JP2015019155A - 放射線撮像システム - Google Patents
放射線撮像システム Download PDFInfo
- Publication number
- JP2015019155A JP2015019155A JP2013143815A JP2013143815A JP2015019155A JP 2015019155 A JP2015019155 A JP 2015019155A JP 2013143815 A JP2013143815 A JP 2013143815A JP 2013143815 A JP2013143815 A JP 2013143815A JP 2015019155 A JP2015019155 A JP 2015019155A
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- dark current
- time
- pixels
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 74
- 238000003384 imaging method Methods 0.000 title claims abstract description 44
- 238000001514 detection method Methods 0.000 claims abstract description 47
- 238000009825 accumulation Methods 0.000 claims description 34
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 description 31
- 238000000034 method Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 12
- 239000003990 capacitor Substances 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000002601 radiography Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Measurement Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
【課題】リセット動作に起因するノイズを防止することができる放射線撮像システムを提供することを課題とする。
【解決手段】放射線撮像システムは、検知手段により放射線の照射開始が検知されるまでの間、複数の画素に対してインタレースのリセット動作を行わせ、検知手段により放射線の照射開始が検知されると、複数の画素に対してインタレースのリセット動作を停止させて電荷の蓄積動作を行わせ、その後、放射線の照射が終了すると、複数の画素の画素出力値の読み出し動作を行わせることにより、放射線の照射に応じた画像情報を出力させる制御手段と、リセット動作の1行分の時間と、読み出し動作の1行分の時間と、検知手段が放射線の照射開始を検知するまでの時間と、検知手段が放射線の照射終了を検知するまでの時間と、リセット動作を停止した行とを基に、暗電流成分を演算する演算手段と、暗電流成分を用いて画像情報を補正する補正手段とを有する。
【選択図】図1
【解決手段】放射線撮像システムは、検知手段により放射線の照射開始が検知されるまでの間、複数の画素に対してインタレースのリセット動作を行わせ、検知手段により放射線の照射開始が検知されると、複数の画素に対してインタレースのリセット動作を停止させて電荷の蓄積動作を行わせ、その後、放射線の照射が終了すると、複数の画素の画素出力値の読み出し動作を行わせることにより、放射線の照射に応じた画像情報を出力させる制御手段と、リセット動作の1行分の時間と、読み出し動作の1行分の時間と、検知手段が放射線の照射開始を検知するまでの時間と、検知手段が放射線の照射終了を検知するまでの時間と、リセット動作を停止した行とを基に、暗電流成分を演算する演算手段と、暗電流成分を用いて画像情報を補正する補正手段とを有する。
【選択図】図1
Description
本発明は、医療診断における一般撮影などの静止画撮影や透視撮影などの動画撮影に好適に用いられる放射線撮像システムに関する。
現在、X線による医療画像診断や非破壊検査に用いる撮影装置として、半導体材料によって形成された平面検出器(Flat Panel Detector、以下FPDと略す)を用いた放射線撮像装置が普及している。このような放射線撮像装置は、例えば医療画像診断においては、一般撮影のような静止画撮影や、透視撮影のような動画撮影のデジタル撮像装置として用いられている。このような撮像装置では、X線発生装置とFPDの同期を行う構成が一般的である。しかしながら、FPDの設置時にX線発生装置とのつなぎこみが必要であり、設置場所が制限されるという課題がある。
これに対して、特許文献1には、放射線発生装置とのインターフェースを構築せずに、変換素子のバイアス線に流れる電流により、放射線の照射開始などを検出する技術が開示されている。具体的には、隣接しない行を順次走査することでリセット動作を行い、放射線の照射を検知したら、リセット動作を停止させ、蓄積動作へ移行する。放射線の照射が終了したら、順次走査を行い、画像データの読み出し動作を行う。また、特許文献1には、画像データの読み出し動作の後で、放射線が照射されない状態でリセット動作から読み出し動作までと同じタイミングでオフセット補正データを読み出す技術が開示されている。
特許文献2では、変換素子の暗電流応答を補正するために、バイアス印加から放射線撮影までの時間と、蓄積時間と、暗電流の応答特性からオフセット補正データの蓄積時間を算出し、算出された蓄積時間に基づきオフセット補正データを読み出して補正する。また、X線撮影後にオフセット信号を取得する際の各行の走査時間を演算で算出し、算出された走査時間に基づき各行を走査する。また、変換素子の暗電流応答を補正するために、バイアス印加から放射線撮影までの時間と、蓄積時間と、暗電流の応答特性と、予め取得したオフセット補正データから放射線撮影時の画像データに重畳する暗電流成分を算出して補正する。
変換素子の暗電流成分が時間的に変動する場合、特許文献1の技術では、放射線を検知した行の前後で生じる段差状のアーチファクトを補正できずに画質が低下する場合があることを本発明者らは見出した。特に、インタレースと呼ばれる隣接しない行、たとえば偶数行と奇数行を分けて走査するリセット動作(空読み)を繰り返しながらX線の検知を行う場合には、行方向に発生する偶奇数行の縞状のアーチファクトを補正できずに画質が低下する場合がある。
一方で、特許文献2には、リセット動作(空読み)の途中に、放射線を検知した場合に走査を停止して、蓄積動作に入る概念自体や、隣接しない行を順次走査してリセット動作を行う概念自体が存在しないため、十分な補正ができない。そのため、特許文献2では、特許文献1と同様に、検知行の前後で生じるアーチファクトや、行方向に生じる偶奇数行の縞状のアーチファクトが画質を低下させる場合がある。また、演算で算出した各行の走査時間に基づき、駆動手段を制御することは、複雑な回路構成を必要とするため、実現が困難な場合がある。
本発明の目的は、リセット動作に起因するノイズを防止し、良好な画質の画像情報を得ることができる放射線撮像システムを提供することである。
本発明の放射線撮像システムは、行列状に配置され、放射線を電荷に変換して画素出力値を出力する複数の画素を含む検出部と、放射線の照射開始及び照射終了を検知する検知手段と、前記検知手段により放射線の照射開始が検知されるまでの間、前記複数の画素に対してインタレースのリセット動作を行わせ、前記検知手段により放射線の照射開始が検知されると、前記複数の画素に対してインタレースのリセット動作を停止させて電荷の蓄積動作を行わせ、その後、前記放射線の照射が終了すると、前記複数の画素の画素出力値の読み出し動作を行わせることにより、前記放射線の照射に応じた画像情報を出力させる制御手段と、前記リセット動作の1行分の時間と、前記読み出し動作の1行分の時間と、前記検知手段が放射線の照射開始を検知するまでの時間と、前記検知手段が放射線の照射終了を検知するまでの時間と、リセット動作を停止した行とを基に、暗電流成分を演算する演算手段と、前記暗電流成分を用いて前記画像情報を補正する補正手段とを有することを特徴とする。
暗電流成分を演算することにより、リセット動作に起因するノイズを防止し、良好な画質の画像情報を得ることができる。
(第1の実施形態)
図1は、本発明の第1の実施形態による放射線撮像システムの構成例を示すブロック図である。放射線は、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギーを有するビーム、例えばX線や粒子線、宇宙線なども、含まれるものとする。以下、放射線がX線である例を説明する。
図1は、本発明の第1の実施形態による放射線撮像システムの構成例を示すブロック図である。放射線は、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギーを有するビーム、例えばX線や粒子線、宇宙線なども、含まれるものとする。以下、放射線がX線である例を説明する。
放射線撮像システムは、X線発生装置201、制御手段202、X線検知手段203、駆動手段204、読み出し手段205、平面型検出器206、記憶手段207、演算手段208、補正手段209及び表示手段(又はコンピュータ)210を有する。制御手段202は、X線検知手段203、駆動手段204及び読み出し手段205を制御する。駆動手段204は、平面型検出器206を駆動する。
X線発生装置(放射線発生装置)201は、被写体を介して、平面型検出器206及びX線検知手段203にX線(放射線)を照射する。平面型検出器206は、X列×Y行の行列状に配置された複数の画素を有し、各画素は被写体を透過したX線を電荷に変換して蓄積し、その蓄積した電荷を画素出力値として出力する。X線検知手段203は、X線の照射開始及び照射終了を検知し、X線の照射信号を制御手段202に出力する。平面型検出器206は、X線検知手段203がX線の照射開始を検知すると、X線に応じた電荷の蓄積を開始し、X線検知手段203がX線の照射終了を検知すると、その蓄積した電荷に応じた画素出力値を読み出し手段205に出力する。すると、読み出し手段205は、X列×Y行の画素のX線照射に応じた画像情報X−image(X,Y)を出力する。
X線検知手段203は、時間TX及びTEを演算手段208に出力する。時間TXは、図4に示すように、バイアス電圧印加開始時刻からX線照射開始検知時刻までの時間である。時間TEは、図4に示すように、バイアス電圧印加開始時刻からX線照射終了検知時刻までの時間である。駆動手段204は、図4に示すように、X線照射開始時に空読み(リセット動作)を停止した行RXを演算手段208に出力する。
記憶手段207は、各画素の暗電流特性F(X,Y,T0,Ts)と、図4の本読み(読み出し動作)の1行分の時間TH0と、図4の空読み(リセット動作)の1行分の時間TK0とを予め記憶し、演算手段208に出力する。演算手段208は、暗電流特性F(X,Y,T0,Ts)と、時間TH0と、時間TK0と、時間TXと、時間TEと、空読み停止行RXを入力し、X線撮影時に各画素の信号に重畳される暗電流成分Dark_X(X,Y)を演算及び予測する。具体的には、演算手段208は、時間TH0と、時間TK0と、時間TXと、時間TEと、空読み停止行RXを基に、図4の各行の電荷蓄積開始時間T0及び電荷蓄積時間Tsを算出する。その後、演算手段208は、電荷蓄積開始時間T0及び電荷蓄積時間Tsに応じた暗電流特性F(X,Y,T0,Ts)を算出することより、X線撮影時に各画素に含まれる暗電流成分Dark_X(X,Y)を予測する。補正手段209は、画像情報X−image(X,Y)から暗電流成分Dark_X(X,Y)を減算することにより、画像情報の補正を行う。表示手段(又はコンピュータ)210は、補正手段209により補正された画像情報を表示(又は処理)する。
図2は、図1の読み出し手段205及び平面型検出器206の構成例を示す回路図である。平面型検出器206は、垂直駆動回路114、検出部112及びバイアス電源部103を有する。読み出し手段205は、読み出し回路113、出力バッファアンプ109及びアナログ/デジタル(A/D)変換器110を有する。
平面型検出器206は、放射線を検出する素子(画素)を2次元行列状に配置したセンサであり、放射線を検出して画像情報を出力する。図2では、説明の簡便化のために、3行×3列の画素を有する検出部112の例を示す。しかしながら、実際の平面型検出器206はより多画素であり、例えば17インチの場合、約2800行×約2800列の画素を有している。
検出部112は、行列状に配置された複数の画素を有する。各画素は、放射線又は光を電荷に変換する変換素子S11〜S33と、変換素子S11〜S33の電荷に応じた電気信号を出力するスイッチ素子T11〜T33とを有し、画素出力値を出力する。変換素子S11〜S33は、間接型の変換素子又は直接型の変換素子であり、照射された放射線を電荷に変換する。間接型の変換素子S11〜S33は、放射線を光に変換する波長変換体と、その光を電荷に変換する光電変換素子とを有する。直接型の変換素子S11〜S33は、放射線を直接電荷に変換する。照射された光を電荷に変換する光電変換素子としては、ガラス基板等の絶縁性基板上に配置されアモルファスシリコンを主材料とするMIS型フォトダイオードを用いることができる。また、光電変換素子は、PIN型フォトダイオードでもよい。
スイッチ素子T11〜T33は、制御端子と2つの主端子を有するトランジスタであり、薄膜トランジスタ(TFT)が好ましい。変換素子S11〜S33は、それぞれ、一方の電極がスイッチ素子T11〜T33の2つの主端子の一方に電気的に接続され、他方の電極が共通のバイアス線Bsを介してバイアス電源部103と電気的に接続される。1行目の複数のスイッチ素子T11〜T13は、それらの制御端子が1行目の駆動線R1に共通に電気的に接続される。2行目の複数のスイッチ素子T21〜T23は、それらの制御端子が2行目の駆動線R2に共通に電気的に接続される。3行目の複数のスイッチ素子T31〜T33は、それらの制御端子が3行目の駆動線R3に共通に電気的に接続される。垂直駆動回路114は、例えばシフトレジスタであり、駆動線R1〜R3を介して、駆動信号をスイッチ素子T11〜T33に供給することにより、スイッチ素子T11〜T33の導通状態を行単位で制御する。
1列目の複数のスイッチ素子T11〜T31は、それぞれ、一方の主端子が変換素子S11〜S31に接続され、他方の主端子が1列目の信号線Sig1に電気的に接続されている。1列目のスイッチ素子T11〜T31が導通状態である間に、1列目の変換素子S11〜S31の電荷に応じた電気信号が、信号線Sig1を介して読み出し回路113に出力される。2列目の複数のスイッチ素子T12〜T32は、それぞれ、一方の主端子が変換素子S12〜S32に接続され、他方の主端子が2列目の信号線Sig2に電気的に接続されている。2列目のスイッチ素子T12〜T32が導通状態である間に、2列目の変換素子S12〜S32の電荷に応じた電気信号が、信号線Sig2を介して読み出し回路113に出力される。3列目の複数のスイッチ素子T13〜T33は、それぞれ、一方の主端子が変換素子S13〜S33に接続され、他方の主端子が3列目の信号線Sig3に電気的に接続されている。3列目のスイッチ素子T13〜T33が導通状態である間に、3列目の変換素子S13〜S33の電荷に応じた電気信号が、信号線Sig3を介して読み出し回路113に出力される。列方向に複数配列された信号線Sig1〜Sig3は、複数の画素から出力された電気信号を並列に読み出し回路113に出力する。
読み出し回路113は、信号線Sig1〜Sig3の電気信号をそれぞれ増幅する増幅回路106を信号線Sig1〜Sig3毎に設けている。各増幅回路106は、積分アンプ105と、可変ゲインアンプ104と、サンプルホールド回路107とを有する。積分アンプ105は、信号線Sig1〜Sig3の電気信号を増幅する。可変ゲインアンプ104は、積分アンプ105からの電気信号を可変ゲインで増幅する。サンプルホールド回路107は、可変ゲインアンプ104で増幅された電気信号をサンプルしホールドする。積分アンプ105は、信号線Sig1〜Sig3の電気信号を増幅して出力する演算増幅器121と、積分容量122と、リセットスイッチ123とを有する。積分アンプ105は、積分容量122の値を変えることにより、ゲイン(増幅率)を変更することが可能である。各列の演算増幅器121は、それぞれ、反転入力端子が信号線Sig1〜Sig3に接続され、正転入力端子が基準電圧Vrefの基準電源部111に接続され、出力端子が増幅された電気信号を出力する。基準電源部111は、各演算増幅器121の正転入力端子に基準電圧Vrefを供給する。積分容量122は、演算増幅器121の反転入力端子と出力端子の間に配置される。サンプルホールド回路107は、制御信号SHのサンプリングスイッチ124と、サンプリング容量125とを有する。また、読み出し回路113は、各列のスイッチ126と、マルチプレクサ108とを有する。マルチプレクサ108は、各列のスイッチ126を順次導通状態することにより、各増幅回路106から並列に出力される電気信号を順次、出力バッファアンプ109にシリアル信号として出力する。出力バッファアンプ109は、電気信号をインピーダンス変換して出力する。アナログ/デジタル(A/D)変換器110は、出力バッファアンプ109から出力されたアナログ電気信号をデジタル電気信号に変換し、画像情報X−image(X,Y)として図1の補正手段209に出力する。
バイアス電源部103は、電流−電圧変換回路115及びA/D変換器127を有する。電流−電圧変換回路115は、バイアス線Bsにバイアス電圧Vsを供給しつつ、バイアス線Bsに流れる電流を電圧に変換し、A/D変換器127に出力する。A/D変換器127は、電流情報を有するアナログ電圧値を電流情報を有するデジタル電圧値に変換して出力する。図1のX線検知手段203は、A/D変換器127が出力する電流情報を用いてX線の照射開始及び照射終了を検知する。
垂直駆動回路114は、図1の駆動手段204から入力された制御信号D−CLK,OE,DIOに応じて、スイッチ素子T11〜T33を導通状態にする導通電圧と非道通状態とする非導通電圧を有する駆動信号を、各駆動線R1〜R3に出力する。これにより、垂直駆動回路114は、スイッチ素子T11〜T33の導通状態及び非導通状態を制御し、検出部112を駆動する。制御信号D−CLKは、垂直駆動回路114として用いられるシフトレジスタのシフトクロックである。制御信号DIOは、垂直駆動回路114のシフトレジスタの転送パルスである。制御信号OEは、垂直駆動回路114のシフトレジスタの出力イネーブル信号である。以上により、垂直駆動回路114は、駆動の時間と走査方向を設定する。また、駆動手段204は、制御信号RC、制御信号SH、及び制御信号CLKを読み出し回路113に出力することによって、読み出し回路113の各構成要素の動作を制御する。制御信号RCは、積分アンプ105のリセットスイッチ123の動作を制御するための信号である。制御信号SHは、サンプルホールド回路107のサンプリングスイッチ124を制御するための信号である。制御信号CLKは、マルチプレクサ108の動作を制御するためのクロック信号である。
図3は図1の放射線撮像システムの制御方法を示すフローチャートであり、図4はその制御方法のタイミングチャートである。ステップS301では、電流−電圧変換回路115は、図4に示すように、バイアス線Bsにバイアス電圧Vsの印加を開始する。
次に、ステップS302では、制御手段202は、X線の照射が開始されたか否かを判定する。X線検知手段203は、A/D変換器127が出力する電流情報(照射されるX線に応じた電気信号)が閾値以上になった場合に、X線照射信号を制御手段202に出力する。制御手段202は、X線照射信号が入力された場合にはX線の照射が開始されたと判断し、X線照射信号が入力されない場合にはX線の照射が開始されていないと判断する。X線の照射が開始された場合にはステップS304に進み、X線の照射が開始されていない場合にはステップS303に進む。ステップS303では、検出部112は、制御手段202の制御により、図4に示すように、駆動線R1〜R14を導通電圧にし、スイッチ素子T11〜T33等を導通状態にする。これにより、暗電流の電荷蓄積により生じた変換素子S11〜S33等の電荷をリセットするリセット動作(以下、空読みと称する)が行われる。その後、ステップS302に戻る。検出部112は、X線の照射前に、暗電流によって生じた変換素子S11〜S33等の電荷のリセットを行うリセット動作を繰り返し行う。
ステップS303の空読みでは、図4に示すように、インタレースのリセット動作が行われる。まず、偶数行の画素の駆動線R2,R4,R6,・・・,R14が順次導通電圧になり、偶数行の画素のスイッチ素子T21,T41等が順次導通状態になり、偶数行の画素の変換素子S21,S41等の電荷がリセットされる。次に、奇数行の画素の駆動線R1,R3,R5,・・・,R13が順次導通電圧になり、奇数行の画素のスイッチ素子T11,T31等が順次導通状態になり、奇数行の画素の変換素子S11,S31等の電荷がリセットされる。上記の偶数行のリセットと奇数行のリセットとの組みの動作は、X線開始が検知されるまで、繰り返し行われる。
X線照射開始の検知後、ステップS304では、駆動手段204は、X線検知行RXを記憶する。X線検知行RXは、X線照射の開始により空読みを停止した行RXを示し、図4の場合には駆動線R4に対応する4行目である。
次に、ステップS305では、駆動手段204は、制御手段202を介して、X線検知手段203から時間TXを入力し、時間TXを記憶する。時間TXは、図4に示すように、バイアス電圧印加開始時刻からX線照射開始検知時刻までの時間である。
次に、ステップS306では、制御手段202は、X線の照射が終了したか否かを判定する。X線検知手段203は、A/D変換器127が出力する電流情報(照射されるX線に応じた電気信号)が閾値未満になった場合に、X線照射信号の出力を停止する。また、X線検知手段203は、X線照射開始の検知時刻から所定時間(X線照射期間)経過後に、X線照射信号の出力を停止してもよい。制御手段202は、X線照射信号の入力が停止された場合にはX線の照射が終了したと判断し、X線照射信号が入力されている場合にはX線の照射が終了していないと判断する。X線の照射が終了した場合にはステップS308に進み、X線の照射が終了していない場合にはステップS307に進む。ステップS307では、検出部112は、制御手段202の制御により、電荷の蓄積動作を行う。その後、ステップS306に戻る。電荷の蓄積動作は、図4に示すように、全ての駆動線R1〜R14を非導通電圧にし、全ての画素のスイッチ素子T11〜T33等を非導通状態にして、X線の照射に応じた電荷を変換素子S11〜S33等に蓄積する動作である。X線の照射が終了するまで、変換素子S11〜S33等において電荷の蓄積動作が行われる。
X線照射終了の検知後、ステップS308では、駆動手段204は、制御手段202を介して、X線検知手段203から時間TEを入力し、時間TEを記憶する。時間TEは、図4に示すように、バイアス電圧印加開始時刻からX線照射終了時刻までの時間である。
次に、ステップS309では、検出部112は、制御手段202の制御により、X線の照射に応じた電荷を読み出す本読み出し動作502を行う。本読み出し動作502では、駆動線R1〜R14が順次、導通電圧のパルスになり、スイッチ素子S11〜S33等が行単位で順次、導通状態になり、先頭行の画素から最終行の画素まで行単位で順番に信号線Sig1〜Sig3等に電気信号が出力される。A/D変換器110は、先頭行から最終行までの画素の画像情報X−image(X,Y)を出力する。補正手段209は、画像情報X−image(X,Y)を入力する。
次に、ステップS310では、演算手段208は、時間TH0と、時間TK0と、時間TXと、時間TEと、空読み停止行RXを基に、図4の各行の電荷蓄積開始時間T0及び電荷蓄積時間Tsを算出する。その後、演算手段208は、電荷蓄積開始時間T0及び電荷蓄積時間Tsに応じた暗電流特性F(X,Y,T0,Ts)を算出することより、X線撮影時に各画素に含まれる暗電流成分Dark_X(X,Y)を予測する。
次に、ステップS311では、補正手段209は、画像情報X−image(X,Y)から暗電流成分Dark_X(X,Y)を減算することにより、画像情報の補正を行う。表示手段(又はコンピュータ)210は、補正手段209により補正された画像情報を表示(又は処理)する。
図5(A)は、図4の各駆動線R1〜R14の行の電荷蓄積期間を示す図である。電荷蓄積期間は、期間501の各駆動線R1〜R14の最後のパルス立ち下がり時刻から、本読み出し動作502の各駆動線R1〜R14のパルス立ち上がり時刻までの期間である。偶数行空読みの後に奇数行空読みを行っているため、奇数行の電荷蓄積期間と偶数行の電荷蓄積期間は異なる。また、空読み停止行RX(=4)以下の偶数行R2及びR4は、空読み停止行RX(=4)より大きい偶数行R6,R8,・・・,R14に比べて、電荷蓄積期間が短い。また、空読みは、行単位で順次行われるため、大きい行番号ほど、電荷蓄積期間が長くなる。
図5(B)はバイアス印加からの経過時間に対する暗電流特性F(X,Y,T0,Ts)を示す図であり、図5(C)は行毎の暗電流成分Dark_X(X,Y)を示す図である。暗電流特性F(X,Y,T0,Ts)は、バイアス印加からの経過時間が長くなるほど小さくなっていく。バイアス印加からの経過時間TX2がバイアス印加からの経過時間TX2より長い場合、経過時間TX2における暗電流特性F(X,Y,T0,Ts)は、経過時間TX1における暗電流特性F(X,Y,T0,Ts)より小さい。
暗電流成分511は、経過時間TX1における偶数行の暗電流成分Dark_X(X,Y)を示す。暗電流成分512は、経過時間TX1における奇数行の暗電流成分Dark_X(X,Y)を示す。暗電流成分513は、経過時間TX2における偶数行の暗電流成分Dark_X(X,Y)を示す。暗電流成分514は、経過時間TX2における奇数行の暗電流成分Dark_X(X,Y)を示す。
検出部112では、X線が照射されていない期間でも暗電流が発生する。そのため、図5(A)において、電荷蓄積期間が長いほど、暗電流成分が大きくなる。そのため、図5(C)の暗電流成分511〜514の各行の大きさは、図5(A)の電荷蓄積期間の長さに対応する。なお、偶数行の暗電流成分511及び513は、空読み停止行RXで段差が生じる。そこで、補正手段209は、画像情報X−image(X,Y)から暗電流成分Dark_X(X,Y)を減算することにより、画像情報の補正を行い、高画質の画像を得ることができる。
(第2の実施形態)
図6は、本発明の第2の実施形態による放射線撮像システムの構成例を示すブロック図である。図6は、図1に対して、記憶手段207の記憶内容が異なる。以下、本実施形態が第1の実施形態と異なる点を説明する。図6の記憶手段207は、図1の記憶手段207に対して、各画素の暗電流特性F(X,Y,T0,Ts)の代わりに、全画素共通の暗電流特性F(T0,Ts)及び各画素のオフセット値Offset(X,Y)を予め記憶する。暗電流特性F(T0,Ts)は、全画素の平均などの全画素共通の暗電流特性である。オフセット値Offset(X,Y)は、暗電流成分を含まない各画素のオフセット値である。演算手段208は、各画素の暗電流特性F(X,Y,T0,Ts)の代わりに、全画素共通の暗電流特性F(T0,Ts)及び各画素のオフセット値Offset(X,Y)を用いることにより、暗電流成分Dark_X(X,Y)を予測することができる。補正手段209は、画像情報X−image(X,Y)から暗電流成分Dark_X(X,Y)を減算することにより、画像情報の補正を行う。本実施形態によれば、記憶手段207の記憶容量及び演算手段208の演算負荷を低減しつつ、良好な画質の画像を得ることができる。
図6は、本発明の第2の実施形態による放射線撮像システムの構成例を示すブロック図である。図6は、図1に対して、記憶手段207の記憶内容が異なる。以下、本実施形態が第1の実施形態と異なる点を説明する。図6の記憶手段207は、図1の記憶手段207に対して、各画素の暗電流特性F(X,Y,T0,Ts)の代わりに、全画素共通の暗電流特性F(T0,Ts)及び各画素のオフセット値Offset(X,Y)を予め記憶する。暗電流特性F(T0,Ts)は、全画素の平均などの全画素共通の暗電流特性である。オフセット値Offset(X,Y)は、暗電流成分を含まない各画素のオフセット値である。演算手段208は、各画素の暗電流特性F(X,Y,T0,Ts)の代わりに、全画素共通の暗電流特性F(T0,Ts)及び各画素のオフセット値Offset(X,Y)を用いることにより、暗電流成分Dark_X(X,Y)を予測することができる。補正手段209は、画像情報X−image(X,Y)から暗電流成分Dark_X(X,Y)を減算することにより、画像情報の補正を行う。本実施形態によれば、記憶手段207の記憶容量及び演算手段208の演算負荷を低減しつつ、良好な画質の画像を得ることができる。
(第3の実施形態)
図7は、本発明の第3の実施形態による放射線撮像システムの構成例を示すブロック図である。以下、本実施形態が第1の実施形態と異なる点を説明する。読み出し手段205は、平面型検出器206から画像情報X−image(X,Y)の他、固定パターンノイズ情報Dark_A(X,Y)を出力する。記憶手段207は、本読みの1行分の時間TH0と、空読みの1行分の時間TK0とを予め記憶し、演算手段208に出力する。演算手段208は、時間TH0と、時間TK0と、固定パターンノイズ情報Dark_A(X,Y)を入力し、X線撮影時に各画素の信号に重畳される暗電流成分Dark_X(X,Y)を演算及び予測する。補正手段209は、画像情報X−image(X,Y)から暗電流成分Dark_X(X,Y)を減算することにより、画像情報の補正を行う。表示手段(又はコンピュータ)210は、補正手段209により補正された画像情報を表示(又は処理)する。
図7は、本発明の第3の実施形態による放射線撮像システムの構成例を示すブロック図である。以下、本実施形態が第1の実施形態と異なる点を説明する。読み出し手段205は、平面型検出器206から画像情報X−image(X,Y)の他、固定パターンノイズ情報Dark_A(X,Y)を出力する。記憶手段207は、本読みの1行分の時間TH0と、空読みの1行分の時間TK0とを予め記憶し、演算手段208に出力する。演算手段208は、時間TH0と、時間TK0と、固定パターンノイズ情報Dark_A(X,Y)を入力し、X線撮影時に各画素の信号に重畳される暗電流成分Dark_X(X,Y)を演算及び予測する。補正手段209は、画像情報X−image(X,Y)から暗電流成分Dark_X(X,Y)を減算することにより、画像情報の補正を行う。表示手段(又はコンピュータ)210は、補正手段209により補正された画像情報を表示(又は処理)する。
図8は図7の放射線撮像システムの制御方法を示すフローチャートであり、図9はその制御方法のタイミングチャートである。図9の前半部は、図4と同じである。図8は、図3に対して、ステップS309及びS310の間にステップS801及びS802を追加したものである。以下、図8が図3と異なる点を説明する。
ステップS309の後、ステップS801では、駆動手段204は、X線発生装置201がX線を照射しない状態で、上記の時間TX,TE及び空読み停止行RXを基に、図4及び図9の期間501の駆動線R1〜R14の制御と同じ制御を期間503において行う。すなわち、モノマネ駆動を行う。
次に、ステップS802では、検出部112は、制御手段202の制御により、本読み出し動作502と同様に、変換素子S11〜S33等の電荷を読み出す本読み出し動作504を行う。本読み出し動作504では、駆動線R1〜R14が順次、導通電圧のパルスになり、スイッチ素子S11〜S33等が行単位で順次、導通状態になり、先頭行の画素から最終行の画素まで行単位で順番に信号線Sig1〜Sig3等に電気信号が出力される。A/D変換器110は、先頭行から最終行までの画素の固定パターンノイズ情報Dark_A(X,Y)を出力する。演算手段208は、固定パターンノイズ情報Dark_A(X,Y)を入力する。
図10は、画像情報X−image(X,Y)及び固定パターンノイズ情報Dark_A(X,Y)の行毎の出力値を示す図であり、図5(A)に対応する。出力701は、画像情報X−image(X,Y)のうちの奇数行の出力値を示す。出力702は、画像情報X−image(X,Y)のうちの偶数行の出力値を示す。出力703は、画像情報X−image(X,Y)のうちの奇数行の暗電流成分を示す。出力704は、画像情報X−image(X,Y)のうちの偶数行の暗電流成分を示す。出力705は、固定パターンノイズ情報Dark_A(X,Y)のうちの奇数行の出力値を示す。出力706は、固定パターンノイズ情報Dark_A(X,Y)のうちの偶数行の出力値を示す。
検出部112では、X線が照射されていない期間でも暗電流が発生する。そのため、図5(A)において、電荷蓄積期間が長いほど、暗電流成分のノイズが大きくなり、画像情報X−image(X,Y)及び固定パターンノイズ情報Dark_A(X,Y)内の暗電流ノイズが大きくなる。そのため、図10の出力701〜706は、図5(A)の電荷蓄積期間の長さに対応し、暗電流ノイズが発生してしまう。偶数行の出力702、704及び706は、空読み停止行RXで段差が生じる。
期間711は、図9の期間511に対応し、図5(A)と同様に、駆動線R6の6行目、駆動線R5の5行目、駆動線R4の4行目の順で、電荷蓄積期間が短くなっていく。その後の期間712は、図9の期間512に対応し、図5(A)と同様に、駆動線R6の6行目、駆動線R5の5行目、駆動線R4の4行目の順で、電荷蓄積期間が短くなっていく。暗電流713は、時間が経過するほど小さくなっていく。そのため、期間711の暗電流は、期間712の暗電流より大きい。その結果、期間711の画像情報X−image(X,Y)の暗電流成分703及び704は、期間712の固定パターンノイズ情報Dark_A(X,Y)の出力705及び706より大きくなってしまう。
次に、図8のステップS310では、演算手段208は、時間TH0と、時間TK0と、固定パターンノイズ情報Dark_A(X,Y)を基に、X線撮影時に各画素に含まれる暗電流成分Dark_X(X,Y)を予測する。
次に、ステップS311では、補正手段209は、画像情報X−image(X,Y)から暗電流成分Dark_X(X,Y)を減算することにより、画像情報の補正を行う。表示手段(又はコンピュータ)210は、補正手段209により補正された画像情報を表示(又は処理)する。本実施形態によれば、より精度よく画像情報を補正し、良好な画質を得ることができる。
(第4の実施形態)
図11は、本発明の第4の実施形態による放射線撮像システムの構成例を示すブロック図である。図11は、図6に対して、演算手段208が代表的な暗電流特性F(T0,Ts)を入力する代わりにバイアス線Bsの電流波形情報を入力する点が異なる。本発明者は、図12(A)に示すように、バイアス線Bsの電流波形情報が暗電流特性F(T0,Ts)に相似していることを見出した。そこで、暗電流特性F(T0,Ts)の代わりにバイアス線Bsの電流波形情報を用いる。以下、図11が図6と異なる点を説明する。
図11は、本発明の第4の実施形態による放射線撮像システムの構成例を示すブロック図である。図11は、図6に対して、演算手段208が代表的な暗電流特性F(T0,Ts)を入力する代わりにバイアス線Bsの電流波形情報を入力する点が異なる。本発明者は、図12(A)に示すように、バイアス線Bsの電流波形情報が暗電流特性F(T0,Ts)に相似していることを見出した。そこで、暗電流特性F(T0,Ts)の代わりにバイアス線Bsの電流波形情報を用いる。以下、図11が図6と異なる点を説明する。
上記のように、X線検知手段203は、平面型検出器206内のA/D変換器127(図2)から、図2の全画素のバイアス線Bsに流れる電流情報(照射されるX線に応じた電気信号)を入力する。X線検知手段203は、は、そのバイアス線Bsの電流情報を基に、バイアス線Bsの電流波形情報を演算手段208に出力する。
記憶手段207は、本読みの1行分の時間TH0と、空読みの1行分の時間TK0と、各画素のオフセット値Offset(X,Y)を予め記憶し、演算手段208に出力する。図12(C)に示すように、各画素のオフセット値Offset(X,Y)は、図10と同様に、奇数行のオフセット値O2と偶数行のオフセット値E2とが異なる。偶数行のオフセット値E2は、空読み停止行RXで段差が生じる。演算手段208は、時間TH0と、時間TK0と、オフセット値Offset(X,Y)と、時間TXと、時間TEと、バイアス線Bsの電流波形情報と、空読み停止行RXを入力する。図12(C)に示すように、演算手段208は、それらの入力を基に、X線撮影時に各画素の信号に重畳される暗電流成分Dark_X(X,Y)を演算又はルックアップテーブルにより予測する。暗電流成分Dark_X(X,Y)は、奇数行の暗電流成分O1と偶数行の暗電流成分E1とが異なる。偶数行の暗電流成分E1は、空読み停止行RXで段差が生じる。バイアス線Bsの電流波形情報が暗電流特性F(T0,Ts)に相似しているので、演算手段208は、図6の暗電流特性F(T0,Ts)の代わりにバイアス線Bsの電流波形情報を用いて、暗電流成分Dark_X(X,Y)を予測する。補正手段209は、画像情報X−image(X,Y)から暗電流成分Dark_X(X,Y)を減算することにより、画像情報の補正を行う。表示手段(又はコンピュータ)210は、補正手段209により補正された画像情報を表示(又は処理)する。
本実施形態では、バイアス線Bsの電流波形情報が暗電流特性F(T0,Ts)に相似している関係を利用することにより、温度などで暗電流成分Dark_X(X,Y)が変動する場合にも、暗電流成分Dark_X(X,Y)を高精度で予測することができる。また、本実施形態は、記憶手段207の記憶容量及び演算手段208の演算負荷を低減し、かつ温度や特性変動(劣化など)により暗電流特性が変化しても対応可能であるという利点を有する。
(第5の実施形態)
図13は、本発明の第5の実施形態による放射線撮像システムの構成例を示すブロック図である。図13は、図7に対して、演算手段208が読み出し手段205から第1の固定パターンノイズ情報Dark_A1(X,Y)及び第2の固定パターンノイズ情報Dark_A2(X,Y)を入力する点が異なる。以下、本実施形態(図13)が第3の実施形態(図7)と異なる点を説明する。
図13は、本発明の第5の実施形態による放射線撮像システムの構成例を示すブロック図である。図13は、図7に対して、演算手段208が読み出し手段205から第1の固定パターンノイズ情報Dark_A1(X,Y)及び第2の固定パターンノイズ情報Dark_A2(X,Y)を入力する点が異なる。以下、本実施形態(図13)が第3の実施形態(図7)と異なる点を説明する。
本実施形態では、図8において、ステップS801及びS802の処理を行うことにより、第1の固定パターンノイズ情報Dark_A1(X,Y)を取得する。その後、再び、ステップS801及びS802の処理を行うことにより、第2の固定パターンノイズ情報Dark_A2(X,Y)を取得する。
図14(A)は、図10に対応し、時間に対する暗電流713を示す図である。期間711は、図9の期間511に対応し、図8のステップS309の画像情報X−image(X,Y)に含まれる暗電流である。その後の期間712は、図9の期間512に対応し、図8の第1回目のステップS802の第1の固定パターンノイズ情報Dark_A1(X,Y)に対応する。その後の期間714は、図8の第2回目のステップS802の第2の固定パターンノイズ情報Dark_A2(X,Y)に対応し、駆動線R6の6行目、駆動線R5の5行目、駆動線R4の4行目の順で、電荷蓄積期間が短くなっていく。暗電流713は、時間が経過するほど小さくなっていく。そのため、期間714の暗電流は、期間712の暗電流より小さい。
その後、図8のステップS310では、演算手段208は、時間TH0と、時間TK0と、時間TXと、時間TEと、空読み停止行RXを入力する。さらに、演算手段208は、期間712の第1の固定パターンノイズ情報Dark_A1(X,Y)と、期間714の第2の固定パターンノイズ情報Dark_A2(X,Y)を入力する。図14(A)及び(B)に示すように、演算手段208は、それらの入力を基に、X線撮影時に各画素に含まれる暗電流成分Dark_X(X,Y)を演算及び予測する。暗電流成分Dark_X(X,Y)は、奇数行の暗電流成分O1と偶数行の暗電流成分E1とが異なる。偶数行の暗電流成分E1は、空読み停止行RXで段差が生じる。演算手段208は、期間712の第1の固定パターンノイズ情報Dark_A1(X,Y)と、期間714の第2の固定パターンノイズ情報Dark_A2(X,Y)との差分を基に暗電流の変化分を演算し、それを基に暗電流成分Dark_X(X,Y)を演算する。
次に、図8のステップS311では、補正手段209は、画像情報X−image(X,Y)から暗電流成分Dark_X(X,Y)を減算することにより、画像情報の補正を行う。表示手段(又はコンピュータ)210は、補正手段209により補正された画像情報を表示(又は処理)する。本実施形態によれば、記憶手段207の記憶容量及び演算手段208の演算負荷を低減することができるという利点を有する。
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
202 制御手段、203 X線検知手段、206 平面型検出器、208 演算手段、209 補正手段
Claims (7)
- 行列状に配置され、放射線を電荷に変換して画素出力値を出力する複数の画素を含む検出部と、
放射線の照射開始及び照射終了を検知する検知手段と、
前記検知手段により放射線の照射開始が検知されるまでの間、前記複数の画素に対してインタレースのリセット動作を行わせ、前記検知手段により放射線の照射開始が検知されると、前記複数の画素に対してインタレースのリセット動作を停止させて電荷の蓄積動作を行わせ、その後、前記放射線の照射が終了すると、前記複数の画素の画素出力値の読み出し動作を行わせることにより、前記放射線の照射に応じた画像情報を出力させる制御手段と、
前記リセット動作の1行分の時間と、前記読み出し動作の1行分の時間と、前記検知手段が放射線の照射開始を検知するまでの時間と、前記検知手段が放射線の照射終了を検知するまでの時間と、リセット動作を停止した行とを基に、暗電流成分を演算する演算手段と、
前記暗電流成分を用いて前記画像情報を補正する補正手段と
を有することを特徴とする放射線撮像システム。 - 前記演算手段は、各画素の暗電流特性を基に前記暗電流成分を演算することを特徴とする請求項1記載の放射線撮像システム。
- 前記演算手段は、全画素共通の暗電流特性及び各画素のオフセット値を基に前記暗電流成分を演算することを特徴とする請求項1記載の放射線撮像システム。
- 前記制御手段は、前記画像情報を出力させた後、前記複数の画素に対して、前記インタレースのリセット動作、前記電荷の蓄積動作及び前記画素出力値の読み出し動作を再び行わせることにより、第1の固定パターンノイズ情報を出力させ、
前記演算手段は、前記第1の固定パターンノイズ情報を基に前記暗電流成分を演算することを特徴とする請求項1記載の放射線撮像システム。 - 前記演算手段は、前記複数の画素のバイアス線に流れる電流及び各画素のオフセット値を基に前記暗電流成分を演算することを特徴とする請求項1記載の放射線撮像システム。
- 前記制御手段は、前記第1の固定パターンノイズ情報を出力させた後、前記複数の画素に対して、前記インタレースのリセット動作、前記電荷の蓄積動作及び前記画素出力値の読み出し動作を再び行わせることにより、第2の固定パターンノイズ情報を出力させ、
前記演算手段は、前記第1の固定パターンノイズ情報及び前記第2の固定パターンノイズ情報を基に前記暗電流成分を演算することを特徴とする請求項4記載の放射線撮像システム。 - さらに、放射線を照射する放射線発生装置を有することを特徴とする請求項1〜6のいずれか1項に記載の放射線撮像システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013143815A JP2015019155A (ja) | 2013-07-09 | 2013-07-09 | 放射線撮像システム |
US14/290,479 US20140361189A1 (en) | 2013-06-05 | 2014-05-29 | Radiation imaging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013143815A JP2015019155A (ja) | 2013-07-09 | 2013-07-09 | 放射線撮像システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015019155A true JP2015019155A (ja) | 2015-01-29 |
Family
ID=52439805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013143815A Pending JP2015019155A (ja) | 2013-06-05 | 2013-07-09 | 放射線撮像システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015019155A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109690352A (zh) * | 2016-10-18 | 2019-04-26 | 深圳帧观德芯科技有限公司 | 适用于脉冲辐射源的辐射检测器 |
CN109716164A (zh) * | 2016-10-18 | 2019-05-03 | 深圳帧观德芯科技有限公司 | 适用于脉冲辐射源的具有闪烁体的辐射检测器 |
-
2013
- 2013-07-09 JP JP2013143815A patent/JP2015019155A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109690352A (zh) * | 2016-10-18 | 2019-04-26 | 深圳帧观德芯科技有限公司 | 适用于脉冲辐射源的辐射检测器 |
CN109716164A (zh) * | 2016-10-18 | 2019-05-03 | 深圳帧观德芯科技有限公司 | 适用于脉冲辐射源的具有闪烁体的辐射检测器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140361189A1 (en) | Radiation imaging system | |
JP5950840B2 (ja) | 放射線撮像装置及び撮像システム | |
CN109758169B (zh) | 放射线成像装置 | |
EP3226549B1 (en) | Radiation imaging apparatus, radiation imaging system, and method of operating radiation imaging apparatus | |
JP6238577B2 (ja) | 放射線撮像装置及び放射線撮像システム | |
JP6525579B2 (ja) | 放射線撮像装置及び放射線撮像システム | |
JP6104004B2 (ja) | 放射線撮像システム、コンピュータ及びプログラム | |
US8818068B2 (en) | Imaging apparatus, imaging system, method of controlling the apparatus and the system, and program | |
US8436314B2 (en) | Imaging apparatus, imaging system, method of controlling the apparatus and the system, and program | |
JP5096946B2 (ja) | 固体撮像装置 | |
JP2013090124A5 (ja) | ||
JP2011045492A (ja) | 撮像システム、その画像処理方法及びそのプログラム | |
JP6238604B2 (ja) | 放射線撮像システム | |
JP2009065377A (ja) | 固体撮像装置 | |
JP5155759B2 (ja) | 固体撮像装置 | |
JP5988735B2 (ja) | 放射線撮像装置の制御方法、放射線撮像装置、及び、放射線撮像システム | |
JP5091695B2 (ja) | 固体撮像装置 | |
JP2018068874A (ja) | 放射線画像撮影装置、放射線画像撮影方法、及び放射線画像撮影プログラム | |
JP5988736B2 (ja) | 放射線撮像装置の制御方法、放射線撮像装置、及び、放射線撮像システム | |
JP2015019155A (ja) | 放射線撮像システム | |
JP4972569B2 (ja) | 固体撮像装置 | |
JP7508509B2 (ja) | 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の制御方法、プログラム | |
JP2014236480A (ja) | 放射線撮像システム | |
WO2015005259A1 (ja) | 放射線撮像装置及び放射線撮像システム |