JP2021197597A - 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラム - Google Patents

放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラム Download PDF

Info

Publication number
JP2021197597A
JP2021197597A JP2020101692A JP2020101692A JP2021197597A JP 2021197597 A JP2021197597 A JP 2021197597A JP 2020101692 A JP2020101692 A JP 2020101692A JP 2020101692 A JP2020101692 A JP 2020101692A JP 2021197597 A JP2021197597 A JP 2021197597A
Authority
JP
Japan
Prior art keywords
radiation imaging
radiation
image
sampling time
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020101692A
Other languages
English (en)
Inventor
祐貴 岩渕
Yuki Iwabuchi
朋之 八木
Tomoyuki Yagi
孔明 石井
Yoshiaki Ishii
裕 石成
Yutaka Ishinari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020101692A priority Critical patent/JP2021197597A/ja
Publication of JP2021197597A publication Critical patent/JP2021197597A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】放射線撮像装置において、放射線撮像装置の温度の変化による画質の低下の抑制と、撮像する際のフレームレートの低下の抑制と、の両立に有利な技術を提供する。【解決手段】入射した放射線に応じた電荷を生成する画素と、画素から転送された電荷に応じた信号を増幅する積分増幅器と、画素から積分増幅器に信号が転送された後の積分増幅器の出力をサンプリングし保持するサンプルホールド回路と、制御部と、を含む放射線撮像装置であって、制御部は、放射線撮像装置の温度情報に基づいて、積分増幅器の出力をサンプルホールド回路にサンプリングさせる際のサンプリング時間を変化させる。【選択図】図3

Description

本発明は、放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラムに関する。
医療画像診断や非破壊検査において、放射線撮像装置が広く使用されている。特許文献1には、画素で生成された信号を、積分増幅器を介してサンプリングする撮像装置が示されている。
特開2016−198209号公報
特許文献1に示される積分増幅器の信号出力は、画素で生成された電荷に応じた信号を積分増幅器に転送するためのスイッチ素子のオンとオフとが切り替わる際に、スイッチ素子のゲートからの電荷注入に起因して変化する。具体的には、スイッチ素子をオン状態にすると、積分増幅器の出力電圧が信号値に応じた電圧から変化し、スイッチ素子をオフ状態にすると、積分増幅器の出力電圧が信号値に応じた電圧に戻ろうとする。スイッチ素子をオフ状態にしてから積分増幅器の出力電圧が信号値に応じた電圧に戻る応答時間の間に、信号のサンプリングを終了した場合、応答が完了しなかった分がオフセットとして画素信号に現れてしまうため、応答時間は十分に取る必要がある。特許文献1には、応答時間を短くするために、積分増幅器の出力をサンプリングする際のローパスフィルタの時定数を下げることが示されているが、応答時間を短くすることには限界がある。また、応答時間は、放射線撮像装置の温度によって変化する。応答時間が長い条件にサンプリング時間を合わせた場合、応答時間が短い条件において、撮像する際のフレームレートに制限が生じてしまう。
本発明は、放射線撮像装置の温度の変化による画質の低下の抑制と、撮像する際のフレームレートの低下の抑制と、の両立に有利な技術を提供することを目的とする。
上記課題に鑑みて、本発明の実施形態に係る放射線撮像装置は、入射した放射線に応じた電荷を生成する画素と、画素から転送された電荷に応じた信号を増幅する積分増幅器と、画素から積分増幅器に信号が転送された後の積分増幅器の出力をサンプリングし保持するサンプルホールド回路と、制御部と、を含む放射線撮像装置であって、制御部は、放射線撮像装置の温度情報に基づいて、積分増幅器の出力をサンプルホールド回路にサンプリングさせる際のサンプリング時間を変化させることを特徴とする。
上記手段によって、放射線撮像装置の温度の変化による画質の低下の抑制と、撮像する際のフレームレートの低下の抑制と、の両立に有利な技術を提供する。
本実施形態に係る放射線撮像装置を含む放射線撮像システムの構成例を示す図。 図1の放射線撮像装置の撮像部の構成例を示す図。 図1の放射線撮像装置の読出回路の構成例を示す図。 図1の放射線撮像装置の動作を説明するタイミング図。 図1の放射線撮像装置の積分増幅器の出力を説明する図。 図1の放射線撮像装置の動作を説明するタイミング図。 図1の放射線撮像装置の動作を説明するフロー図。
以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
また、本発明における放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギを有するビーム、例えばX線や粒子線、宇宙線なども含みうる。
図1〜7を参照して、本実施形態による放射線撮像装置の構成、および、制御方法について説明する。図1は、本実施形態における放射線撮像装置100を備える放射線撮像システムRISの構成例を示す図である。放射線撮像システムRISは、放射線を被検体に照射し被検体を透過した放射線を検出することによって被検体の放射線画像を得る。放射線撮像システムRISは、放射線撮像装置100、制御装置111、放射線撮像装置100に放射線を照射する放射線源112、曝射制御装置113を含む。曝射制御装置113は、操作者による曝射指令に応答して放射線源112に放射線を発生させる。制御装置111は、放射線撮像装置100を制御し、また、放射線撮像装置100から放射線画像を取得して表示装置(不図示)へ表示する画像を処理する画像処理装置として機能する。また、制御装置111は、曝射制御装置113を制御する。
放射線撮像装置100は、放射線画像を撮像する撮像部104、制御装置111との通信を行う通信部107、撮像部104の各構成要素を制御する制御部106、撮像部104に電力を供給する電源部108を含む。また、放射線撮像装置100は、撮像部104から出力された画像を解析する解析部109、画像の演算処理を行う処理部105を備えうる。放射線撮像装置100の構成要素の一部は、制御装置111に組み込まれていてもよい。また、放射線撮像装置100および制御装置111は、一体化されていてもよい。例えば、図1に示された構成では、解析部109および処理部105が放射線撮像装置100に組み込まれているが、解析部109および処理部105は、制御装置111に組み込まれていてもよい。
撮像部104は、画素アレイ101、走査回路102、読出回路103を含む。画素アレイ101は、複数の行および複数の列を構成するように、入射した放射線に応じた電荷を生成する複数の画素PIXが配されている。走査回路102は、複数のモード(撮影モード)のうち選択されたモードに従って画素アレイ101の複数の行を走査する。読出回路103は、画素アレイ101から信号を読み出す。より具体的には、読出回路103は、画素アレイ101の複数の行のうち走査回路102による走査において選択された行の画素の信号を読み出す。画素アレイ101からの信号の読み出しは、画素アレイ101から出力される信号を処理し、画素アレイから出力された信号に対応する信号を出力することを意味する。
図2には、撮像部104の等価回路の例が示されている。また、図3には、読出回路103の等価回路の例が示されている。画素PIXは、例えば、放射線を電荷に変換する変換素子201と、その電荷に応じた信号を出力するスイッチ素子202とを含みうる。一例において、変換素子201は、放射線を光電変換素子で検出可能な光に変換するシンチレータと、光を電荷に変換する光電変換素子とを組み合わせた間接型の変換素子でありうる。光電変換素子は、ガラス基板などの絶縁性基板上に配され、アモルファスシリコンを主材料とするPIN型フォトダイオードまたはMIS型フォトダイオードであってもよい。また、変換素子201として、入射した放射線を直接電荷に変換する直接型の変換素子が用いられてもよい。
スイッチ素子202には、制御端子と2つの主端子を有するトランジスタが用いられうる。例えば、薄膜トランジスタ(TFT)が、スイッチ素子202として用いられてもよい。変換素子201の一方の電極は、スイッチ素子202の2つの主端子のうち一方に電気的に接続され、他方の電極は共通のバイアス線Vsを介して電源部108に電気的に接続される。図2では、変換素子201を相互に区別するために、変換素子201にSij(iは行の番号、jは列の番号を示す)の符号が付されている。また、スイッチ素子202を相互に区別するために、スイッチ素子202にTij(iは行の番号、jは列の番号を示す)の符号が付されている。ここで、図2において行方向は、後述する駆動線Gに沿った横方向、列方向は、後述する信号線Sigに沿った縦方向である。
1つの行を構成する複数の画素PIXのそれぞれのスイッチ素子202の制御端子は、当該行の駆動線Gi(iは行の番号)に接続されている。例えば、第1行を構成する複数の画素PIXのスイッチ素子202(T11〜T1n)の制御端子は、第1行の駆動線G1に電気的に接続されている。したがって、走査回路102による画素アレイ101の複数の画素PIXの駆動の最小単位は、1つの行を構成する画素PIXである。
1つの列を構成する複数の画素PIXのスイッチ素子202の他方の主端子は、当該列の信号線Sigj(jは列の番号)に接続されている。例えば、第1列を構成する複数の画素PIXのスイッチ素子202(T11〜Tm1)の主端子は、第1列の信号線Sig1に電気的に接続されている。スイッチ素子202が導通状態である間、変換素子201で生成された電荷に応じた信号が信号線Sigjを介して読出回路103に出力される。複数の信号線Sig1〜Signは、読出回路103に電気的に接続される。
読出回路103は、画素アレイ101から複数の信号線Sig1〜Signを介して並列に出力された複数の信号をそれぞれ増幅する複数の増幅回路300を含む。図3には、1つの信号線Sigjに接続された増幅回路300が示されている。また、図3では、1つの画素PIXが示されているが、図2に示されるように、それぞれの信号線Sigjには、複数の画素PIXが接続されうる。
増幅回路300は、積分増幅器302、サンプリング部303、差動回路304、305を含みうる。積分増幅器302は、画素PIX信号線Sigjを介してから転送された電荷に応じた信号を増幅する。サンプリング部303は、積分増幅器302の出力をサンプリングし保持する。差動回路304、305は、サンプリング部303の出力をバッファリングする。
積分増幅器302は、演算増幅器311、帰還容量312、リセットスイッチ313を含みうる。演算増幅器311は、信号線Sigjを介して画素PIXから信号を受ける反転入力端子、基準電源110から基準電圧Vrefを受ける非反転入力端子、出力端子を有する。帰還容量312およびリセットスイッチ313は、反転入力端子と出力端子との間に並列に配置される。帰還容量312は、可変の容量値Cfを有しうる。サンプリング部303は、相関二重サンプリング(CDS:correlated double sampling)を行うCDS回路341およびCDS回路342を含む。また、サンプリング部303は、スイッチ321、抵抗素子322を含みうる。CDS回路341は、サンプルホールド回路323とサンプルホールド回路324とを備え、積分増幅器302の出力に基づいて相関二重サンプリングを行う。差動回路304は、バッファアンプなどの差動アンプで構成されうる。差動回路304は、サンプルホールド回路323が保持する信号とサンプルホールド回路324が保持する信号との差分を差動増幅して出力する。CDS回路342は、サンプルホールド回路333とサンプルホールド回路334とを備え、積分増幅器302の出力に基づいて相関二重サンプリングを行う。差動回路305は、バッファアンプなどの作動アンプで構成されうる。差動回路305は、サンプルホールド回路333が保持する信号とサンプルホールド回路334が保持する信号との差分を差動増幅して出力する。図3に示される構成において、相関二重サンプリングを行うための回路が、CDS回路341とCDS回路342との2つ配されているが、1つであってもよい。
サンプルホールド回路323は、スイッチ325、コンデンサ326を含みうる。サンプルホールド回路323は、積分増幅器302の出力を、抵抗素子322とコンデンサ326とによって構成されるローパスフィルタの処理を行った上でコンデンサ326に保持する。抵抗素子322は、スイッチ321で選択的に有効にするか無効にするかを設定することが可能である。つまり、スイッチ321をオン状態またはオフ状態にすることによって、ローパスフィルタを構成する抵抗値が変化し、ローパスフィルタの時定数(カットオフ周波数)を変化させることができる。
同様に、サンプルホールド回路324は、スイッチ327、コンデンサ328を含みうる。また、サンプルホールド回路333は、スイッチ335、コンデンサ336を含みうる。同様に、サンプルホールド回路334は、スイッチ337、コンデンサ338を含みうる。
読出回路103は、さらに、マルチプレクサ306、バッファアンプ307、A/D変換器308を含みうる。マルチプレクサ306は、複数の増幅回路300から並列に出力される信号を順次に選択して画像信号として出力する。バッファアンプ307は、マルチプレクサ306から出力される画像信号をインピーダンス変換して画像信号Voutとしてのアナログ信号を出力する。A/D変換器308は、バッファアンプ307から出力された画像信号Voutをデジタルの画像データに変換し、処理部105および解析部109に出力する。この画像信号の検出が信号線Sig1から信号線Signに接続された増幅回路300ごとに行われ、1行分の画像信号が取得できる。さらに、この動作を駆動線G1から駆動線Gmまで繰り返し走査することによって、最終的に放射線撮像装置100の画素アレイ101の全面のデジタルの画像データが得られる。
次いで、図4(a)、4(b)を用いて放射線撮像装置100の動作を説明する。図4(a)、4(b)は、放射線撮像装置100の撮像動作を説明するためのタイミング図である。本実施形態において、放射線撮像装置100は行単位で画素の出力動作を行う。ここで、1フレーム期間は、蓄積動作を行う期間と読出動作を行う期間とを含む。蓄積動作は、画素PIXが、照射された放射線に応じた電荷を蓄積する動作である。読出動作は、制御部106の制御に従って、走査回路102が行ごとにスイッチ素子202を導通状態(オン状態)にさせ、読出回路103によって画素アレイ101から1フレーム分の信号を読み出す動作である。
放射線撮像装置100は、図4(a)に示されるように、操作者によって曝射スイッチが押下され、放射線が照射されるまで、画素リセット動作を繰り返し行いうる。画素リセット動作は、読出動作と同様に走査回路102によって行単位の走査を繰り返すことで、放射線撮像装置100の画素アレイ101の全面の画素PIXをリセットする動作である。
曝射スイッチが押されて放射線が照射されると、画素アレイ101に放射線が照射され、変換素子S11〜Smnには照射された放射線に応じた電荷が生成される。次に、放射線撮像装置100は以下に示すリセット動作を開始する。制御部106から制御信号RSTが与えられたリセットスイッチ313が導通状態となることによって帰還容量312がリセットされ、積分増幅器302がリセットされる。次いで、リセットスイッチ313が非導通状態(オフ状態)となることにより、リセット動作が終了する。ここで、リセット動作はリセットスイッチ313の導通状態となる動作であり、画素PIXからCDS回路341、342までの伝送経路の電位を規定された初期値に戻す動作である。
次に、放射線撮像装置100は、以下に示すノイズ成分のサンプルホールド動作を行う。制御部106からサンプリング部303に制御信号ODDCDS1が与えられる。これによって、CDS回路341のサンプルホールド回路323のスイッチ325が導通状態となり、リセットされた積分増幅器302の出力(ノイズ成分)がコンデンサ326に転送される。次いで、スイッチ325が非導通状態となり、ノイズ成分がコンデンサ326に保持される。これによって、ノイズ成分のサンプルホールド動作が終了する。
次いで、放射線撮像装置100は、以下に示す1行目に配された画素PIXから信号を出力させる出力動作を行う。ここで、1行目の出力動作の開始は、走査回路102から1行目の駆動線G1に与えられる駆動信号の立ち上がりによって規定され、1行目の画素PIXのスイッチ素子202(T11〜T1n)が導通状態となる。これによって、1行目の変換素子201(S11〜S1n)で生成された電荷に応じたアナログの信号が、それぞれの画素PIXから信号配線Sig1〜Signを介して並列に読出回路103に読み出される。その後、駆動配線G1の駆動信号が立下がることによって、1行目に配された画素PIXのスイッチ素子202(T11〜T1n)が非導通状態となり、1行目に配された画素PIXからの出力動作が終了する。
次に、放射線撮像装置100は、以下に示す画素PIXから出力された信号のサンプルホールド動作を行う。制御部106からサンプリング部303に制御信号ODDCDS2が与えられる。これによって、CDS回路341のサンプルホールド回路324のスイッチ327が導通状態となる。これによって、読み出された1行目に配された画素PIXの信号が、積分増幅器302を介してコンデンサ328に転送される。この際に、信号には積分増幅器302のノイズ成分が重畳されている。次いで、スイッチ327が非導通状態となり、ノイズ成分が重畳した画素PIXから出力された信号がコンデンサ328に保持される。これによって、サンプルホールド回路324は、1行目に配された画素PIXから積分増幅器302に信号が転送された後の積分増幅器302の出力をサンプリングし保持する。
画素PIXから出力された信号のサンプルホールド動作の後に、放射線撮像装置100は、以下に示す信号処理動作を行う。コンデンサ326に保持されたノイズ成分と、コンデンサ328に保持されたノイズ成分が重畳した1行目、1列目に配された画素PIXから出力された信号と、がそれぞれ差動アンプである差動回路304に入力される。この入力に応じて、差動回路304から、積分増幅器302のノイズ成分が除去された信号が出力される。その後、マルチプレクサ306によって選択的に転送されたノイズ成分が除去された信号が、バッファアンプ307を介してA/D変換器308に出力される。A/D変換器308は、バッファアンプ307から出力された信号をデジタルの画像データS(1、1)に変換してデジタルデータを処理する処理部105に出力する。1行目、2列目に配された画素PIXから出力された信号は、1行目、1列目に配された画素PIXから信号を出力する動作と並行して行われ、1行目、1列目に配された画素PIXから出力された信号のA/D変換が実施された後に、マルチプレクサ306によって選択的に転送され、A/D変換器308から画像データS(1、2)が処理部105に出力される。以後同様に、1行目の3列目からn列目に対する画像データSを出力する動作が順次行われる。これによって、処理部105に画像データS(1、1)〜S(1、n)がそれぞれ出力され、1行目に配された画素PIXから出力された信号の処理動作が終了する。ここで、この信号処理動作は、ある行のリセット動作の開始から、当該行の次に行われる行のリセット動作の開始までの間に行われている。つまり、ある行の画素PIXに対する信号処理動作は、当該行の次に動作される行の画素PIXの出力動作と、時間的に並列に行われている。
以下、1行目と同様に、2行目のリセット動作、ノイズ成分のサンプルホールド動作、出力動作、信号のサンプルホールド動作、および、信号処理動作が行われる。3行目以降も同様の処理を行単位で順次繰返し、画素アレイ101に配された全ての画素PIXに対応する画像データを出力する。
ここで、起動直後など、放射線撮像装置100の温度変化が大きい場合、出力される画像データの信号値の変化が大きくなる。そのため、オフセットを補正するために取得した画像(補正画像)と、放射線画像を取得するために撮像した取得画像と、の間で、画像データの信号値の変化が大きくなり、取得画像をオフセット補正した放射線画像にアーチファクトが発生しうる。
この画像データの出力変化は、スイッチ素子202のオンとオフとの切替時におけるスイッチ素子202と積分増幅器302との間での、スイッチ素子202のゲートからの電荷注入に起因する電荷のやりとりが原因である。図5に、スイッチ素子202のオン/オフ時の積分増幅器302の出力電圧の変化が示されている。図5は、スイッチ素子202のオン/オフの切り替えに起因する積分増幅器302の出力の変動のみが示されている(画素に蓄積された信号電荷による変動は、省略されている。)。制御部106から走査回路102が駆動線Gを制御するための制御信号OEが入力され、スイッチ素子202がオン状態になると、積分増幅器302の出力電圧が、基準電圧Vrefよりも低くなる。次いで、スイッチ素子202がオフ状態になると、積分増幅器302の出力電圧が、基準電圧Vrefに戻るように変化する。この応答速度は、放射線撮像装置100の温度で変化し、放射線撮像装置100の温度が低い場合、応答が遅くなる。このとき、制御信号CDS2(上述の制御信号ODDCDS2)によって制御されるサンプルホールド回路324でのサンプリング時間が十分でない場合、図5に示されるように、オフセットが生じてしまう。結果として、サンプリング時間が十分でない場合、スイッチ素子202に残留電荷が発生する。スイッチ素子202に残留電荷が発生したときに、放射線撮像装置100の温度が変化すると、変化の前後において、スイッチ素子202に残る残留電荷の量が変化する。この残留電荷の変化量の分だけ読出回路103から出力される画像データ信号値が変化してしまい、画像にアーチファクトが発生してしまう。
発明者らによる実験によって、画素PIXから積分増幅器302に信号が転送された後の積分増幅器302の出力をサンプリングするサンプリング時間を長くすると、温度が変化した場合であっても、画像データの信号値の変化は小さいことがわかっている。しかしながら、積分増幅器302の出力をサンプリング部303にサンプリングするサンプリング時間を一律に長くした場合、サンプリング時間が長くなってしまう。この場合、例えば、動画像の撮像において、単位時間あたりの画像の取得枚数(フレームレート)が低下してしまう。
そこで、本実施形態において、制御部106は、放射線撮像装置100の温度情報に基づいて、画素PIXから積分増幅器302に信号が転送された後の積分増幅器302の出力をサンプルホールド回路324にサンプリングさせる際のサンプリング時間を変化させる。つまり、制御部106は、放射線撮像装置100の温度が低く上述の応答速度が遅い場合、放射線撮像装置100の温度が高い場合よりも長くなるように、サンプリング時間を制御する。これによって、放射線撮像装置の温度の変化による画質の低下の抑制と、撮像する際のフレームレートの低下の抑制と、の両立が可能となる。
図6は、サンプリング部303でのサンプリング時間の切り替えについて説明する図である。まず、制御部106は、制御信号RSTによって、積分増幅器302のリセットスイッチ313を一定時間、オン状態とさせて積分増幅器302をリセットする。リセットスイッチ313がオン状態の間に、制御部106は、制御信号CDS1(上述の制御信号ODDCDS1)によって、サンプルホールド回路323のスイッチ325をオン状態にさせてノイズ成分のサンプリングを開始する。このときのサンプリング時間は、制御信号OEによって制御される画素PIXから信号を読み出すスイッチ素子202をオン状態にするまでの間としている。その後、画素アレイ101に配された画素PIXから出力された信号を読み出すスイッチ素子202をオフ状態にし、一定時間経過した後に、制御部106は、制御信号CDS2によって、サンプルホールド回路324のスイッチ327をオン状態にする。これによって、画素PIXから積分増幅器302に信号が転送された後の積分増幅器302の出力をサンプリングする。このとき、サンプルホールド回路324におけるサンプリング時間を可変にすることで、応答時間が遅い場合、十分なサンプリング時間を確保し、また、応答時間が速い場合、動画像の撮像などにおいてフレームレートが低下することを抑制する。
画素PIXから積分増幅器302に信号が転送される前の積分増幅器302の出力をサンプリングする際は、スイッチ素子202のオン/オフの切り替えがない。このため、ノイズ成分のサンプリングは、画素PIXから出力された信号をサンプリングする場合と比較して、上述のような、スイッチ素子202のオン/オフの切り替えに起因する変動がない。したがって、ノイズ成分をサンプリングする時間は、放射線撮像装置100の温度によって変化させなくてもよい。また、例えば、画素PIXから積分増幅器302に信号が転送される前の積分増幅器302の出力をサンプリングする際は、設定可能なサンプリング時間のうち最短のサンプリング時間でサンプリングしてもよい。つまり、画素PIXから出力された信号をサンプルホールド回路324にサンプリングするサンプリング時間は、ノイズ成分をサンプリングするサンプリング時間と同じ長さ、または、ノイズ成分をサンプリングするサンプリング時間よりも長くなりうる。
図7は、放射線撮像装置100において、温度変化によって画像データの出力が変化し、オフセット補正の効果が得難くなることを抑制するためのサンプリング時間の切り替えプロセスを示す。図7に示される例の場合、サンプリング時間が3種類ある場合を説明するが、2種類であってもよいし、4種類以上であってもよい。任意の複数の種類のサンプリング時間が設定されうる。また、以下の説明において、制御部106が、サンプリング時間を切り替えるための演算などを行うとして説明するが、上述の処理部105、解析部109がサンプリング時間を切り替えるための演算を行ってもよい。
放射線撮像装置100の起動後、まず、設定された複数の種類のサンプリング時間でオフセット補正するための画像(補正用画像)を取得する(S701)。つまり、放射線が照射されていない状態で画素PIXから積分増幅器302に信号が転送された後の積分増幅器302の出力を、複数の種類のサンプリング時間を用いてサンプルホールド回路324にサンプリングさせ、オフセット補正用の複数の画像を取得する。次に、放射線撮像装置100の温度がある閾値を超えたか否かの判定を行う(S702)。このため、放射線撮像装置100は、放射線撮像装置100の温度を測定するための温度センサ114をさらに含む。温度センサ114は、撮像部104に配されうる。温度センサ114は、例えば、画素アレイ101に温度を測定しうる。また、例えば、温度センサ114は、積分増幅器302を含む読出回路103の温度を測定しうる。温度センサ114によって測定された温度と、サンプリング時間と、が対応していれば、何れの部分の温度を温度センサ114が測定していてもよい。温度センサ114によって測定された温度の情報を含む温度情報に基づいて、制御部106は、画素PIXから積分増幅器302に信号が転送された後の積分増幅器302の出力をサンプリングするサンプリング時間を変化させる。
オフセット補正用の画像の取得後に、温度センサ114によって測定された温度の変化が所定の範囲を越した場合(S702のYES)、放射線撮像装置100は、設定された複数の種類のサンプリング時間でオフセット補正するための複数の画像(補正用画像)を再び取得する(S703)。つまり、放射線が照射されていない状態で画素PIXから積分増幅器302に信号が転送された後の積分増幅器302の出力を、複数の種類のサンプリング時間を用いてサンプルホールド回路324にサンプリングさせ、オフセット補正用の複数の画像を取得する。
次いで、制御部106は、S701で取得したオフセット補正用の複数の画像とS703で取得したオフセット補正用の複数の画像に基づいて、複数の種類のサンプリング時間のうち放射線画像用の撮像の際に用いるサンプリング時間を選択するための温度特性の変化量を算出する(S704)。温度特性の変化量は、例えば、以下の方法を用いて取得する。S701において、オフセット補正用の画像を取得した際に温度センサ114で取得した温度と、S703において、オフセット補正用の画像を取得した際に温度センサ114で取得した温度と、の温度の変化量をΔT12とする。また、複数の種類のサンプリング時間のうち同じサンプリング時間のS701で取得した画像とS703で取得した画像との変化量をΔF12とする。得られたΔF12、ΔT12から、制御部106は、サンプリング時間ごとの画像の温度特性の変化量Z12を、Z12=ΔF12/ΔT12として取得する。
温度特性の変化量Z12を得た後に、制御部106は、サンプリング時間ごとの画像の温度特性の変化量が、所定の範囲内にあるか否かを判定し、複数の種類のサンプリング時間のうち放射線画像用の撮像の際に用いるサンプリング時間を選択する(S705〜S707)。具体的には、サンプリング時間A<サンプリング時間B<サンプリング時間Cとした場合を考える。制御部106は、サンプリング時間Aでの変化量Z12が所定の範囲内にある場合(S705のYES)、サンプリング時間Aを放射線画像用の撮像に用いるサンプリング時間として選択する(S708)。サンプリング時間Aでの変化量Z12が所定の範囲内にない場合(S705のNO)、制御部106は、サンプリング時間がサンプリング時間Aよりも長いサンプリング時間Bで変化量Z12が所定の範囲内にあるか否かを判定する(S706)。制御部106は、サンプリング時間Bでの変化量Z12が所定の範囲内にある場合(S706のYES)、サンプリング時間Bを放射線画像用の撮像に用いるサンプリング時間として選択する(S709)。サンプリング時間Bで変化量Z12が所定の範囲内にない場合(S706のNO)、制御部106は、サンプリング時間がサンプリング時間Bよりも長いサンプリング時間Cで変化量Z12が所定の範囲内にあるか否かを判定する(S707)。制御部106は、サンプリング時間Cでの変化量Z12が所定の範囲内にある場合(S707のYES)、サンプリング時間Cを放射線画像用の撮像に用いるサンプリング時間として選択する(S710)。つまり、制御部106は、複数の種類のサンプリング時間のうち温度特性の変化量Z12が所定の範囲内にある最短のサンプリング時間を、放射線画像用の撮像に用いるサンプリング時間として選択する。サンプリング時間Cで変化量Z12が所定の範囲内にない場合(S707のNO)、つまり、すべてのサンプリング時間において変化量が所定の範囲内にない場合については、後述する。
S701でのオフセット補正用の画像の取得後に、温度センサ114によって測定された温度の変化が所定の範囲内の場合(S702のNO)、制御部106は、放射線画像用の撮像に用いるサンプリング時間としてサンプリング時間Aを選択する。つまり、制御部106は、放射線画像用の撮像において、複数の種類のサンプリング時間のうち最短のサンプリング時間Aを用いて、画素PIXから積分増幅器302に信号が転送された後の積分増幅器302の出力をサンプルホールド回路324にサンプリングさせる。
S708〜S711において、制御部106は、サンプリング時間を選択した後、放射線撮像装置100の温度がある閾値を超えたか否かの判定を行う(S702、S712〜S714)。S703におけるオフセット補正用の複数の画像の取得後に、温度センサ114によって測定された温度の変化が所定の範囲内の場合、放射線撮像装置100は、それぞれのサンプリング時間を用いて撮像を行うまで待機する。また、S703におけるオフセット補正用の複数の画像の取得後に、温度センサ114によって測定された温度の変化が所定の範囲を越した場合、S703に戻り、放射線撮像装置100は、設定された複数の種類のサンプリング時間でオフセット補正するための複数の画像を再び取得する。以下、上述の動作を繰り返す。
次いで、複数の種類のサンプリング時間のうちすべてのサンプリング時間において温度特性の変化量Z12が所定の範囲内にない場合について説明する。この場合、放射線撮像装置100は、複数の種類のサンプリング時間A〜Cのうち最長のサンプリング時間Cにおける変化量Z12が所定の範囲内になるまで待機してもよい。待機後に、撮像が開始された際に、放射線撮像装置100は、表示部(不図示)を用いて、操作者に緊急モードを知らせる表示や、動画像の撮像の場合、単位時間あたりの放射線画像の取得枚数の表示を行ってもよい。
また、制御部106は、複数の種類のサンプリング時間のうちすべてのサンプリング時間において温度特性の変化量Z12が所定の範囲内にない場合、放射線画像用の撮像の際に放射線画像用の撮像とオフセット補正用の画像の取得とを連続して行わせてもよい。つまり、オフセット補正用の画像を放射線画像用の撮像の直後に取得する間欠補正の撮像モードに限定して撮像可能とすることも可能である。この間欠補正の撮影モードであれば、放射線画像用の撮像の直後に取得したオフセット補正用の画像を用いて補正を行うため、フレームレートに制限は発生しうるが、センサが温度変化してもアーチファクトを抑制することが可能となる。この場合も、撮影が開始された際に、操作者に緊急モードを知らせる表示や、動画像の撮像の場合、単位時間あたりの放射線画像の取得枚数の表示を行ってもよい。
また、S708〜S711のようにそれぞれのサンプリング時間が選択され、撮像までの待機中に、時間が経過する場合が考えられる。制御部106は、所定の時間、温度センサ114によって測定された温度の変化が所定の範囲内の場合、オフセット補正用の複数の画像を再び取得してもよい。この場合も、上述と同様に、放射線が照射されていない状態で画素PIXから積分増幅器302に信号が転送された後の積分増幅器302の出力を、複数の種類のサンプリング時間を用いてサンプルホールド回路324にサンプリングさせる。
放射線画像用の撮像中に温度センサ114によって測定された温度の変化が所定の範囲を越してしまう場合も考えられる。この場合、制御部106は、撮像を継続してもよい。また、この場合、放射線撮像装置100は、撮像中に温度の変化が所定の範囲を越したことを操作者に表示部(不図示)などを用いて報知し、放射線撮像装置100の温度変化が大きくアーチファクトの発生の可能性がある旨を知らせてもよい。また、撮像後に、制御部106は、複数の種類のサンプリング時間を用いてオフセット補正用の複数の画像を取得し、上述のように複数の種類のサンプリング時間のうち放射線画像用の撮像の際に用いるサンプリング時間を選択してもよい。
上述の温度特性の変化量Z12は、S701で得られた画像およびS703で得られた画像のそれぞれの全体の信号の平均値の変化量であってもよい。また、例えば、変化量Z12は、S701で得られた画像およびS703で得られた画像の所定の領域(ブロック)ごとの信号の平均値の変化量のうち最大の変化量であってもよい。また、例えば、変化量Z12は、S701で得られた画像およびS703で得られた画像のそれぞれの一部の領域の信号の平均値の変化量であってもよい。
また、上述の温度特性の変化量Z12は、S701で得られた画像およびS703で得られた画像のうち行方向または列方向に配された画素PIXから出力された信号の変化量のうち最大の変化量であってもよい。また、例えば、上述の温度特性の変化量Z12は、S701で得られた画像およびS703で得られた画像の所定の領域ごとに配された画素PIXから出力された信号の変化量のうち最大の変化量であってもよい。
放射線撮像装置100は、制御部106が、温度センサ114によって測定された温度の情報などの温度情報に基づいてサンプリング時間を変化させる(例えば、サンプリング時間A〜C。)第1モードと、単一のサンプリング時間(例えば、サンプリング時間A。)を用いる第2モードと、を含む複数のモードで動作してもよい。このとき、放射線撮像装置100は、放射線撮像装置100が起動してから経過した時間の情報、上述の温度情報、放射線撮像装置100を冷却するための冷却ユニット(不図示)との接続状況の情報、および、撮像モードの情報のうち少なくとも1つの情報に基づいて、第1モードを選択してもよい。つまり、放射線撮像装置100の起動直後、放射線撮像装置100に対する冷却ユニットの設置状態が変化したとき、静止画像の撮像から動画像の撮像への切替時など、放射線撮像装置100の温度変化が大きいことが想定されるタイミングで、第1モードを適用することができる。
この場合、起動直後は、放射線撮像装置100の電源投入からの時間や、上述のように、温度センサ114によって測定される放射線撮像装置の温度変化などから判定可能である。放射線撮像装置100に対する冷却ユニットの設置状態は、放射線撮像システムRISと放射線撮像装置100との設置状態から判定可能である。撮像モードの切替は、操作者の制御装置111への入力などから判定可能である。
例えば、起動直後は、放射線撮像装置100に電源が投入されてから、所定の基準時間を経過するまでと定義してもよい。この基準時間は、例えば、工場出荷時に設定されていてもよいし、工場出荷後に任意の時間に設定を変更してもよい。また、例えば、起動直後は、放射線撮像装置100に電源が投入されてから、放射線撮像装置100の単位時間あたりの温度変化がある基準値内に収まるまでと定義することもできる。つまり、上述の温度センサ114によって測定された温度などの温度情報に基づいて、第1モードが選択されてもよい。この基準値は、工場出荷時に設定されていてもよいし、工場出荷後に任意の時間に設定を変更してもよい。
放射線撮像装置100に対する冷却ユニットの設置状態の変化は、冷却ユニットに放射線撮像装置100が設置されているか否かを放射線撮像システムRISが判定してもよい。放射線撮像システムRISが、冷却ユニットから放射線撮像装置100外された、または、設置されたと判定し、放射線撮像装置100に冷却ユニットとの接続状況の情報として送信してもよい。また、放射線撮像装置100に冷却ユニットを接続した際に押下されるスイッチなどが配されていてもよい。冷却ユニットの脱着に応じて第1モードと第2モードとを切り換える場合、工場出荷時に設定がされていてもよいし、工場出荷後に任意の設定に変更してもよい。
撮像モードの切替は、静止画像の撮像モードから動画像の撮像モードへの切替時と定義してもよい。また、撮像モードの切替は、動画像の撮像モードから静止画像の撮像モードへの切替時と定義してもよい。これらの第1モードと第2モードとを切り換える対象の撮像モードは工場出荷時に設定されていてもよいし、工場出荷後に任意に設定を変更してもよい。
また、放射線撮像装置100の温度の変化が所定の範囲内にある時間が所定の期間、継続した場合、複数のサンプリング時間A〜Cを用いる第1モードから、単一のサンプリング時間でのサンプリングを行う第2モードに切り替えてもよい。第2モードにおいて、待機中に放射線撮像装置100の温度の変化が所定の範囲を越した場合、制御部106は、単一のサンプリング時間で上述の温度特性の変化量Z12を取得し、撮像を許可するか否かの判定を行ってもよい。変化量Z12が基準を満たす場合、そのまま単一サンプリング時間で撮像を行う。変化量Z12が基準を満たさない場合、単一のサンプリング時間でのオフセット補正用の画像の更新を行い撮像まで待機してもよい。また、例えば、変化量Z12が基準を満たさない場合、第1モードに切り替えて、放射線撮像装置100は、上述した図7に示される動作を行ってもよい。
第2モードでのサンプリング時間は、複数の種類のサンプリング時間A〜Cのうち最短のサンプリング時間Aを選択してもよいし、任意のサンプリング時間に設定してもよい。この設定は、工場出荷時に最短のサンプリング時間として設定されていてもよいし、工場出荷後に任意の時間に設定を変更してもよい。
また、放射線撮像装置100が第1モードを選択する撮像モードの情報として、放射線撮像装置100の温度変化の影響が大きい撮像モードが選択された場合が挙げられる。温度変化の影響が大きい撮像モードは、工場出荷時に対象の撮像モードが設定されていてもよいし、工場出荷後に任意の撮影モードに設定を変更してもよい。
また、第1モードでの動作中に、放射線撮像装置100は、表示部(不図示)などを用いて、撮像中に操作者に単位時間あたりの放射線画像の取得枚数を表示してもよい。
本実施形態において、複数のサンプルホールド回路323、324、333、334が配される例を示した。しかしながら、これに限られることはなく、上述のサンプリング時間を変化させる動作は、サンプリングホールド回路が1つの場合であっても、画素から信号を読み出す際に適用することが可能である。また、本実施形態において、オフセット補正するための画像(補正用画像)、および、放射線画像用の撮像を行う際に、積分増幅器302のノイズを抑制するために、それぞれCDSを行う場合を説明した。しかしながら、これに限られることはなく、例えば、放射線画像用の撮像の際に放射線画像用の撮像とオフセット補正用の画像の取得とを連続して行う場合、得られたそれぞれ画像に対してCDSを行ってもよい。
本発明は、上記の実施形態の機能を実現するソフトウェア(プログラム)をネットワーク又は各種記憶媒体を介してシステム又は装置に供給し、システム又は装置のコンピュータ(CPUやMPUなど)がプログラムを読み出すことにより実行されてもよい。また、本発明は、システム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能であり、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
100:放射線撮像装置、106:制御部、302:積分増幅器、PIX:画素、323,324,333,334:サンプルホールド回路

Claims (20)

  1. 入射した放射線に応じた電荷を生成する画素と、前記画素から転送された電荷に応じた信号を増幅する積分増幅器と、前記画素から前記積分増幅器に信号が転送された後の前記積分増幅器の出力をサンプリングし保持するサンプルホールド回路と、制御部と、を含む放射線撮像装置であって、
    前記制御部は、前記放射線撮像装置の温度情報に基づいて、前記積分増幅器の出力を前記サンプルホールド回路にサンプリングさせる際のサンプリング時間を変化させることを特徴とする放射線撮像装置。
  2. 前記放射線撮像装置は、前記放射線撮像装置の温度を測定するための温度センサをさらに含み、
    前記温度情報が、前記温度センサによって測定された温度の情報を含むことを特徴とする請求項1に記載の放射線撮像装置。
  3. 前記放射線撮像装置は、前記画素が配された画素アレイと、前記画素から信号を読み出すための前記積分増幅器を含む読出回路と、を備え、
    前記温度センサが、前記画素アレイおよび前記読出回路のうち少なくとも一方の温度を測定することを特徴とする請求項2に記載の放射線撮像装置。
  4. 前記制御部は、
    前記放射線撮像装置の起動後に、放射線が照射されていない状態で前記画素から前記積分増幅器に信号が転送された後の前記積分増幅器の出力を、複数の種類の前記サンプリング時間を用いて前記サンプルホールド回路にサンプリングさせ、オフセット補正用の複数の第1画像を取得し、
    前記複数の第1画像の取得後に、前記温度センサによって測定された温度の変化が所定の範囲内の場合、放射線画像用の撮像において、前記複数の種類の前記サンプリング時間のうち最短のサンプリング時間を用いて、前記画素から前記積分増幅器に信号が転送された後の前記積分増幅器の出力を前記サンプルホールド回路にサンプリングさせ、
    前記複数の第1画像の取得後に、前記温度センサによって測定された温度の変化が所定の範囲を越した場合、放射線が照射されていない状態で前記画素から前記積分増幅器に信号が転送された後の前記積分増幅器の出力を、前記複数の種類の前記サンプリング時間を用いて前記サンプルホールド回路にサンプリングさせ、オフセット補正用の複数の第2画像を取得し、前記複数の第1画像と前記複数の第2画像とに基づいて、前記複数の種類の前記サンプリング時間のうち放射線画像用の撮像の際に用いるサンプリング時間を選択することを特徴とする請求項2または3に記載の放射線撮像装置。
  5. 前記制御部は、
    前記複数の種類の前記サンプリング時間のうち同じサンプリング時間の前記第1画像と前記第2画像との変化量が所定の範囲内にあるか否かを判定し、
    前記複数の種類の前記サンプリング時間のうち前記変化量が所定の範囲内にある最短のサンプリング時間を、放射線画像用の撮像に用いる前記サンプリング時間として選択することを特徴とする請求項4に記載の放射線撮像装置。
  6. 前記放射線撮像装置は、前記複数の種類の前記サンプリング時間のうちすべてのサンプリング時間において前記変化量が所定の範囲内にない場合、前記複数の種類の前記サンプリング時間のうち最長のサンプリング時間における前記変化量が所定の範囲内になるまで待機することを特徴とする請求項5に記載の放射線撮像装置。
  7. 前記制御部は、前記複数の種類の前記サンプリング時間のうちすべてのサンプリング時間において前記変化量が所定の範囲内にない場合、放射線画像用の撮像の際に放射線画像用の撮像とオフセット補正用の画像の取得とを連続して行わせることを特徴とする請求項5に記載の放射線撮像装置。
  8. 前記変化量が、前記第1画像および前記第2画像のそれぞれの全体の信号の平均値の変化量、前記第1画像および前記第2画像の所定の領域ごとの信号の平均値の変化量のうち最大の変化量、または、前記第1画像および前記第2画像のそれぞれの一部の領域の信号の平均値の変化量であることを特徴とする請求項5乃至7の何れか1項に記載の放射線撮像装置。
  9. 前記変化量が、前記第1画像および前記第2画像のうち行方向または列方向に配された前記画素から出力された信号の変化量のうち最大の変化量、または、前記第1画像および前記第2画像の所定の領域ごとに配された前記画素から出力された信号の変化量のうち最大の変化量であることを特徴とする請求項5乃至8の何れか1項に記載の放射線撮像装置。
  10. 前記制御部は、前記複数の第2画像の取得後に、前記温度センサによって測定された温度の変化が所定の範囲を越した場合、放射線が照射されていない状態で前記画素から前記積分増幅器に信号が転送された後の前記積分増幅器の出力を、前記複数の種類の前記サンプリング時間を用いて前記サンプルホールド回路にサンプリングさせ、オフセット補正用の複数の第3画像を取得し、前記複数の第2画像と前記複数の第3画像とに基づいて、前記複数の種類の前記サンプリング時間のうち放射線画像用の撮像の際に用いるサンプリング時間を選択することを特徴とする請求項4乃至9の何れか1項に記載の放射線撮像装置。
  11. 前記制御部は、放射線画像用の撮像中に前記温度センサによって測定された温度の変化が所定の範囲を越した場合、撮像後に前記複数の種類の前記サンプリング時間を用いてオフセット補正用の複数の画像を取得することを特徴とする請求項4乃至10の何れか1項に記載の放射線撮像装置。
  12. 前記放射線撮像装置は、放射線画像用の撮像中に前記温度センサによって測定された温度の変化が所定の範囲を越した場合、撮像中に温度の変化が所定の範囲を越したことを報知することを特徴とする請求項11に記載の放射線撮像装置。
  13. 前記制御部は、所定の時間、前記温度センサによって測定された温度の変化が所定の範囲内の場合、放射線が照射されていない状態で前記画素から前記積分増幅器に信号が転送された後の前記積分増幅器の出力を、前記複数の種類の前記サンプリング時間を用いて前記サンプルホールド回路にサンプリングさせ、オフセット補正用の複数の画像を再び取得することを特徴とする請求項4乃至12の何れか1項に記載の放射線撮像装置。
  14. 前記放射線撮像装置は、
    前記制御部が前記温度情報に基づいて前記サンプリング時間を変化させる第1モードと、単一の前記サンプリング時間を用いる第2モードと、を含む複数のモードで動作し、
    前記放射線撮像装置が起動してから経過した時間の情報、前記温度情報、前記放射線撮像装置を冷却するための冷却ユニットとの接続状況の情報、および、撮像モードの情報のうち少なくとも1つの情報に基づいて、前記第1モードを選択することを特徴とする請求項1乃至13の何れか1項に記載の放射線撮像装置。
  15. 前記サンプリング時間は、前記放射線撮像装置の温度が低い場合、前記放射線撮像装置の温度が高い場合よりも長いことを特徴する請求項1乃至14の何れか1項に記載の放射線撮像装置。
  16. 前記サンプルホールド回路を第1サンプルホールド回路として、
    前記放射線撮像装置は、前記画素から前記積分増幅器に信号が転送される前の前記積分増幅器の出力をサンプリングし保持する第2サンプルホールド回路と、前記第1サンプルホールド回路が保持する信号と前記第2サンプルホールド回路が保持する信号との差分を出力する差動回路と、をさらに含むことを特徴とする請求項1乃至15の何れか1項に記載の放射線撮像装置。
  17. 前記サンプリング時間を第1サンプリング時間として、
    前記制御部は、第2サンプリング時間で、前記画素から前記積分増幅器に信号が転送される前の前記積分増幅器の出力を前記第2サンプルホールド回路にサンプリングさせ、
    前記第1サンプリング時間が、前記第2サンプリング時間と同じ長さ、または、前記第2サンプリング時間よりも長いことを特徴とする請求項16に記載の放射線撮像装置。
  18. 請求項1乃至17の何れか1項に記載の放射線撮像装置と、
    前記放射線撮像装置に放射線を照射する放射線源と、
    を備えることを特徴とする放射線撮像システム。
  19. 入射した放射線に応じた電荷を生成する画素と、前記画素から転送された電荷に応じた信号を増幅する積分増幅器と、前記画素から前記積分増幅器に信号が転送された後の前記積分増幅器の出力をサンプリングし保持するサンプルホールド回路と、を含む放射線撮像装置の制御方法であって、
    前記放射線撮像装置の温度情報に基づいて、前記積分増幅器の出力を前記サンプルホールド回路がサンプリングする際のサンプリング時間を変化させることを特徴とする制御方法。
  20. コンピュータに、請求項19に記載の制御方法の各工程を実行させるためのプログラム。
JP2020101692A 2020-06-11 2020-06-11 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラム Pending JP2021197597A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020101692A JP2021197597A (ja) 2020-06-11 2020-06-11 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020101692A JP2021197597A (ja) 2020-06-11 2020-06-11 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラム

Publications (1)

Publication Number Publication Date
JP2021197597A true JP2021197597A (ja) 2021-12-27

Family

ID=79196223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020101692A Pending JP2021197597A (ja) 2020-06-11 2020-06-11 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラム

Country Status (1)

Country Link
JP (1) JP2021197597A (ja)

Similar Documents

Publication Publication Date Title
EP3226549B1 (en) Radiation imaging apparatus, radiation imaging system, and method of operating radiation imaging apparatus
CN110623682B (zh) 放射线摄像装置及控制方法、放射线摄像系统及存储介质
US9838638B2 (en) Radiation imaging apparatus, method of driving the same, and radiation imaging system
JP6491434B2 (ja) 放射線撮像装置及び放射線検出システム
US8818068B2 (en) Imaging apparatus, imaging system, method of controlling the apparatus and the system, and program
US8436314B2 (en) Imaging apparatus, imaging system, method of controlling the apparatus and the system, and program
CN107645640B (zh) 放射线图像捕获装置和放射线图像捕获系统及其控制方法
JP2017192443A (ja) 放射線撮像装置、放射線撮像システム、及び、放射線撮像装置の制御方法
US20200371259A1 (en) Radiation imaging apparatus and radiation imaging system
US9467631B2 (en) Radiation imaging apparatus, method of driving the same, and radiation inspection apparatus
US20140320685A1 (en) Imaging apparatus and imaging system
CN107242878B (zh) 放射线成像装置和操作该装置的方法、放射线成像系统
WO2019244456A1 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラム
JP2021197597A (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラム
JP7305487B2 (ja) 放射線撮像装置、放射線撮像システム、及び、放射線撮像装置の制御方法
JP7438720B2 (ja) 放射線撮像装置及び放射線撮像システム
WO2022244495A1 (ja) 放射線撮像装置および放射線撮像システム
JP2022176882A (ja) 放射線撮像装置および放射線撮像システム
WO2021172167A1 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の駆動方法、および、プログラム
US11592583B2 (en) Radiation imaging apparatus, radiation imaging system, method of controlling radiation imaging apparatus, and non-transitory computer-readable storage medium
JP2021040195A (ja) 放射線撮像装置、放射線撮像システム、及び、放射線撮像装置の処理方法
JP2015177355A (ja) 撮像装置、その制御方法、及び、放射線検査装置
JP2019136403A (ja) 放射線撮像装置および放射線撮像システム
JP2017200013A (ja) 撮像装置、放射線撮像システム及び撮像装置の制御方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113