦断面を概念的に示す図である。導体15は、誘電体層18に設けられたスルーホール内などに形成されている。RFIDチップ側の接続電極2、3とアンテナ側の接続電極4、5はパンプ構造19で電気的に接続されている。
図3は、図1に示したRFIDタグを用いたRFIDシステムの構成図である。80は基地局、90は端末局すなわちRFIDタグである。端末局90のアンテナ97は二つの引き出し導体6,7を介して半導体チップ1側の回路部(変調回路93、整流回路94、信号処理回路95)に接続されている。
基地局80から放射される電磁波の発生源である搬送波発生器84の出力がこのサーキュレータを介してアンテナ87より放射される。基地局80から放射された電磁波881は端末局90に到来するが、この端末局90が具備するアンテナ97によりこの電磁波のエネルギーが取り込まれ整流回路94にて直流電源に変換された後、この直流電源を用いて変調回路93およびMPU95により、このアンテナ98の負荷インピーダンスに変調が施され、振幅が変調された電磁波982として再到来する電磁波はアンテナ88よりサーキュレータ86に導かれる。この電磁波は、サーキュレータの非相反性のため搬送波発生器84へではなく受信回路85へと伝達される。サーキュレータを通過する逆方向の電磁波が互いに独立であることを用いて、基地局は送信波と受信波を区別しているので、電磁波は放射界を利用する事となる。放射界は、他の二つの界である誘導界と近傍界に比べて遠くまで電力を伝達することが出来る。
アンテナ97と半導体チッブ1は外の接続電極により電気的に結合し、引き出し電極によりアンテナ97が補足した外部空間から到来する電磁波のエネルギーを半導体チップ1に供給する。
このように、基地局80から送出された送信電力は端末局90により一種の振幅変調を受け、この振幅変調によって新たに発生する側帯波の電力を基地局80は認識して、端末局の有無を含めた情報を感知する。このため、端末局の振幅変調の変調度を大きく取ることが、基地局と端末局の通信距離を拡大するためには極めて重要である。振幅変調の変調度は、端末局のアンテナ97に対する高周波的負荷の変化を大きくすることで、大きくすることができる。このために、端末局のアンテナ97と高周波回路のインピーダンス整合を十分良好にする必要がある。
本実施例によれば、平面形状において、アンテナの接続導体4、5は半導体チップの接続導体2、3に面的に包含されている。また、アンテナの接続導体4、5を半導体チップ1上に実装する際には、位置決め用のマーカー17を利用して各部材の位置決めを簡単かつ正確に行なうことができる。仮に、このアンテナと半導体チップを結合するアライアンスに誤差が生じても、アンテナと半導体チップの接続電極の有効な対向面積は変わらない。また、アンテナの接続導体4、5は半導体チップの接続導体2、3に面的に包含されているので、アンテナの接続電極4、5が半導体チップの接続電極2、3の平面形状以外の領域にはみ出ることがない。そのため、アライアンスの誤差による、アンテナと半導体チップ接続時の容量の変動を抑制することができる。
この点に関して、図4および図5により説明を補足する。まず、図4は、本実施例のRFIDタグに相当し、図4の(a)に示す正規の状態では、接続電極2と4、接続電極3と5は、図1に示した状態にある。この状態では、図4の(b)に示すように、引き出し導体と半導体チップの接続電極との容量、および引き出し導体自身のインダクタンスのアンテナに対する装荷量は、引き出し導体6の側と引き出し導体7の側において差は無い。仮に、図4の(c)に示すように、アライアンスの誤差により、接続電極が全体として左側に偏って接続された場合、引き出し電極が対向して反対方向に引き出されているので、引き出し導体3の側では容量Cが小さくなり、逆にインダクタンスLが大きくなる。他方、引き出し導体4の側ではインダクタンスLが小さくなり、逆に容量Cが大きくなる。そのため、引き出し導体6の側と引き出し導体7の間のL,Cは実質的にほぼ一定である。これにより、アライアンスの誤差に起因する、引き出し導体と半導体チップの接続電極との容量変化、および引き出し導体自身のインダクタンスのこのアンテナに対する装荷量(ロード)の変化を抑制する効果がある。
一方、図5は、比較例として、図5の(a)に示すように、引き出し電極が同じ方向に引き出されている場合のRFIDタグに相当する。この状態では、図5の(b)に示すように、引き出し導体と半導体チップの接続電極との容量、および引き出し導体自身のインダクタンスのアンテナに対する装荷量は、引き出し導体3の側と引き出し導体4の側において差は無い。しかし、仮に、図5の(c)に示すように、アライアンスの誤差により、接続電極が全体として左側に偏って接続された場合、引き出し電極が同じ方向に引き出されているので、両方の引き出し導体に関して、容量Cが小さくなり、逆にインダクタンスLが大きくなる。すなわち、引き出し導体6の側と引き出し導体7の間のLとCが変化する。このように、引き出し電極が同じ方向に引き出されている場合、アライアンスの誤差に基づく容量変化、およびインダクタンスの変化を抑制できない。
以上述べた通り、本実施例によれば、アンテナと半導体チップの物理的結合時に発生する容量成分の製造時の変動を抑えることができるので、RFIDタグの量産時の製造歩留まりを向上することができる。その結果、アンテナから半導体チップ内の回路への電磁波のエネルギーの効率よい伝送を実現できるので、RFIDタグ使用費電力低減、すなわちRFIDタグ通信距離の向上を実現できる。
本発明の他の一実施例を、図6を用いて説明する。図6は本発明の他の一実施例になるRFIDタグ構成を示す平面図である。図1の実施例と異なる点は、接続導体がいずれも円形である、すなわち、半導体チップ側のアース電位に接続されていないホット接続電極52、半導体チップ側のアース電位に接続されているアース接続電極53、アンテナ側ホット接続電極54、アンテナ側アース接続電極55の各平面形状がいずれも円形となっている点である。アンテナ側アース引き出し導体7のY方向における幅W7は接続電極5のサイズ(円の直径D5)よりも小さい。同様に、アンテナ側ホット引き出し導体6のY方向における幅は接続電極4のサイズよりも小さい。
本実施例によれば、図1の実施例の効果に加えて、接続導体間を接続する際に用いられるハンダパンプ19に加わる応力を一様に分散しこのバンプとこの接続導体の接続確度を向上させる効果がある。
本発明の他の一実施例を、図7を用いて説明する。図7は本発明の他の一実施例になるRFIDタグ構成を示す平面図である。図1の実施例と異なる点は、接続導体がいずれも多角形の一つである六角形である、すなわち、半導体チップ側のアース電位に接続されていないホット接続電極62、半導体チップ側のアース電位に接続されているアース接続電極63、アンテナ側ホット接続電極64、アンテナ側アース接続電極65の各平面形状がいずれも正六角形となっている点である。アンテナ側ホット引き出し導体64のY軸方向における幅は接続電極62のサイズ(X,Y軸方向の幅)よりも小さく、同様に、アンテナ側アース引き出し導体65のY軸方向における幅は接続電極63のサイズよりも小さい。
本実施例の効果は、図1の実施例に比べて、接続導体間を接続する際に用いられるパンプ19に加わる応力を一様に分散する効果がある。また、図6の実施例に比べて、このバンプと接続導体の接続確度を向上させる効果は若干少なくなるものの、接続電極の外形が直線となるので、デジタル技術を用いた電極パタン生成の簡略化に効果がある。
なお、以上の述べた各実施例は、対を成す接続電極2と4、及び接続電極3と5が相似形となっていたが、本発明はこれに限定されるものではない。RFIDチップ側の接続電極の平面形状内に外部アンテナ側の接続電極の平面形状が包含されるという条件を満たすものであれば、例えば、RFIDチップ側の接続電極2、3を正方形とし、外部アンテナ側の接続電極4、5を正六角形としてもよい。
本発明の一実施例を、図8を用いて説明する。図8は本発明の一実施例になるRFIDタグの構成を示す平面図である。図1の実施例と異なる点は、半導体チップ側のアース電位に接続されているアース接続電極3、アンテナ側アース接続電極5、アンテナ側アース引き出し導体7の代わりに、半導体チップ側のアース電位に接続されていないホット接続電極2、アンテナ側ホット接続電極4、アンテナ側ホット引き出し導体6を具備する点である。(RFIDタグの回路部は省略)
本実施例の効果は、図1の実施例と同じであるが、アンテナおよび半導体チップ内の接続電極と結合する回路が平衡型である場合、このアンテナおよび半導体チップ内の回路の動作を安定化させる効果がある。半導体チップが高機能化し平衡型になった場合には、これが有効である。
本発明の他の一実施例を、図9を用いて説明する。図9は本発明の一実施例になるRFIDタグの構成を示す平面図である。図8の実施例と異なる点は、接続導体が円形である、半導体チップ側のアース電位に接続されていないホット接続電極72、アンテナ側ホット接続電極74となっている点である。
本実施例の効果は、図8実施例の効果に加えて、接続導体間を接続する際に用いられるハンダパンプ19に加わる応力を一様に分散しこのバンプとこの接続導体の接続確度を向上させる効果がある。
本発明の他の一実施例を、図10を用いて説明する。図10は本発明の一実施例になるRFIDタグの構成を示す平面図である。図1の実施例と異なる点は、接続導体が多角形の一つである六角形である、半導体チップ側のアース電位に接続されていないホット接続電極82、アンテナ側ホット接続電極84となっている点である。
本実施例の効果は、図8の実施例に比べて、接続導体間を接続する際に用いられるパンプ19に加わる応力を一様に分散する効果がある。また、図9の実施例に比べて、このバンプと接続導体の接続確度を向上させる効果は若干少なくなるものの、接続電極の外形が直線となるので、デジタル技術を用いた電極パタン生成の簡略化に効果がある。
本発明の他の一実施例を、図11を用いて説明する。図11は本発明の一実施例になるRFIDタグの構成を示す平面図である。半導体チップ1は、デジタル回路11と、アナログ回路12(厳密にはこれらの間の変調、復調回路を含む)を具備している。デジタル回路11とアナログ回路12とは導体20で電気的に接続されている。メモリや信号処理回路を含むデジタル回路11は伝送線路21を回路の結線要素として具備し、電源部、整流器および増幅器を含むアナログ回路12は伝送線路22を回路の結線要素として具備する。半導体チップ1上で、デジタル回路11は、RFIDチップのアース電位に接続されている接続電極3の近傍に配置されており、アナログ回路12はアース接続電極3からは離れた、接続電極2の近傍に配置されている。なお、伝送線路21、伝送線路22は夫々複数の線路で構成されており、各線路の向きもX方向に限定されないことは言うまでも無い。アナログ回路12は導体15を介して引き出し導体6および7に接続されている。接続電極2と4、接続電極3と5の平面形状における面積の大小関係は図1の実施例と同じである。二つの引き出し導体6,7は対向して反対方向に、すなわち図11のX方向でかつ互いに逆向きに引き出されている。半導体チップ1の面内において、引き出し導体6および7は、半導体チップ1の両端部に設けられている。換言すると、X,Y平面上で、引き出し導体6および7は、Z方向でデジタル回路11及びアナログ回路12に重ならない位置に形成されている。
本実施例では、引き出し導体6および7が、半導体チップ内の回路要素と対向(オーバーラップ)しないので、図1の実施例の効果を、半導体チッブの動作時に維持する効果がある。
本発明の他の一実施例を、図12を用いて説明する。図12は本発明の一実施例になるRFIDタグの構成を示す平面図である。半導体チップ1は、デジタル回路11、アナログ回路12を具備している。メモリや信号処理回路を含むデジタル回路11は、伝送線路21を回路の結線要素として具備している。図11の実施例と異なる点は、アナログ回路12が、整流器や増幅器などのための伝送線路22と、電源回路用の伝送線路23とを回路の結線要素として具備することにある。アナログ回路12の電源回路は、半導体チップ1上でアース接続電極3からは離れた、接続電極2の近傍に配置されている。本実施例の効果は、図11の実施例の効果と同様である。
本発明の他の一実施例を、図13を用いて説明する。図13は図11や図12に示したRFIDタグのより具体的な構成を示す縦断面図である。アース電位となる第一の半導体層131の上に半導体デバイスおよび受動素子、配線要素を形成する活性領域を含む第二の半導体層132が形成され、誘電体支持層133の内部に、第一および第二の半導体層を外部電極と結合する引き出し構造134が形成され、内部配線導体135と外部配線導体102,103と第一および第二の半導体層131,132が結合されている。半導体チップのアース接続導体103は、引き出し構造134によってアース電位である第一の半導体層131と結合され、半導体チップのホット接続導体102は他の引き出し構造134によって第二の半導体層132と結合され、それぞれの接続導体102、103はパンプ136により、アンテナのホット接続導体104とアース接続導体105と電気的に接続されている。上記半導体チップ1に実装される各部材はマーカーで位置決めされる。接続導体102と104、接続導体103と105の平面形状における面積の大小関係は、図1の実施例における各接続電極の大小関係と同じである。アース接続導体105の下側には、誘電体のシート140が配置されている。
アンテナの接続電極104、105は半導体チップの接続電極102、103の平面形状以外の領域にはみ出ることがない。そのため、アライアンスの誤差による、アンテナと半導体チップ接続時の容量の変動を抑制することができる。
一般にアース接続電極はホット接続電極より面積が大きいので、必要となるパンプの量はより多く必要となる。本実施例によれば、通常の半導体プロセスを用いて、アンテナと半導体チップ内の回路を電気的に結合でき、アンテナの引き出し導体104、105の半導体チップ内部に形成される回路との対向部の変動を抑制できる。そのため、アンテナから半導体チップ内の回路への電磁波のエネルギーの効率よい伝送を、半導体プロセスによる安価な量産手段で実現できる。
本発明の他の一実施例を、図14を用いて説明する。図14は本発明の一実施例になるRFIDタグの構成を示す平面図である。図12の実施例と異なる点は、デジタル回路11とアナログ回路12の中間にアース接続側の接続電極3と5が設けられ、平面形状において、アンテナのアース引き出し導体7がデジタル回路11と対向部(オーバーラップする部分)を持つことである。アンテナのアース引き出し導体の幅(W7)は、アース接続電極5の幅(W5)の約1/10あるいはそれ以下が望ましい。
半導体チップ1のX軸方向の長さLCが図12の実施例と同じ大きさでありながら、アンテナの構成上、アンテナのアース接続電極5とアンテナのホット接続電極4の間隔を十分取れない場合は、本実施例の構成として間隔LAを短くすることが望ましい。例えば、高機能化に伴い半導体チップのサイズが大型化する、特にデジタル回路が大型化する反面、アンテナのアース接続電極5とアンテナのホット接続電極4の間隔は変更しないことが要求されると考えられる。かかる場合、接続電極5の位置をデジタル回路11とアナログ回路12の中間に配置することで、上記要求に応えることができる。
これにより、図12の実施例の効果には劣るが、回路結線要素である線路21の幅W21が、他の回路、すなわちアナログ回路12の伝送線路22の幅W22より狭いので、引き出し導体(幅W7)が新たに生成してしまう不要な容量成分を抑制する効果がある。また、デジタル回路11が発生する不要周波数成分の影響は、アンテナのアース引き出し導体7が半導体チップ内の最も安定している電位に接続されているので、その影響を小さくすることができる。
本発明の他の一実施例を、図15(図15A,15B,15C)を用いて説明する。図15Aは本発明の一実施例になるRFIDタグの構成を示す平面図である。図15Bは本実施例になるRFIDタグの要部の構成を示す縦断面図である。図15Cは、本実施例になるRFIDタグの製造過程の一部を示す図である。パンプ19がアンテナ側の誘電体のシート140の穴に入るように押圧されて接続される。
図14の実施例と異なる点は、デジタル回路11とアナログ回路12の中間にホット接続側の接続電極2と4及びアース接続側の接続電極3と5が設けられ、平面形状において、アンテナのアース引き出し導体7がデジタル回路11と対向部を持つと共に、アンテナのホット引き出し導体6が電源回路13を避けた位置でアナログ回路12と対向部を持つことである。
例えば、高機能化に伴う半導体チップのサイズの一層の大型化や、アナログ回路12差動増幅回路を採用することに伴う回路の大型化などの理由で、アンテナの構成上、相対的に、アンテナのアース接続電極5とアンテナのホット接続電極4の間隔LAを更に小さくする必要がある場合は、本実施例の構成とすることが望ましい。
本実施例は、図14の実施例の効果には劣るが、アナログ回路12の回路結線要素である線路22の幅W22が、アナログ回路12の他の回路、すなわち電源回路13の伝送線路23の幅W23より狭いので、この引き出し導体6が新たに不要な容量成分を生成することを抑制する効果がある。また、図14の実施例と同じく、デジタル回路11が発生する不要周波数成分の影響を小さくする効果がある。
本発明の他の一実施例を、図16を用いて説明する。図16は本発明の一実施例になるRFIDタグの構成を示す図である。図1の実施例と同様に、RFIDチップ側およびアンテナ側の接続電極は、何れもアース側の電極3、5の寸法がホット側の電極2、4の寸法よりも大きい。図1の実施例と異なる点は、半導体チップのホット接続電極2に、半導体チップ側の回路部を構成する半波整流回路41のホット側が接続されていることである。
半波整流回路41は不平衡回路なので、アース側が面積の大きい半導体チップのアース接続電極3およびアンテナのアース接続電極5に接続され、ホット側が面積の小さい半導体チップのホット接続電極2およびアンテナのホット接続電極4に接続される。
本実施例では、アンテナを不平衡型とすることで、不平衡回路の特性である、ホット側により電力の密度が大きい状態を維持しながら、アンテナと整流回路を接続できるので、アンテナが確保した電磁界のエネルギーを効率よく直流に変換する効果がある。
本発明の他の一実施例を、図17を用いて説明する。図17は本発明の一実施例になるRFIDタグの他の構成を示す図である。図8の実施例と同様に、左右一対の接続電極2、4が実質的に同一寸法である。図8の実施例と異なる点は、アンテナが平衡型で、RFIDチップ側の左右二つの接続電極2、2が実質的に同一寸法で、この接続電極に平衡回路が接続されていることである。すなわち、半導体チップの二つのホット接続電極2に全波整流回路42が接続されている。
全波整流回路42は平衡回路なので、アンテナを平衡型アンテナとすることにより、面積の等しいアンテナの2つの接続電極(アンテナ側ホット接続電極)4と半導体チップの2つの接続電極(チップ側ホット接続電極)2を介して、平衡姿態でアンテナと整流回路の電気結合を実現できるので、アンテナが確保した電磁界のエネルギーを効率よく直流に変換する効果がある。
本発明の他の一実施例を、図18を用いて説明する。図18は本発明の一実施例になるRFIDタグの構造を示す図である。この実施例によれば、外部アンテナ8が一体の平面上に形成された複数の導体によって実現され、この平面上にRFIDチップ1とそれに実装された高密度の高周波回路とを結合する接続導体および帯状導体が、一枚の誘電体シート10上に形成された、複数の平面状導体郡で構成されている。
すなわち、この実施例では、既に述べた各実施例のいずれかの半導体チップ1が、図13に示した接続法により、誘電体薄層10に形成された面状アンテナパタン8と電気的に接続されている。図13の実施例からも明らかなように、面状アンテナパタン8は半導体チップとの電気的結合点において、不平衡型である必要があるが、そのようなパタンは総当り検索により見出すことができる。
本実施例のパタン8は所謂浮島構造がないので、誘電体薄層10は取り除くことも出来る。誘電体薄層10が存在する場合はエッチングプロセス、存在しない場合は打ち抜きプロセスによって、アンテナを実現できるので、アンテナから半導体チップ内の回路への電磁波のエネルギーの効率よい伝送を実現するアンテナを安価な製造コストで量産することができる。
本発明の他の一実施例を、図19を用いて説明する。図19は本発明の一実施例になるRFIDタグの構造を示す図である。この実施例では、既に述べた各実施例のいずれかの半導体チップ1が、図13に示した接続法により、誘電体薄層10に形成された面状アンテナパタン8と電気的に接続されている。本実施例のRFIDタグは、誘電体シート(誘電体薄層10)が可視光を十分に通過させ、且つ、この誘電体シート上に形成される導体郡は幅の狭い帯状導体が十分に広い間隔で配置され、やはり可視光を十分に通過させ、該誘電体シートを通して意味のある模様を視覚により認識できる構成と成っている。
図18の実施例と異なる点は、アンテナを形成するパタンが板状導体要素ではなく、線状導体要素9であることである。十分な密度で線状導体9を配置すれば、板状導体要素を配置した場合と同様の、高周波特性を実現することができる。例えば、1GHzで線状導体としてアルミを用いて、厚さ10マイクロメートル、幅100マイクロメートル、線間隔1ミリメートルで、同じ厚さの板状導体要素と同等のアンテナ特性を得ることができる。
本実施例に拠れば、可視光が線状導体要素を通過可能となるので、アンテナを通してシンボルの視覚が可能となる。このため、RFIDタグを物体に貼り付ける場合、貼り付けられる対象のもとあるシンボルを認識可能とする要求に応えることができる。還元すれば、RFIDタグを物体に設置する際の、ユーザーに対する視覚的抵抗感・不利益等を低減・解消する効果がある。
本発明の一実施例になるRFIDタグの構成例を示す平面図である。 図1に示したRFIDタグの要部の縦断面を概念的に示す断面図である。 図1に示したRFIDタグを用いたRFIDシステムの構成図である。 図1に示したRFIDタグの、作用、効果を説明するための図である。 図1の例に対する比較例としての、RFIDタグを説明するための図である。 本発明の他の一実施例になるRFIDタグ構成を示す平面図である。 本発明の他の一実施例になるRFIDタグ構成を示す平面図である。 本発明の他の一実施例になるRFIDタグ構成を示す平面図である。 本発明の他の一実施例になるRFIDタグ構成を示す平面図である。 本発明の他の一実施例になるRFIDタグ構成を示す平面図である。 本発明の他の一実施例になるRFIDタグ構成を示す平面図である。 本発明の他の一実施例になるRFIDタグ構成を示す平面図である。 本発明の他の一実施例になるRFIDタグ構成を示す縦断面図である。 本発明の他の一実施例になるRFIDタグ構成を示す平面図である。 本発明の他の一実施例になるRFIDタグ構成を示す平面図である。 図15AのRFIDタグ構成を示す縦断面図である。 図15AのRFIDタグの製法を示す図である。 本発明の他の一実施例になるRFIDタグ構成を示す回路図である。 本発明の他の一実施例になるRFIDタグ構成を示す回路図である。 本発明の一実施例になるRFIDタグのアンテナ構成を示す図である。 本発明の一実施例になるRFIDタグのアンテナ構成を示す図である。
符号の説明
1…半導体チップ、2…チップ側ホット接続電極、3…チップ側アース接続電極、4…アンテナ側ホット接続電極、5…アンテナ側アース接続電極、6…ホット引き出し導体、7…アース引き出し導体、8…面状導体要素、9…線状導体要素、10…誘電体薄層、11…デジタル回路、12…アナログ回路、13…電源回路、14…高周波回路部、15…導体、16…導体、17…位置決め用のマーカー、18…誘電体層、19…ハンダパンプ、21…デジタル回路結線要素、22…アナログ回路結線要素、23…電源回路結線要素、41…半波整流回路、42…全波整流回路、80…基地局、84…搬送波発生回路、85…受信回路、86…サーキュレータ、87…基地局アンテナ、90…端末局、93…変調回路、94…整流回路、97…端末局アンテナ、102…半導体チップ側ホット接続電極、103…半導体チップ側アース接続電極、104…アンテナ側ホット接続電極、105…アンテナ側アース接続電極、131…第一の半導体層、132…第二の半導体層、133…誘電体層、134…引き出し層、135…内部配線導体、136…バンプ、881…送信電力、982…反射波。

Claims (20)

  1. RFIDチップと外部アンテナで構成されて成り、
    前記外部アンテナが一対の接続電極と該各接続電極の引き出し導体とを具備して成り、
    前記RFIDチップが一対の接続電極を具備して成り、
    前記外部アンテナの前記各接続電極の平面形状は、各々対応する前記RFIDチップの接続電極の平面形状に包含されており、前記アンテナの引き出し導体の引き出し方向に対して直角な方向において、該引き出し導体の幅が、前記アンテナの接続電極の寸法より小さい
    ことを特徴とするRFIDタグ。
  2. 請求項1において、
    前記アンテナの前記一対の引き出し導体の引き出し方向が、互いに反対方向である
    ことを特徴とするRFIDタグ。
  3. 請求項1において、
    前記RFIDの前記接続電極の平面形状と、対応する前記外部アンテナの前記接続電極の平面形状とが相似形である
    ことを特徴とするRFIDタグ。
  4. 請求項1において、
    前記各接続電極の平面形状が多角形であり、
    前記RFIDチップ側の接続電極と前記アンテナ側の接続電極とがパンプ構造で接続されている
    ことを特徴とするRFIDタグ。
  5. 請求項1において、
    前記アンテナが平衡型であり、
    前記RFIDチップ側の二つの接続電極が実質的に同一寸法であり、該二つの接続電極に平衡回路が接続されている
    ことを特徴とするRFIDタグ。
  6. 請求項5において、
    前記平衡回路がブリッジ型全波整流回路である
    ことを特徴とするRFIDタグ。
  7. 請求項1において、
    前記RFIDチップが、該チップのアース電位に接続される第1の接続電極と該アース電位に接続されていない第2の接続電極とを備えて成り、
    平面形状において、前記第1の接続電極の面積が前記第2の接続電極の面積よりも大きい
    ことを特徴とするRFIDタグ。
  8. 請求項1において、
    前記アンテナが不平衡型であり、
    前記RFIDチップ側および前記アンテナ側の各接続電極のうち、アース側の接続電極の寸法がホット側の接続電極の寸法よりも大きく、
    前記RFIDチップ側の二つの接続電極に半波整流回路が接続されている
    ことを特徴とするRFIDタグ。
  9. RFIDチップと外部アンテナで構成されて成り、
    前記RFIDチップがアナログ回路とデジタル回路を備えて成り、
    前記RFIDチップが、該チップのアース電位に接続される第1の接続電極と該アース電位に接続されていない第2の接続電極とを備えて成り、
    前記外部アンテナが前記RFIDチップの各接続電極に対応する一対の接続電極と該各接続電極の引き出し導体とを具備して成り、
    前記外部アンテナの引き出し導体の引き出し方向に対して直角な方向において、該引き出し導体の幅が、前記外部アンテナの接続電極の寸法より小さく、
    前記第1の接続電極に接続された前記外部アンテナの引き出し導体が、前記RFIDチップの接続電極の平面形状に垂直な面において、前記デジタル回路と対向している
    ことを特徴とするRFIDタグ。
  10. 請求項9において、
    前記第2の接続電極に接続された前記外部アンテナの引き出し導体が、前記RFIDチップの接続電極の平面形状に垂直な面において、前記アナログ回路と対向している
    ことを特徴とするRFIDタグ。
  11. 請求項10において、
    前記アナログ回路は電源回路を含み、
    前記第2の接続電極に接続された前記外部アンテナの引き出し導体が、前記平面形状に垂直な面において、前記電源回路と対向しない
    ことを特徴とするRFIDタグ。
  12. 請求項10において、
    前記デジタル回路の配線導体の前記引き出し方向に対して直角な方向の幅が、前記アナログ回路の配線導体の幅より狭い
    ことを特徴とするRFIDタグ。
  13. 請求項11において、
    前記電源回路の配線導体の前記引き出し方向に対して直角な方向の幅が、前記アナログ回路の配線導体の幅より広い
    ことを特徴とするRFIDタグ。
  14. 請求項11において、
    前記第1の接続電極と前記第2の接続電極が、平面形状において、前記RFIDチップの前記アナログ回路と前記デジタル回路の間に配置されている
    ことを特徴とするRFIDタグ。
  15. RFIDチップと外部アンテナで構成されて成り、
    前記RFIDチップがアナログ回路とデジタル回路を備えて成り、
    前記RFIDチップが、該チップのアース電位に接続される第1の接続電極と該アース電位に接続されていない第2の接続電極とを備えて成り、
    前記外部アンテナが前記RFIDチップの各接続電極に対応する一対の接続電極と、該各接続電極の引き出し導体とを具備して成り、
    前記アンテナの引き出し導体の引き出し方向に対して直角な方向において、該引き出し導体の幅が、前記アンテナの接続電極の寸法より小さく、
    前記デジタル回路が、前記RFIDチップのアース電位に接続された第1の接続電極の近傍に配置されている
    ことを特徴とするRFIDタグ。
  16. 請求項15において、
    前記アナログ回路が、前記RFIDチップのアース電位に接続されていない第2の接続電極の近傍に配置されている
    ことを特徴とするRFIDタグ。
  17. 請求項16において、
    前記電源回路が、前記RFIDチップのアース電位に接続されていない第2の接続電極の近傍に配置されている
    ことを特徴とするRFIDタグ。
  18. 請求項17において、
    前記第1の接続電極と前記第2の接続電極が、平面形状において、前記RFIDチップの前記アナログ回路と前記デジタル回路の間に配置されている
    ことを特徴とするRFIDタグ。
  19. 請求項15において、
    前記外部アンテナが一体の平面上に形成された複数の導体によって実現されて成り、該平面上に前記RFIDチップと前記アナログ回路及び前記デジタル回路とを結合する接続導体および帯状導体が形成されている
    ことを特徴とするRFIDタグ。
  20. 請求項19において、
    前記外部アンテナおよび前記RFIDチップと前記アナログ回路及び前記デジタル回路とを結合する前記接続導体と帯状導体とが、一枚の誘電体シート上に形成される複数の平面状導体郡で構成されている
    ことを特徴とするRFIDタグ。
JP2007262290A 2007-10-05 2007-10-05 Rfidタグ Expired - Fee Related JP5103127B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007262290A JP5103127B2 (ja) 2007-10-05 2007-10-05 Rfidタグ
US12/285,303 US7902986B2 (en) 2007-10-05 2008-10-01 RFID tag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007262290A JP5103127B2 (ja) 2007-10-05 2007-10-05 Rfidタグ

Publications (2)

Publication Number Publication Date
JP2009093353A true JP2009093353A (ja) 2009-04-30
JP5103127B2 JP5103127B2 (ja) 2012-12-19

Family

ID=40522796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007262290A Expired - Fee Related JP5103127B2 (ja) 2007-10-05 2007-10-05 Rfidタグ

Country Status (2)

Country Link
US (1) US7902986B2 (ja)
JP (1) JP5103127B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7395527B2 (en) 2003-09-30 2008-07-01 International Business Machines Corporation Method and apparatus for counting instruction execution and data accesses
US8381037B2 (en) 2003-10-09 2013-02-19 International Business Machines Corporation Method and system for autonomic execution path selection in an application
US7895382B2 (en) 2004-01-14 2011-02-22 International Business Machines Corporation Method and apparatus for qualifying collection of performance monitoring events by types of interrupt when interrupt occurs
US7415705B2 (en) 2004-01-14 2008-08-19 International Business Machines Corporation Autonomic method and apparatus for hardware assist for patching code
JP4923975B2 (ja) * 2006-11-21 2012-04-25 ソニー株式会社 通信システム並びに通信装置
US9542638B2 (en) 2014-02-18 2017-01-10 Apple Inc. RFID tag and micro chip integration design
JP7091961B2 (ja) * 2018-09-13 2022-06-28 Tdk株式会社 オンチップアンテナ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099673A (ja) * 1998-09-17 2000-04-07 Hitachi Maxell Ltd 半導体装置
JP2000200328A (ja) * 1998-10-01 2000-07-18 Hitachi Maxell Ltd 半導体装置
JP2002269520A (ja) * 2001-03-13 2002-09-20 Hitachi Ltd 半導体装置及びその製造方法
JP2003303325A (ja) * 2002-04-08 2003-10-24 Furukawa Electric Co Ltd:The 移動体識別システムの端末装置及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700491B2 (en) * 2002-06-14 2004-03-02 Sensormatic Electronics Corporation Radio frequency identification tag with thin-film battery for antenna
JP4626192B2 (ja) 2004-06-04 2011-02-02 日立化成工業株式会社 半導体装置
US7863718B2 (en) * 2005-02-16 2011-01-04 Hitachi, Ltd. Electronic tag chip
JP2006268090A (ja) 2005-03-22 2006-10-05 Fujitsu Ltd Rfidタグ
JP4087859B2 (ja) * 2005-03-25 2008-05-21 東芝テック株式会社 無線タグ
JP4815891B2 (ja) * 2005-06-22 2011-11-16 株式会社日立製作所 無線icタグ及びアンテナの製造方法
JP2008092198A (ja) * 2006-09-29 2008-04-17 Renesas Technology Corp Rfidラベルタグおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099673A (ja) * 1998-09-17 2000-04-07 Hitachi Maxell Ltd 半導体装置
JP2000200328A (ja) * 1998-10-01 2000-07-18 Hitachi Maxell Ltd 半導体装置
JP2002269520A (ja) * 2001-03-13 2002-09-20 Hitachi Ltd 半導体装置及びその製造方法
JP2003303325A (ja) * 2002-04-08 2003-10-24 Furukawa Electric Co Ltd:The 移動体識別システムの端末装置及びその製造方法

Also Published As

Publication number Publication date
JP5103127B2 (ja) 2012-12-19
US20090091456A1 (en) 2009-04-09
US7902986B2 (en) 2011-03-08

Similar Documents

Publication Publication Date Title
US11392784B2 (en) RFID system
JP5103127B2 (ja) Rfidタグ
CN103729676B (zh) 无线ic器件
US10396429B2 (en) Wireless communication device
EP2680193B1 (en) Apparatus comprising an RFID device
JP4518211B2 (ja) 複合アンテナ
CN104051440B (zh) 具有天线的半导体结构
US8960561B2 (en) Wireless communication device
JPWO2010050361A1 (ja) 無線icデバイス
US20140292611A1 (en) Antenna apparatus
JP2008278203A (ja) スケルトン等化アンテナ、同アンテナを用いたrfidタグおよびrfidシステム
JP5822010B2 (ja) 無線通信端末
KR101096335B1 (ko) Rfid 태그
JP5187083B2 (ja) Rfidタグ、rfidシステム及びrfidタグ製造方法
JP6798328B2 (ja) 通信デバイス
JP2015225579A (ja) 無線icデバイス、その製造方法、及び、無線icデバイス付き物品
JP4626192B2 (ja) 半導体装置
KR101620985B1 (ko) 근거리 통신용 안테나 구조물
JP2005348197A (ja) 無線電子装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees