JP2009088774A - 信号検出装置、信号検出システム、放射線画像信号検出システム、信号検出方法、及び放射線画像信号検出方法 - Google Patents

信号検出装置、信号検出システム、放射線画像信号検出システム、信号検出方法、及び放射線画像信号検出方法 Download PDF

Info

Publication number
JP2009088774A
JP2009088774A JP2007253446A JP2007253446A JP2009088774A JP 2009088774 A JP2009088774 A JP 2009088774A JP 2007253446 A JP2007253446 A JP 2007253446A JP 2007253446 A JP2007253446 A JP 2007253446A JP 2009088774 A JP2009088774 A JP 2009088774A
Authority
JP
Japan
Prior art keywords
signal
hold circuit
output
track hold
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007253446A
Other languages
English (en)
Other versions
JP4971092B2 (ja
Inventor
Koji Watanabe
浩司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007253446A priority Critical patent/JP4971092B2/ja
Publication of JP2009088774A publication Critical patent/JP2009088774A/ja
Application granted granted Critical
Publication of JP4971092B2 publication Critical patent/JP4971092B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】相関2重サンプリング処理を行う信号トラックホールド回路の出力が飽和する可能性を検出し、信号トラックホールド回路のダイナミックレンジ並びに差分アンプのダイナミックレンジを広くすることなく、出力を飽和させないでリニアリティを確保する。
【解決手段】基準トラックホールド回路31と信号トラックホールド回路32のタイミングを制御して電荷信号iの残留成分による残留出力の有無を検出し、前記残留出力が有ることを検出したとき、検出した前記残留出力のレベルに応じて、積分アンプ33のリセット期間を長くする。
【選択図】図2

Description

この発明は、相関2重サンプリング処理を行う信号検出装置、信号検出システム、放射線画像信号検出システム、信号検出方法、及び放射線画像信号検出方法に関する。
従来、CCD(電荷結合素子)センサまたはフォトマルチプライア等の光電変換素子や、放射線の照射を受けて発生させた電荷を蓄積するとともに該蓄積された電荷に応じた電荷信号を出力する放射線画像記録装置など、光または放射線を電荷信号に変換して出力する装置が様々な分野で利用されている。
上記のような光電変換素子や放射線画像記録装置から出力された電荷信号を検出する電子部品として、IC化が可能で比較的ノイズが小さい積分アンプが一般的に用いられている。積分アンプは、積分モードに切り替えられることにより上記電荷信号の積分を開始し、その積分された電荷量に応じた電気信号(積分電圧)を出力し、リセットモードに切り替えられることにより積分された電荷信号(積分電圧)を放電して初期状態に戻す機能を有する。
ここで、前記積分アンプにおける積分モードへの切り替えは、前記積分アンプのコンデンサに並列に接続される半導体素子からなるリセットスイッチをオン状態からオフ状態に切り替えることにより行われるが、このリセットスイッチの切替えによりリセットスイッチの有するkTCノイズが発生し、このノイズが信号成分の電気信号に含まれてしまう。
そこで、このkTCノイズの影響を回避するために相関2重サンプリング処理が施される。相関2重サンプリング処理とは、積分アンプが積分モードに切り替わった後所定の基準レベルサンプリング期間経過した時に出力される電気信号{基準レベル(ノイズ)}とリセットモードに切り替わる直前に出力される電気信号(基準レベル+信号レベル)との差をとり、その差を信号成分(信号レベル)とすることにより、上記kTCノイズの影響を排除する処理である。
また、上記のような積分アンプを利用した信号検出装置においては、積分アンプの入力端子に接続される信号線において発生する熱雑音によるノイズを低減するため、積分アンプの後段にローパスフィルタが設けられており、積分アンプから出力された電気信号はこのローパスフィルタを通過して出力される。
ここで、たとえば、積分アンプに接続される信号線の線抵抗が大きく、たとえば、数100[kΩ]である場合には、信号線において発生する熱雑音によるノイズはその信号線の線抵抗の大きさに応じて大きくなるため、信号線に流れる電荷信号に対して非常に大きなものとなってしまう。したがって、上記のようなノイズを十分に低減させるためには、そのノイズの大きさに応じてローパスフィルタの時定数を大きくする必要がある。
特許文献1では、相関2重サンプリング処理を行う信号検出装置において、積分アンプのリセット後の基準レベルサンプリング期間(トラック期間)を、積分アンプ後段のローパスフィルタの時定数τの10倍(10τ)以上とすることで積分アンプのリセット時に発生するノイズを低減して高画質の画像を得るようにしている。
特許文献2では、基準レベルホールド側のローパスフィルタの時定数を、信号レベルホールド側の時定数より短く設定することで、高画質の画像をより高速に得られるようにしている。
特許文献3では、基準レベルをホールドする基準トラックホールド回路のトラック開始タイミングを、信号レベルをホールドする信号トラックホールド回路のトラック開始タイミングよりも早くなるように制御することで、積分アンプのリセット期間が不足にならないようにしながら、高画質の画像を高速に得るようにしている。
特開2005−269215号公報 特開2006−229581号公報 特開2006−253789号公報
ところで、上記のような差分アンプ及び相関2重サンプリング回路からなる信号検出装置において、相関2重サンプリング回路は、上述したように基準レベルをホールドする基準トラックホールド回路と、基準レベルが含まれる信号レベル(基準レベル+信号レベル)をホールドする信号トラックホールド回路と、差分アンプとから構成されるが、前記信号トラックホールド回路の出力が飽和するという問題が発生した。
この場合、信号トラックホールド回路のダイナミックレンジ並びに差分アンプのダイナミックレンジを広くすれば、出力は飽和しなくなり、この問題を解決できるが、ダイナミックレンジを広くすることで、信号検出装置の消費電力が増加して余分に熱が発生し、かつ信号検出装置を構成する能動素子の選択の範囲が狭くなることから、信号検出装置のコストが上昇し、結果として、この信号検出装置を複数搭載した装置、例えば放射線画像検出システムの消費電力の増加、熱の発生、コストの増加を招くという問題が発生する。
この発明はこのような課題を考慮してなされたものであり、相関2重サンプリン号処理を行う信号トラックホールド回路の出力が飽和する可能性を検出することを可能とする信号検出装置、信号検出システム、放射線画像信号検出システム、信号検出方法、及び放射線画像信号検出方法を提供することを目的とする。
また、この発明は、相関2重サンプリング処理を行う信号トラックホールド回路のダイナミックレンジ並びに差分アンプのダイナミックレンジを広くすることなく、出力を飽和させないでリニアリティを確保することを可能とする信号検出装置、信号検出システム、放射線画像信号検出システム、信号検出方法、及び放射線画像信号検出方法を提供することを目的とする。
この発明に係る信号検出装置は、電荷信号を積分して積分電圧を生成するとともに、前記積分電圧をリセットするリセット機能を有する積分アンプと、前記積分アンプの出力側に並列に接続され、相関2重サンプリング回路を構成する基準トラックホールド回路と信号トラックホールド回路と、前記基準及び信号トラックホールド回路の両出力の差信号を出力する差分アンプと、前記基準トラックホールド回路をホールド状態として前記基準トラックホールド回路の出力を基準レベルに保持させた状態で、前記積分アンプをリセットさせ、その後、所定期間、前記信号トラックホールド回路をトラックさせた後ホールドさせたとき、当該トラックの開始時点から当該ホールド時点までの間の前記信号トラックホールド回路の出力から、前記電荷信号の残留成分により発生する電圧出力のレベルを検出する制御回路と、を備えることを特徴とする。
この発明によれば、基準トラックホールド回路と信号トラックホールド回路のタイミングを制御して、電荷信号の残留成分により発生する電圧出力のレベルを検出することで、信号トラックホールド回路の出力が飽和する可能を検出することができる。
なお、前記制御回路は、検出した、前記電荷信号の前記残留成分により発生する前記電圧出力のレベルが、予め設定した閾値を下回る値となるまで前記積分アンプのリセット期間を長くするようにタイミングを制御することで、高速動作を確保しながら、信号トラックホールド回路のダイナミックレンジ並びに差分アンプのダイナミックレンジを広くすることなく出力を飽和させないでリニアリティを確保することができる。
また、前記制御回路は、前記電荷信号の前記残留成分による前記出力が有ることを検出したとき、検出した前記残留成分による前記出力のレベルに応じて、前記電荷信号の前記残留成分による前記出力が検出されなくなるまで前記積分アンプのリセット期間を長くするように、タイミングを制御することで、一定の高速動作を確保しながら信号トラックホールド回路のダイナミックレンジ並びに差分アンプのダイナミックレンジを最小限度にし、出力を飽和させないでリニアリティを確保することができる。
複数の信号検出装置中、少なくとも1つの信号検出装置により、信号トラックホールド回路の出力が飽和する可能を検出するように構成することで、相関2重サンプリング処理による信号を検出中に、リアルタイムに信号トラックホールド回路の出力が飽和する可能を検出することができる。
この場合、前記少なくとも1つの信号検出装置により検出した、前記電荷信号の前記残留成分により発生する前記電圧出力のレベルが、予め設定した閾値を下回る値となるよう、これ以降に前記差信号を得る前記信号検出装置の前記積分アンプのリセット期間を長くするように制御することで、信号トラックホールド回路のダイナミックレンジ並びに差分アンプのダイナミックレンジを広くすることなく、出力を飽和させないでリニアリティを確保する制御をリアルタイムに行うことができる。
上記した、信号トラックホールド回路の出力が飽和する可能性の検出処理並びに可能性を検出したときの前記積分アンプのリセット期間を長くする処理は、初期校正時に行うようにすると好適である。すなわち、本番時には、信号トラックホールド回路の出力が飽和する可能性の検出処理を行う必要がない。
上記信号検出装置の技術は、信号検出システム、放射線画像信号検出システム、信号検出方法、並びに放射線画像信号検出方法に適用することができる。
この発明によれば、信号トラックホールド回路の出力が飽和する可能性を検出することができ、また、高速性を保持しながら、信号トラックホールド回路のダイナミックレンジ並びに差分アンプのダイナミックレンジを広くすることなく、出力を飽和させないでリニアリティを確保することすることができる。
以下、この発明の信号検出方法及び放射線画像信号検出方法を実施する信号検出装置及び信号検出システムを利用した放射線画像信号検出システムについて図面を参照して説明する。図1に、放射線画像信号検出システム1の全体の概略構成図を示す。図2に、図1の放射線画像信号検出システム1中、信号検出装置30、30Aの詳細を描いた概略構成図を示す。
図1、図2に示すように、放射線画像信号検出システム1は、図示を省略した放射線源と、該放射線源から射出されて被写体を通過した放射線の照射を受けて放射線画像を記録し、その放射線画像に応じた電荷信号(電流信号)iを出力する放射線画像記録装置10と、放射線画像記録装置10を線状の読取光で走査する主走査方向Xに延在する読取光源部20と、読取光源部20による読取光の走査により放射線画像記録装置10から出力された電荷信号に基づいて前記放射線画像に応じた主走査方向Xの1ch(チャンネル)〜Lchまでのデジタル画像信号Di(i=1,2…X…L)を出力する複数の信号検出装置30,30Aと、放射線画像記録装置10及び信号検出装置30,30Aのタイミングと動作を制御する制御回路38とを備えている。
ここで、主走査方向Xの1ch(チャンネル)からX−1ch、X+1ch〜Lchの信号検出装置30は、電荷信号iに基づいて前記放射線画像に応じたデジタル画像信号Di(i=1,2,…,X−1,X+1…L)を出力する動作を有するが、主走査方向X中、例えば中央のXchの線状電極15aに接続された信号検出装置30Aは、デジタル画像信号Di=DXに基づき、電荷信号iの残留成分ir(後述)の有無を検出する機能を有している。
信号検出装置30Aの回路接続構成並びに回路部品・素子は信号検出装置30と同一であるが、電荷信号iの残留成分検出装置として機能させるために、制御回路(タイミング制御部)38によるスイッチS1A〜S3Aの制御が異なるタイミングにされている。図2に示すように、信号検出装置30のスイッチS1〜S3に対して、信号検出装置30AはスイッチS1A〜S3Aと符号を代えている。
図2に示すように、信号検出装置30,30Aは、放射線画像記録装置10から出力された電荷信号iを積分する積分アンプ33、積分アンプ33により積分された電気信号(積分電圧)を保持する基準および信号トラックホールド回路31,32、基準および信号トラックホールド回路31,32にそれぞれ保持された基準電気信号(単に出力ともいう。)V1および信号電気信号(単に出力ともいう。)V2の差分を出力電気信号(アナログ画像信号又は単に出力ともいう。)V3として出力する差分アンプ34、および差分アンプ34から出力されたアナログ画像信号をデジタル画像信号Di,DXに変換するA/D変換器35を備えている。なお、デジタル画像信号Di,DXの値は、量子化誤差を除けば、出力V3の値に等しいので、以下、理解の容易化のために、適宜、Di,DX=V3として説明する。
信号検出装置30,30Aは、放射線画像記録装置10から出力された電荷信号iに基づいて相関2重サンプリング処理を行い、デジタル画像信号Di,DXとして得られる高画質の画像信号を生成する。
ここで、相関2重サンプリング処理を行う相関2重サンプリング回路(CDS回路)39,39Aは、基準および信号トラックホールド回路31,32と差分アンプ34とタイミングを制御する制御回路38とから構成されている。この場合、基準トラックホールド回路31は、基準レベルをホールドする基準トラックホールド回路として機能し、信号トラックホールド回路32は、基準レベル+信号レベル(基準レベルを含む信号レベルであり、合成レベルともいう。)をホールドする信号トラックホールド回路として機能する。
積分アンプ33は、放射線画像記録装置10から出力された電荷信号iを蓄積(積分)するコンデンサC3とコンデンサC3に蓄積された電荷を放電させるためのリセットスイッチS3,S3Aとを備えている。
基準トラックホールド回路31は、スイッチS1,S1Aと、コンデンサC1と、バッファアンプ36とを備え、積分アンプ33から出力された電気信号(積分電圧)をコンデンサC1に保持し、コンデンサC1に保持した電気信号をそのままバッファアンプ36から出力V1として出力する。
信号トラックホールド回路32は、スイッチS2,S2Aと、コンデンサC2と、バッファアンプ37を備え、積分アンプ33から出力された電気信号(積分電圧)をコンデンサC2に保持し、コンデンサC2に保持した電気信号をそのままバッファアンプ37から出力V2として出力する。
ここで、A/D変換器35の出力において高画質のデジタル画像信号を得るためには、リセット時のノイズを除去する必要があり、そのために、実際上、コンデンサC1,C2への充電の際に、一次遅れ処理(一次のローパスフィルタ処理)が必要とされるが、この一次遅れ処理は、この発明の要旨ではなく、特許文献1(特開2005−269215号公報)、特許文献2(特開2006−229581号公報)、及び特許文献3(特開2006−253789号公報)に開示しているので、この発明の理解の便宜のため、この明細書では記載しない。
基準および信号トラックホールド回路31,32は、積分アンプ33から出力された電気信号をそれぞれ異なるタイミングで保持する。基準トラックホールド回路31において、コンデンサC1に電気信号を蓄積する際には、スイッチS1がオン状態になる(トラック状態)。信号トラックホールド回路32において、コンデンサC2に電気信号を蓄積する際には、スイッチS2がオン状態になる(トラック状態)。
信号検出装置30,30Aの積分アンプ33のリセットスイッチS3,S3A基準および信号トラックホールド回路31,32のスイッチS1,S1A,S2,S2AおよびA/D変換器35などのオンオフタイミング等の動作タイミングなどは、上述したように、制御回路38により制御される。
放射線画像記録装置10は、詳細には、図3に示すように、放射線画像を担持した放射線を透過する第1の電極層11、第1の電極層11を透過した放射線の照射を受けることにより電荷を発生する記録用光導電層12、記録用光導電層12において発生した電荷に対しては絶縁体として動作し、且つその電荷と逆極性の輸送電荷に対しては導電体として動作する電荷輸送層13、読取光の照射を受けることにより電荷を発生する読取用光導電層14、および読取光を透過する線状に延びる線状電極15aが平行に配列された第2の電極層15をこの順に積層されて構成される。そして、記録用光導電層12と電荷輸送層13との界面には放射線の照射量に応じて発生した電荷が蓄積される蓄電部16が形成される。
図1例,図2例の放射線画像信号検出システム1のように、A/D変換器35は、各線状電極15aに対応してそれぞれ設ける構成にしてもよいし、図4に示す放射線画像信号検出システム1Aのように、マルチプレクサ41とバッファアンプ42とを設けて差分アンプ34の出力V3を各線状電極15a毎に切り替えて1つのA/D変換器35によりA/D変換する構成としてもよい。以下、図1例,図2例の放射線画像信号検出システム1について説明する。
図1、図2に示すように、放射線画像記録装置10および読取光源部20は、読取光源部20を構成する読取光源の長さ方向と放射線画像記録装置10の線状電極15aの長さ方向とが略直交するように配置されている。そして、読取光源部20は、線状電極15aの長さ方向(副走査方向Y)に線状の読取光源を移動させて読取光を走査するものであるが、読取光源部20を移動させる移動機構などについては図示を省略している。
この実施形態に係る放射線画像信号検出システム1は、基本的には以上のように構成されるものであり、次にその動作について説明する。
まず、放射線画像記録装置10の第1の電極層11が負に帯電し、第2の電極層15が正に帯電するように電圧が印加された状態において、放射線源から被写体40に向けて放射線L1が照射される。図5Aに示すように、放射線源から射出された放射線L1は、被写体40全体に照射され、被写体40において放射線を透過する透過部40aを透過した放射線が放射線画像記録装置10の第1の電極層11側から照射される。なお、被写体40において放射線L1を透過しない遮断部40bに照射された放射線は放射線画像記録装置10には照射されない。
そして、放射線画像記録装置10に照射された放射線L1は、第1の電極層11を透過し、記録用光導電層12に照射される。そして、記録用光導電層12において放射線L1の照射により電荷対が発生し、そのうち正の電荷は第1の電極層11に帯電した負の電荷と結合して消滅し、負の電荷は潜像電荷として記録用光導電層12と電荷輸送層13との界面に形成される蓄電部16に蓄積されて放射線画像が記録される。
次に、図5Bに示すように、第1の電極層11が接地された状態において、第2の電極層15側の読取光源部20から読取光L2が照射され、読取光L2は線状電極15aを透過して読取用光導電層14に照射される。読取光L2の照射により読取用光導電層14において発生した正の電荷が蓄電部16における潜像電荷と結合するとともに、負の電荷が第2の電極層15の線状電極15aに帯電した正の電荷と結合する。
一方、信号検出装置30における積分アンプ33のリセットスイッチS3は、放射線画像記録装置10への読取光の照射の前にはオン状態にされている。その後、リセットスイッチS3がオフ状態にされ、ベースラインサンプリング、すなわち基準レベルの保持が終了してから読取光L2の照射が開始される。そして、上記のようにして放射線画像記録装置10の読取用光導電層14において発生した負の電荷が第2の電極層15の線状電極15aに帯電した正の電荷と結合することにより、その結合した電荷量に応じた大きさの電荷信号iが積分アンプ33のコンデンサC3に蓄積されて積分される。
上記した信号検出装置30の動作について、図6に示す信号通常検出タイミングチャートを用いて説明する。図6は、スイッチS1〜S3のオンオフ制御のタイミング、読取光源部20の発光消灯タイミング並びにA/D変換器35の動作タイミングを示している。
時点t0〜時点t1のリセット期間Trにおいて、積分アンプ33のスイッチS3がオン状態とされ、コンデンサC3に充電されていた電荷が放電される。
時点t1において、リセットが終了すると、基準レベルを得るために時点t1〜時点t2までの基準トラック期間Tnの間基準トラックホールド回路31のスイッチS1がオン状態とされトラックされる。時点t2でスイッチS1がオフ状態とされ、その時点t2で基準レベルがコンデンサC1にホールド(保持)される。コンデンサC1にホールドされた基準レベルに対応する出力(基準出力)V1[ボルト]が差分アンプ34の減算入力側に供給される。
その一方、時点t1〜時点t3の間信号トラックホールド回路32のスイッチS2がオン状態とされる。この場合、時点t1〜時点t2間において、コンデンサC2に出力(基準出力)V1と同じレベルの電圧がトラックされる。
そして、スイッチS1の立ち下がり時点t2をトリガとして、時点t2〜時点t3までの間、読取用光導電層14に読取光源部20から副走査方向Yの1ライン目に読取光L2が照射されると、蓄電部16に蓄積されていた電荷が線状電極15aを通じて電荷信号iとして積分アンプ33に供給され、積分アンプ33で電荷信号iが積分されてコンデンサC3の端子間に積分電圧が発生する。この積分電圧、すなわち基準レベルと信号レベルを合算した合成レベルが、スイッチS2をオン状態からオフ状態に切り替えた時点t3でコンデンサC2にホールドされる、なお、読取光源部20は、読取光L2を照射した後、副走査方向Yの次のライン、この場合、2ライン目まで移送される。
時点t3以降、コンデンサC2に保持された基準レベルと信号レベルの合成レベルに対応する出力(合成出力)V2[ボルト]が差分アンプ34の被減算入力側に供給される。
よって、この時点t3で、差分アンプ34の出力側に基準レベルが差し引かれた信号レベルに対応する出力(信号出力)V3{V3=V2(基準出力V1と信号出力の合成出力)−V1(基準出力)}が得られる。
時点t3〜t4間では、スイッチS3がオン状態とされて積分電圧がリセットされるが、スイッチS1、S2はオフ状態となっているので、その期間内でA/D変換器35により差分アンプ34の出力側に現れている信号出力V3がA/D変換され、信号出力V3に対応するデジタル画像信号Diが生成される。
このようにして時点t1〜t4の間で各線状電極15aから副走査方向Yの1ライン目の各画素に対応するデジタル画像信号Di(i=1,2,3,…,X−1,X+1,…,L−1,L)が生成される。以下、同様にして、時点t4以降、副走査方向Yの2ライン目以降の各画素に対応するデジタル画像信号Diが生成される。
次に、図7及び図8のタイミングチャートを参照して、主走査方向XのXchに設けられた、電荷信号iの残留成分irによる出力(残留出力)の有無を検出する信号検出装置30Aの動作について説明する。
図7のタイミングチャートは、電荷信号iの残留成分ir(図8を参照して後述する。)による出力ΔV(残留出力、図8を参照して後述する。)が無いことを検出した場合を、図8のタイミングチャートは、電荷信号iの残留成分irによる出力ΔV(残留出力)が有ることを検出した場合のタイミングチャートをそれぞれ示している。
この信号検出装置30Aでは、図7に示すように、基準トラックホールド回路31のスイッチS1Aが常時オフ状態(ホールド状態)とされ、したがって、基準レベルに対応する出力V1は、0V[ボルト]にホールドされる。
図7の時点t0〜時点t1のリセット期間Trにおいて、積分アンプ33のスイッチS3Aがオン状態とされ、コンデンサC3に充電されていた電荷が放電される。
図7の時点t1において、リセットが終了すると、信号トラックホールド回路32のスイッチS2Aが時点t1から基準トラック期間Tnに相当する期間の時点t2までオン状態とされる(時点t1〜時点t2)。
図7の時点t2において、読取光源部20からの読取光L2が読取用光導電層14に照射開始され、蓄電部16に蓄積されていた電荷が線状電極15aを通じて電荷信号iとして積分アンプ33に供給される。
電荷信号iは、図7に示すように、読取光源部20の発光開始時点t2から出力された当初最大値まで急激に上昇し、以降概ね徐々に低下するように経時的に変化する信号である。この電荷信号iが時点t2以降積分アンプ33で積分され、積分出力が得られる。
この場合、信号トラック期間Tsと同一の期間内に、すなわち時点t3までに、換言すれば次のリセットが開始される前に、電荷信号iが全て積分アンプ33に流れ込み消滅してゼロ値になっていれば、蓄電部16に蓄積されていた電荷(電荷量)に比例した出力が信号トラックホールド回路32により得られる。また、図7に示すように、時点t4までに、換言すれば次のリセットが終了する前に、電荷信号iが全て積分アンプ33に流れ込み消滅してゼロ値になっていれば、積分電圧はリセットされてゼロ値となっているので、時点t4〜t5間でスイッチS2Aが基準トラック期間Tnの間オン状態となっていても、コンデンサC2には基準出力(積分アンプ33の入出力端の電圧値で略ゼロ値)がトラックされている。
次に、時点t5から一定期間A/D変換器35により差分アンプ34の出力側に現れている信号出力V3がデジタル画像信号(残留成分検出信号)DXとして制御回路38に取り込まれるが、この場合、信号出力V3は、V3=V2−V1=0−0=0なので、電荷信号iの残留成分irによる出力は無いと検出される。
その一方、図8の時点t4に示すように、放射線画像記録装置10から供給される電荷信号iの残留成分irがゼロ値ではなく残存している場合には、この残留成分irが時点t4〜時点t5間で積分アンプ33により積分され、その積分電圧が、時点t5でS2Aがオフ状態とされたときにコンデンサC2にホールドされた残留出力V2とされ、時点t5から一定期間A/D変換器35により差分アンプ34の出力側に現れている信号出力V3がデジタル画像信号DXとして制御回路38に取り込まれるが、信号出力V3は、V3=V2−V1=ΔV−0=ΔVとなるので、電荷信号iの残留成分irによる残留出力ΔVが有ると時点t5´で検出される。
この実施形態では、電荷信号iの残留成分irによる残留出力ΔVが有ると時点t5´で検出したとき、制御回路38は、検出した残留出力ΔVの値[ボルト]に応じて、積分アンプ33による次のリセット期間Tr以降を、延長期間Δtだけ長くし、リセット期間Trをリセット期間Tra(Tr+Δt)する。
具体的には、図9に示すように、時点t5´でA/D変換器35の出力であるデジタル画像信号DXの値により残留出力ΔVが有ると検出したとき、次のリセットの開始時点t6点において、スイッチS2Aもオン状態としてコンデンサC2の電荷を放電させ、出力V2を残留出力ΔVからゼロ値(積分アンプ33の入出力端子間の電圧)とする。そして、リセット期間Trを残留出力ΔVに応じた値に長くしたリセット期間Tra(Tr+Δt)とする。リセット期間Tra(Tr+Δt)と長くしたことで、リセットの終了時点t7aにおいて、電荷信号iの残留成分irはゼロ値になっている。このように、延長期間Δtは、リセットの終了時点t7aにおいて電荷信号iの残留成分irがゼロ値になっていることを見越した(推定した)期間に設定する。高速動作を維持するよう最適な(なるべく短い)延長期間Δtを設定するために、予め、ばらつきを考慮した残留出力ΔVに対応した延長期間Δtを読み出すためのルックアップテーブル又は算出するための計算式を求めて制御回路38に記憶しておくことが好ましい。
信号検出装置30Aにより時点t5と時点t6との間で残留成分irを検出し、時点t6以降でリセット期間Tra(Tr+Δt)と長くすることを決定した場合、図10の残留成分対策後信号通常検出タイミングチャートに示すように、時点t6以降、同様に、長くしたリセット期間Tra(Tr+Δt)を他の信号検出装置30に適用することで、信号検出装置30のバッファアンプ37並びに差分アンプ34からリニアリティが維持された出力V3を得ることができる。
以上説明したように、上述した実施形態によれば、電荷信号iを積分して積分電圧を生成するとともに、前記積分電圧をリセットするリセット機能を有する積分アンプ33と、積分アンプ33の出力側に並列に接続され、相関2重サンプリング回路を構成する基準トラックホールド回路31と信号トラックホールド回路32と、基準及び信号トラックホールド回路の両出力V1,V2の差信号出力V3を出力する差分アンプ34と、制御回路38とを備え、制御回路38は、基準トラックホールド回路31をホールド状態として基準トラックホールド回路31の出力V1を基準レベルに保持させた状態で、積分アンプ33をリセットさせ、その後、信号トラック期間(所定期間)Tsの間信号トラックホールド回路32をトラックさせた後ホールドさせたとき、当該トラックの開始時点t1から当該ホールド時点t3までの間の信号トラックホールド回路32の出力V2により、電荷信号iの残留成分irによる残留出力ΔVの有無を検出するようにしている。
このため、信号トラックホールド回路32の出力V2によりバッファアンプ37並びに差分アンプ34が飽和する可能性を検出することができる。
そして、制御回路38は、電荷信号iの残留成分irによる残留出力ΔVが有ることを検出したとき、検出した残留成分irによる残留出力ΔVのレベルに応じて、積分アンプ33のリセット期間Trをリセット期間Traと長くして、電荷信号iの残留成分irによる残留出力ΔVがゼロ値となるようにタイミングを制御する。このように制御することで、信号トラックホールド回路32のダイナミックレンジ(すなわちバッファアンプ37のダイナミックレンジ)並びに差分アンプ34のダイナミックレンジを最小限度としながら、出力を飽和させないでリニアリティを確保することすることができる。
また、制御回路38は、放射線画像記録装置10の全面の電荷信号iを検出する際に、複数の信号検出装置30のうち、少なくとも1つの信号検出装置30Aを異なるタイミングに設定している。すなわち、信号検出装置30Aの基準トラックホールド回路31を常時ホールド状態として基準トラックホールド回路31の出力V1を基準レベルに保持させた状態で、積分アンプ33をリセットさせ、その後、信号トラック期間(所定期間)Tsの間信号トラックホールド回路32をトラックさせた後ホールドさせたとき、当該トラックの開始時点t4と当該ホールド時点t5までの間の信号トラックホールド回路32の出力V2により、電荷信号iの残留成分irによる残留出力ΔVの有無を検出するようにしている。
この場合、信号検出装置30Aにより、残留成分irによる残留出力ΔVが有ることが検出されたとき(時点t5´)、検出された残留成分irによる残留出力ΔVのレベルに応じて、これ以降に差信号出力V3を得る信号検出装置30,30Aの積分アンプ33のリセット期間Trを長くしたリセット期間Tra(Tra=Tr+Δt)として、電荷信号iの残留成分irによる残留出力ΔVがゼロ値となるようにタイミングを制御している。
信号検出装置30Aを設けた場合には、信号検出装置30Aのデジタル画像信号DXは、主走査方向Xの両隣のDX−1chとDX+1chの信号検出装置30のデジタル画像信号DX−1とデジタル画像信号DX+1の平均値(補間した値)とすることが好ましい。
なお、蓄電部16に蓄積される電荷は、被写体40の透過部40a、すなわち被写体40の存在しない、いわゆる素抜け部で最大となり、一般的には、脂肪部、筋肉部、臓器部ではより小さくなり、骨部等では最小となる。
そこで、例えば、図11に示すように被写体40Mが、マンモ等である場合、副走査方向Yの先頭の主走査方向Xの1ライン目から最初に出力される、いわゆる素抜け部(透過部)140の電荷信号iの残留成分irによる残留出力ΔVの有無を検出し、残留成分irによる残留出力ΔVが有ることが検出されたとき、検出された残留成分irによる残留出力ΔVのレベルに応じて、これ以降に前記差信号出力V3を得る副走査方向Yの2ライン目から信号検出装置30の積分アンプ33のリセット期間Trを長くするように制御することで、Dxchの信号検出装置30Aの副走査方向Yの2ライン目以降の制御タイミングは、残留成分対策後通常検出タイミング(図10)を用いるようにすれば、上記したように、両隣のDX−1chとDX+1chの信号検出装置30のデジタル画像信号DX−1とデジタル画像信号DX+1の補間した値を用いることなく、そのまま積分出力V3をデジタル画像信号Diとして用いることができる。
さらに他の実施形態として、放射線画像信号検出システム1の初期校正時に、信号検出装置30、30Aを全て信号検出装置30Aの残留成分検出タイミング(図8)により制御して、残留成分irによる残留出力ΔVが有ることが検出されたとき、検出された残留成分irによる残留出力ΔVのレベル、好ましくは残留出力ΔVの最大値に応じて、残留出力ΔVが発生しないよう全ての信号検出装置30、30Aの積分アンプ33のリセット期間Trを長くして、本番時に、長くしたリセット期間Traの期間を用いて全ての信号検出装置30,30Aを同一の通常検出タイミング(図6)で制御し、電荷信号iによる差信号出力V3を検出する構成としてもよい。
上述した実施形態では、図9を参照して説明したように、制御回路38が、電荷信号iの残留成分irによる残留出力ΔVが有ると時点t5´で検出したとき、次のリセットの開始時点t6点において、スイッチS2Aもオン状態としてコンデンサC2の電荷を放電させた後、出力V2を残留出力ΔVからゼロ値とするため、残留出力ΔVに応じた値に長くしたリセット期間Tra(Tr+Δt)に変更するように制御しているが、さらに他の実施形態において、残留出力ΔVとして、信号トラックホールド回路32のダイナミックレンジ並びに差分アンプ34のダイナミックレンジを下回る範囲の残留出力ΔVth(ΔVth<ΔV、閾値ΔVthという。)を許容すれば、図12に示すように、リセット期間Tra(図9参照)をより短いリセット期間Trb(Tra>Trb=Tr+Δtb、Δtb<Δt)に設定することができ、より高速動作を行うことができる。
この場合、図12に示すように、時点t5´において、電荷信号iの残留成分irにより発生する残留出力ΔVを検出したとき、この残留出力ΔVが、予め設定してある上記の閾値ΔVthを下回る値となる延長期間Δtb(Δtb<Δt)を算出し、リセット期間Trb(Tr<Trb=Tr+Δtb)に設定する。この図12のタイミングチャートでは、延長期間Δt(図9参照)を延長期間Δtbに短くしたことで、時点t6b〜時点t7bに示すように、残留出力ΔVがゼロ値ではなく残留成分ir´を積分した残留出力ΔVb(ΔVb<ΔVth)になっていることが分かる。
なお、上記実施形態においては、信号検出装置30,30Aに入力される電荷信号iを出力するものとして、いわゆる光読取方式の放射線画像検出器を用いたもの説明したが、これに限らず、たとえば、いわゆるTFT方式の放射線画像検出器を用いるようにしてもよいし、また、蓄積性蛍光体シートから発せられた輝尽発光光を光電変換素子により検出して電荷信号を出力する放射線画像検出器を用いるようにしてもよい。
また、上記実施形態においては、放射線源、放射線画像記録装置10、読取光源部20および信号検出装置30,30Aから放射線画像信号検出システム1を構成するようにしたが、放射線源を設けずに放射線画像記録装置10、読取光源部20および信号検出装置30から放射線画像信号検出システムを構成するようにしてもよい。
なお、この発明は、上述の実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。
この発明の信号検出装置の一実施形態を用いた放射線画像信号検出システムの概略構成図である。 図1に示す放射線画像信号検出システムにおける信号検出装置の回路説明図である。 図1に示す放射線画像信号検出システムにおける放射線画像記録装置の概略構成図である。 図1に示す放射線画像信号検出システムの他の実施形態の概略構成図である。 図5Aは、放射線画像記録装置に放射線を照射し、放射線画像を記録している状態の説明図、図5Bは、放射線画像記録装置に読取光を照射し、電荷信号を読み出す状態の説明図である。 放射線画像信号検出システムにおける信号検出装置の通常検出動作タイミングを説明するためのタイミングチャートである。 放射線画像信号検出システムにおける信号検出装置の残留成分検出動作タイミング(残留成分非検出)を説明するためのタイミングチャートである。 放射線画像信号検出システムにおける信号検出装置の残留成分検出動作タイミング(残留成分検出)を説明するためのタイミングチャートである。 放射線画像信号検出システムにおける信号検出装置の残留成分検出動作タイミング(残留成分検出後リセット期間延長)を説明するためのタイミングチャートである。 放射線画像信号検出システムにおける信号検出装置の残留成分対策後通常検出動作タイミングを説明するためのタイミングチャートである。 放射線画像信号検出システムにおける信号検出装置の残留成分検出動作の他のタイミングを説明するための説明図である。 放射線画像信号検出システムにおける信号検出装置の残留成分検出動作タイミング(残留成分検出後リセット期間延長)の他の例を説明するためのタイミングチャートである。
符号の説明
1…放射線画像信号検出システム
10…放射線画像記録装置
11…第1の電極層
12…記録用光導電層
13…電荷輸送層
14…読取用光導電層
15…第2の電極層
16…蓄電部
20…読取光源部
30,30A…信号検出装置
33…積分アンプ
31…基準トラックホールド回路
32…信号トラックホールド回路
34…差分アンプ
35 …A/D変換器
38…制御回路
40,40M…被写体
140…素抜け部

Claims (9)

  1. 電荷信号を積分して積分電圧を生成するとともに、前記積分電圧をリセットするリセット機能を有する積分アンプと、
    前記積分アンプの出力側に並列に接続され、相関2重サンプリング回路を構成する基準トラックホールド回路と信号トラックホールド回路と、
    前記基準及び信号トラックホールド回路の両出力の差信号を出力する差分アンプと、
    前記基準トラックホールド回路をホールド状態として前記基準トラックホールド回路の出力を基準レベルに保持させた状態で、前記積分アンプをリセットさせ、その後、所定期間、前記信号トラックホールド回路をトラックさせた後ホールドさせたとき、当該トラックの開始時点から当該ホールド時点までの間の前記信号トラックホールド回路の出力から、前記電荷信号の残留成分により発生する電圧出力のレベルを検出する制御回路と、
    を備えることを特徴とする信号検出装置。
  2. 請求項1記載の信号検出装置において、
    前記制御回路は、
    検出した、前記電荷信号の前記残留成分により発生する前記電圧出力のレベルが、予め設定した閾値を下回る値となるまで前記積分アンプのリセット期間を長くする
    ことを特徴とする信号検出装置。
  3. 複数の電荷信号をそれぞれ積分してそれぞれの積分電圧を生成するとともに、それぞれの前記積分電圧をリセットするリセット機能をそれぞれ有する複数の積分アンプと、
    前記各積分アンプの出力側に並列に接続され、相関2重サンプリング回路を構成する基準トラックホールド回路と信号トラックホールド回路と、
    前記基準及び信号トラックホールド回路の出力の差信号をそれぞれ出力する複数の差分アンプと、
    をそれぞれ備える複数の信号検出装置と、
    制御回路と、を有し、
    前記制御回路は、
    前記複数の信号検出装置のうち、少なくとも1つの信号検出装置に対して、
    前記基準トラックホールド回路をホールド状態として前記基準トラックホールド回路の出力を基準レベルに保持させた状態で、前記積分アンプをリセットさせ、その後、所定期間、前記信号トラックホールド回路をトラックさせた後ホールドさせたとき、当該トラックの開始時点と当該ホールド時点までの間の前記信号トラックホールド回路の出力から、前記電荷信号の残留成分により発生する電圧出力のレベルを検出するよう制御する
    ことを特徴とする信号検出システム。
  4. 請求項3記載の信号検出システムにおいて、
    前記制御回路は、
    前記少なくとも1つの信号検出装置により検出した、前記電荷信号の前記残留成分により発生する前記電圧出力のレベルが、予め設定した閾値を下回る値となるよう、これ以降に前記差信号を得る前記信号検出装置の前記積分アンプのリセット期間を長くするように制御する
    ことを特徴とする信号検出システム。
  5. 請求項3記載の信号検出システムにおいて、
    前記制御回路は、
    初期校正時に、前記少なくとも1つの信号検出装置により検出した、前記電荷信号の前記残留成分により発生する前記電圧出力のレベルが、予め設定した閾値を上回る値で有るとき、本番時に、前記電圧出力のレベルが、予め設定した前記閾値を下回る値となるよう、他の前記信号検出装置の前記積分アンプのリセット期間を長くして前記電荷信号による前記差信号を得る
    ことを特徴とする信号検出システム。
  6. 放射線源から射出されて被写体を通過した放射線の照射を受けて放射線画像を記録し、その放射線画像に応じた複数の電荷信号を出力する放射線画像記録装置からの複数の前記電荷信号をそれぞれ積分してそれぞれの積分電圧を生成するとともに、それぞれの前記積分電圧をリセットするリセット機能をそれぞれ有する複数の積分アンプと、
    前記各積分アンプの出力側に並列に接続され、相関2重サンプリング回路を構成する基準トラックホールド回路と信号トラックホールド回路と、
    前記基準及び信号トラックホールド回路の出力の差信号をそれぞれ出力する複数の差分アンプと、
    をそれぞれ備える複数の信号検出装置を有し、
    複数の前記電荷信号中、最初に出力される電荷信号において、前記基準トラックホールド回路をホールド状態として前記基準トラックホールド回路の出力を基準レベルに保持させた状態で、前記積分アンプをリセットさせ、その後、所定期間、前記信号トラックホールド回路をトラックさせた後ホールドさせたとき、当該トラックの開始時点から当該ホールド時点までの間の前記信号トラックホールド回路の出力から、前記電荷信号の残留成分により発生する電圧出力のレベルを検出し、検出した、前記電荷信号の前記残留成分により発生する前記電圧出力のレベルが、予め設定した閾値を下回る値となるよう、これ以降に前記差信号を得る前記信号検出装置の前記積分アンプのリセット期間を長くする制御回路と、
    を備えることを特徴とする放射線画像信号検出システム。
  7. 積分電圧をリセットするリセット機能を有する積分アンプにより電荷信号を積分する過程と、
    前記積分アンプの出力側に並列に接続され、相関2重サンプリング回路を構成する基準トラックホールド回路と信号トラックホールド回路の出力を差分アンプにより差信号として出力する過程と、
    前記基準トラックホールド回路をホールド状態として前記基準トラックホールド回路の出力を基準レベルに保持した状態で、前記積分アンプをリセットさせた、その後、所定期間、前記信号トラックホールド回路をトラックさせた後ホールドしたとき、当該トラックの開始時点と当該ホールド時点までの間の前記信号トラックホールド回路の出力から、前記電荷信号の残留成分により発生する電圧出力のレベルを検出する過程と、
    を備えることを特徴とする信号検出方法。
  8. 複数の電荷信号をそれぞれ積分してそれぞれの積分電圧を生成するとともに、それぞれの前記積分電圧をリセットするリセット機能をそれぞれ有する複数の積分アンプにより複数の電荷信号をそれぞれ積分する過程と、
    前記各積分アンプの出力側に並列に接続され、相関2重サンプリング回路を構成する基準トラックホールド回路と信号トラックホールド回路の出力を各差分アンプによりそれぞれ各差信号として出力する過程と、
    前記複数の信号検出装置のうち、少なくとも1つの信号検出装置が、前記基準トラックホールド回路をホールド状態として前記基準トラックホールド回路の出力を基準レベルに保持した状態で、前記積分アンプをリセットさせ、その後、所定期間、前記信号トラックホールド回路をトラックさせた後ホールドしたとき、当該トラックの開始時点から当該ホールド時点間での前記信号トラックホールド回路の出力から、前記電荷信号の残留成分により発生する電圧出力のレベルを検出する過程と、
    を備えることを特徴とする信号検出方法。
  9. 放射線源から射出されて被写体を通過した放射線の照射を受けて放射線画像を記録し、その放射線画像に応じたライン毎の電荷信号を複数出力する放射線画像記録装置からの複数の前記電荷信号を、それぞれの積分電圧をリセットするリセット機能をそれぞれ有する複数の積分アンプによりそれぞれ積分してそれぞれの前記積分信号を生成する過程と、
    前記各積分アンプの出力側に並列に接続され、相関2重サンプリング回路を構成する基準トラックホールド回路と信号トラックホールド回路の出力を各差分アンプによりそれぞれ各差信号として出力する過程と、
    前記ライン毎の電荷信号中、最初のラインの電荷信号において、前記基準トラックホールド回路をホールド状態として前記基準トラックホールド回路の出力を基準レベルに保持した状態で、前記積分アンプをリセットさせ、その後、所定期間、前記信号トラックホールド回路をトラックさせた後ホールドしたとき、このトラック開始時点とホールド時点間での前記信号トラックホールド回路の出力から、前記電荷信号の残留成分により発生する電圧出力のレベルを検出し、検出した、前記電荷信号の前記残留成分により発生する前記電圧出力のレベルが、予め設定した閾値を下回る値となるよう、これ以降に前記差信号を得る前記信号検出装置の前記積分アンプのリセット期間を長くする過程と、
    を備えることを特徴とする放射線画像信号検出方法。
JP2007253446A 2007-09-28 2007-09-28 信号検出装置、信号検出システム、放射線画像信号検出システム、信号検出方法、及び放射線画像信号検出方法 Active JP4971092B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007253446A JP4971092B2 (ja) 2007-09-28 2007-09-28 信号検出装置、信号検出システム、放射線画像信号検出システム、信号検出方法、及び放射線画像信号検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007253446A JP4971092B2 (ja) 2007-09-28 2007-09-28 信号検出装置、信号検出システム、放射線画像信号検出システム、信号検出方法、及び放射線画像信号検出方法

Publications (2)

Publication Number Publication Date
JP2009088774A true JP2009088774A (ja) 2009-04-23
JP4971092B2 JP4971092B2 (ja) 2012-07-11

Family

ID=40661640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007253446A Active JP4971092B2 (ja) 2007-09-28 2007-09-28 信号検出装置、信号検出システム、放射線画像信号検出システム、信号検出方法、及び放射線画像信号検出方法

Country Status (1)

Country Link
JP (1) JP4971092B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9984620B2 (en) 2015-02-04 2018-05-29 Samsung Display Co., Ltd. Current sensing circuit and organic light emitting display device including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220239A (ja) * 1990-02-27 1992-08-11 General Electric Co <Ge> 光検出器のアレイから画像データを読み出す方法及び画像検出器システム
JP2001350229A (ja) * 2000-04-05 2001-12-21 Fuji Photo Film Co Ltd 画像情報読取方法および装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220239A (ja) * 1990-02-27 1992-08-11 General Electric Co <Ge> 光検出器のアレイから画像データを読み出す方法及び画像検出器システム
JP2001350229A (ja) * 2000-04-05 2001-12-21 Fuji Photo Film Co Ltd 画像情報読取方法および装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9984620B2 (en) 2015-02-04 2018-05-29 Samsung Display Co., Ltd. Current sensing circuit and organic light emitting display device including the same

Also Published As

Publication number Publication date
JP4971092B2 (ja) 2012-07-11

Similar Documents

Publication Publication Date Title
US11686691B2 (en) Radiation imaging apparatus, radiation imaging system, and radiation imaging method
JP6525579B2 (ja) 放射線撮像装置及び放射線撮像システム
KR102314357B1 (ko) 방사선 촬상 장치 및 방사선 촬상 방법
EP3659507B1 (en) Radiation image capturing device
JP2016025416A (ja) 放射線撮像装置及び放射線撮像システム
JP6159062B2 (ja) 撮影装置およびその制御方法
JP4448042B2 (ja) 信号検出方法および装置並びに放射線画像信号検出方法およびシステム
JP5988735B2 (ja) 放射線撮像装置の制御方法、放射線撮像装置、及び、放射線撮像システム
WO2019244456A1 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラム
JP4971092B2 (ja) 信号検出装置、信号検出システム、放射線画像信号検出システム、信号検出方法、及び放射線画像信号検出方法
JP2005269215A (ja) 信号検出方法および装置並びに放射線画像信号検出方法およびシステム
JP4265964B2 (ja) 放射線画像読取方法および装置
JP2009207048A (ja) 放射線画像信号検出システム及びその方法
US9906750B2 (en) Image pickup device driving method, image pickup device, and image pickup system using reset cancellation
WO2022244495A1 (ja) 放射線撮像装置および放射線撮像システム
JP7319809B2 (ja) 放射線撮像装置、その制御方法及び放射線撮像システム
JP2015019155A (ja) 放射線撮像システム
WO2015005259A1 (ja) 放射線撮像装置及び放射線撮像システム
JP2022176882A (ja) 放射線撮像装置および放射線撮像システム
JP6304983B2 (ja) 焦点検出装置、光電変換システム、焦点検出装置の駆動方法
JP2020081664A (ja) 放射線撮像装置および放射線撮像の制御方法
JP2021197597A (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラム
JP2005164415A (ja) 放射線画像読取装置および放射線画像検出器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250