JP2009083765A - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
JP2009083765A
JP2009083765A JP2007258643A JP2007258643A JP2009083765A JP 2009083765 A JP2009083765 A JP 2009083765A JP 2007258643 A JP2007258643 A JP 2007258643A JP 2007258643 A JP2007258643 A JP 2007258643A JP 2009083765 A JP2009083765 A JP 2009083765A
Authority
JP
Japan
Prior art keywords
vehicle
road surface
traveling
road
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007258643A
Other languages
English (en)
Other versions
JP5104175B2 (ja
Inventor
Yukifumi Jinbo
志文 神保
Masaki Arima
雅規 有馬
Daisuke Maeda
大輔 前田
Daruma Kawachi
達磨 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2007258643A priority Critical patent/JP5104175B2/ja
Publication of JP2009083765A publication Critical patent/JP2009083765A/ja
Application granted granted Critical
Publication of JP5104175B2 publication Critical patent/JP5104175B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

【課題】安定して走行している車両が、路面摩擦係数μが変化する路面にさしかかったとき、車両姿勢が乱れて挙動が不安定化することを防止する。
【解決手段】運転者は、走行路の前方にある路面氷結部を車両の左側の車輪が走行した後も、車両を直進走行させようとしている。しかし、左側の車輪だけが氷結部を走行したために、右側の車輪の加速力が左側の車輪の加速力より大きくなる。このため、車両は、その姿勢を大きく乱す。ECUは、この乱れを検出してから、車両姿勢を制御しようとすると、車両は、運転者の意図する方向よりも左方向に大きく向きを変えながら走行するようになる。そこで、ECUは、左側の車輪が氷結部を走行する直前に、車輪の転舵角または各車輪に作用させる制動力のうち少なくとも一方を制御して、氷結部を走行後の車両姿勢を制御して挙動を安定化させる。
【選択図】図2

Description

本発明は、車両制御装置に関し、特に路面摩擦係数の変化により不安定化する車両の挙動を安定化させる車両制御装置に関する。
従来、車両は、搭載されたヨーレートセンサ、Gセンサ、車輪速センサなどの各種センサから与えられる情報に基づき、走行路の路面摩擦係数μの変化による車両姿勢の乱れがないか否かを確認しながら走行し、車両姿勢が乱れて不安定化していることを検出した場合には、個々の車輪のブレーキやステアリングなどを制御して、挙動を安定化させている。
特許文献1は、路面摩擦係数の変化による車両の挙動が不安定化したことを早期に検出し、安定化のために必要な制御を速やかに行うことによって、車両姿勢の乱れを少なくする発明を開示している。また、いわゆるμスプリット路を走行中に車両の挙動が不安定化した場合、車両を直進させながら停止させる発明も開示している。
特開2001−334947号公報
しかし、走行中の車両が、路面摩擦係数の変化した路面にさしかかり、運転者の意図しない方向に走行し始めたことを検出してから、車両姿勢の制御を開始したのでは、車両が意図しない方向に動き出してから制御が開始されるまでの間に、車両姿勢が大きく乱れてしまうという問題がある。
また、μスプリット路を走行中に車両姿勢が乱れたため、車両を停止させる必要が生じた場合に、μスプリット路を直進させながら停止させれば、制動距離が長くなるという問題がある。ここで、μスプリット路とは、車両の右側と左側とで路面摩擦係数μが著しく異なる路面をいい、例えば、右側が路面摩擦係数μの高い乾いたアスファルト路で、左側が路面摩擦係数μの低い氷面であるような場合である。
それゆえ、本発明の目的は、路面摩擦係数が変化する路面を走行する車両の挙動が不安定化することを抑制することができる、車両制御装置を提供することである。また、本発明の他の目的は、μスプリット路を走行中の車両の制動距離を短くすることができる、車両制御装置を提供することである。
第1の発明は、車両の挙動を制御する車両制御装置であって、
路面状態を検出する路面状態検出手段と、
前記車両に設けられた車輪の転舵角をアクティブ制御するアクティブステアリング手段と、
前記車輪の制動力を個別に制御する制動圧制御手段と、
路面状態の変化に応じて前記アクティブステアリング手段および前記制動圧制御手段の少なくともいずれか一方を作動させて前記車両の挙動を安定化させる安定化手段とを備え、
前記安定化手段は、前記路面状態検出手段によって走行路前方の路面状態が変化していることが検出された路面に前記車両がさしかかる前から作動することを特徴とする。
第2の発明は、第1の発明において、
前記路面状態検出手段は、前記車両が走行している路面の路面摩擦係数を検出する摩擦係数検出手段を含み、
前記車両は、第1の路面と該第1の路面よりも路面摩擦係数が高い第2の路面に跨って走行しているのか、または前記第2の路面を走行しているのかのいずれであるかを、前記摩擦係数検出手段によって検出された路面摩擦係数に基づいて判定する判定手段と、
前記車両が前記第1の路面と前記第2の路面に跨って走行していると前記判定手段によって判定された場合に、前記車両は前記第2の路面に向かって走行するように前記車両の走行方向を変更する方向変更手段とをさらに備え、
前記制動圧制御手段は、前記車両が前記第2の路面を走行していると前記判定手段によって判定された場合に、前記車両を前記第2の路面に停止させることを特徴とする。
上記第1の発明によれば、走行路前方の路面状態を検出しながら走行している車両が、路面状態の変化している路面にさしかかる前から、少なくとも路面状態の変化に応じて、車輪の転舵角の制御および車輪の制動力の個別制御の少なくともいずれか一方の制御を行う。したがって、車両姿勢を大きく乱すことなく、早急に挙動を安定化させることができるので、運転者の意図する方向に車両を走行させることができる。
上記第2の発明によれば、車両が、第1の路面と第1の路面よりも路面摩擦係数の高い第2の路面とを含む走行路を走行している車両が、第2の路面に向かって走行するようにその方向を変更する。そして、車両が第2の路面を走行するようになったら、車両を停止させる。したがって、第1の路面と第2の路面に跨って走行している車両の挙動が不安定になり、早急に停止させる必要が生じたとき、車両は、路面摩擦係数の高い第2の路面に移動して停止する。このため、第1の路面と第2の路面に跨って走行しながら停止する場合よりも、制動距離を短くすることができる。
以下、本発明に係る車両制御装置の実施形態について、図面を参照して説明する。
<1.第1の実施形態>
<1.1 全体構成>
図1は、本発明の第1の実施形態に係る車両制御装置を搭載する車両の構成を示すブロック図である。この車両は、その前後左右にそれぞれ取付けられた4つの車輪20a〜20dを含む。
左前輪20aおよび右前輪20bは、運転者により操作されるステアリングホイール10、ステアリングホイール10を車体に対して回転可能に支持するステアリングシャフト11、およびラックアンドピニオン式ステアリングユニット12によって操舵される。さらに、左前輪20aおよび右前輪20bは、ラックアンドピニオン式ステアリングユニット12に隣接して配置されたアクティブステアリングユニット13により補助操舵される。この補助操舵は、アクティブステアリングユニット13が、前輪20a、20bに連結されたラックバー14を車両横方向に駆動することにより行われる。
また、車両には、ステアリングシャフト11に設けられた、ステアリングホイール10の操舵角を検出する操舵角センサ15、左前輪20aおよび右前輪20bの転舵角を検出する転舵角センサ16、車両の横加速度および縦加速度を検出するGセンサ60a、車両のヨーレートを検出するヨーレートセンサ60b、車速を検出する車速センサ60c、各車輪20a〜20dの車輪速を個別に検出する4つの車輪速センサ25a〜25d、各車輪20a〜20dの制動力を個別に検出する4つの制動力センサ41a〜41dが搭載されている。
これらのセンサは、それぞれ電子制御ユニット(Electronic Control Unit :以下「ECU」という)50に接続され、ECU50は、各センサから与えられた情報に基づいて、後述する車両の制御を行っている。なお、ECU50は、その内部にCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)および入出力ポートを有し、これらが双方向性のバスにより互いに接続されている。
RAMには、ミリ波の反射率と、路面の種類(コンクリート舗装、アスファルト舗装、砂利道など)およびその状態(乾燥状態、湿潤状態など)との関係を示すテーブル、ならびに路面の種類およびその状態と、路面摩擦係数μとの関係を示すテーブルがそれぞれ書き込まれており、必要に応じてそれらを読み出すことができる。また、ROMには、CPUによって実行されるべき各種プログラムが予め書き込まれている。
各車輪20a〜20dには、ブレーキディスク21a〜21dと、液圧の供給によりブレーキディスク21a〜21dを摩擦挟持して制動力を与えるホイールシリンダ22a〜22dとがそれぞれ設けられている。制動圧制御ユニット40は、各ホイールシリンダ22a〜22dに液圧を供給することによって、車輪20a〜20dを個別に制動する。
この制動圧制御ユニット40は、運転者がブレーキペダルを踏み込まない場合にも、内蔵されたポンプ(図示しない)により制動力を発生させることができる。このため、ECU50は、車輪速センサ25a〜25dから与えられる各車輪20a〜20dの車輪速と、制動力センサ41a〜41dから与えられる制動力とに基づいて、制動圧制御ユニット40を制御してホイールシリンダ22a〜22dに供給する液圧を分配する。これにより、車輪20a〜20dの制動力を個別に制御することができる。
また、ECU50は、運転者がアクセルペダルを踏み込まなくても、スロットル制御ユニット31を制御することによって、スロットルバルブの開き具合(スロットル開度)を調整し、エンジン30の出力を制御することができる。
車両の前部には、ミリ波帯の電波を用いて車両の前方100m程度の範囲にある、走行車両、対向車両などの状況を把握できるミリ波レーダ70が搭載されている。すなわち、ミリ波レーダ70は、前方の走行車両によって反射されてきたミリ波を受信し、発信してから受信するまでの時間やドップラー効果によって生じる周波数差をECU50に出力する。ECU50は、与えられた時間や周波数差に基づいて、前方の走行車両の位置や自車両との相対速度を求める。また、ミリ波レーダ70は、発信されたミリ波の強度と路面で反射されて受信されたミリ波の強度の変化を測定し、ECU50に出力する。ECU50は、与えられたミリ波の強度の変化に基づいて、路面の反射率を求める。
<1.2 車両制御装置の動作>
図2は、路面にできた氷結部(ハッチング部分、「路面氷結部」ともいう)を車両の左の車輪20a、20cだけが走行した後の、車両の走行軌跡を示す図である。図2に示すように、路面氷結部は車両の左側だけにあるので、直進してきた車両の左側の車輪20a、20cだけが氷結部を走行する。車両が氷結部を走行した後も、運転者は、図2の一点鎖線で示すように、直進走行するように運転しようとする。
しかし、路面に氷結部があると、氷結部のない路面に比べて路面摩擦係数μが小さくなる。このため、左側の車輪20a、20cだけが氷結部を走行すると、右側の車輪20b、20dの加速力が左側の車輪20a、20cの加速力よりも大きくなり、車両姿勢が乱れる。このため、図2の点線で示すように、車両は、運転者が意図していた方向よりも左方向に大きく向きを変えながら走行するようになる。車両姿勢がこのように大きく乱れると、ECU50は、車両に搭載されたGセンサ60aから与えられる横加速度、ヨーレートセンサ60bから与えられるヨーレート、車輪速センサ25a〜25dから与えられる各車輪20a〜20dの車輪速などに基づき、車両姿勢が乱れて挙動が不安定になっていると判断する。
そこで、ECU50は、車両姿勢を安定させるために、アクティブステアリングユニット13により前輪の転舵角を制御して自動でカウンタステアさせるようにしたり、各車輪20a〜20dを個別に制動したりしながら、早急に車両姿勢を正して挙動を安定化させ、運転者が意図していた方向に直進走行ができるようにする。この場合、車両は、路面氷結部によってその姿勢が大きく乱れてしまうので、運転者が意図していた直進走行ができるようになるまでかなりの時間を必要とする。
そこで、車両の前部に搭載されているミリ波レーダ70によって、路面の反射率の変化を求め、求められた反射率から路面に氷結部があることを検出するとともに、その大きさも求める。また、ミリ波が発信されてから受信されるまでの時間を測定することによって求められた車両から氷結部までの距離と、車速センサ60cから与えられた車速とに基づいて、車両が氷結部に到達するまでの時間を算出する。そして、車両が氷結部に到達する直前、例えば0.1秒前に、左側の車輪20a、20cが氷結部を走行しても車両姿勢が乱れないように、氷結部のある路面の路面摩擦係数μに基づいて、アクティブステアリングユニット13により前輪20a、20bの転舵角を制御して、自動でカウンタステアしたり、制動圧制御ユニット40によって各車輪20a〜20dを個別に制動したりしながら氷結部を走行する。
そのため、左側の車輪20a、20cが氷結部を走行しても、図2の実線で示すように、車両は運転者の意図していた方向から少しだけ左方向に向きを変えるだけですみ、挙動の不安定化を抑制することができる。このため、車両は、姿勢の乱れを早急に正して、運転者が意図していた直進走行に近い走行をできるようになる。
図3〜図6は、車両が路面氷結部を走行するときのECU50の動作を示すフローチャートである。まずステップS1で、ミリ波レーダ70から与えられるミリ波の強度の変化から路面の反射率を求め、ステップS2で、求めた路面の反射率が今まで走行していた路面の反射率と同じか否かを判定する。判定の結果、反射率が同じである場合(S2:YES)には、ステップS1に戻り、反射率が異なる場合(S2:NO)には、ステップS3に進む。
ステップS3では、反射率に対応する路面の状態を特定する。具体的は、RAMに予め書き込まれている路面の種類およびその状態と反射率との対応関係を示すテーブルに基づいて、路面の種類およびその状態を特定する。ここでは、反射率から路面に氷結部があることがわかる。また、氷結部の反射率を示す領域の広がりから、氷結部の大きさがわかる。
ステップS4では、ミリ波レーダ70によって測定された、ミリ波を発信してから受信するまでの時間に基づいて、車両から氷結部までの距離を求める。ステップS5で、ステップS4で求めた氷結部までの距離と車速センサ60cから与えられた車速とに基づいて、車両が氷結部に到達するまでの時間を求める。そして、ステップS6で、RAMに予め書き込まれている氷結部の路面摩擦係数μを読み出す。
ステップS7では、車両がこのまま走行し続ければ、左側の車輪20a、20cだけが路面氷結部を走行するか否かを判定する。判定の結果、右側の車輪20b、20dだけが氷結部を走行する場合や、すべての車輪20a〜20dが氷結部を走行する場合のように、氷結部を走行するのが左側の車輪だけではない場合(S7:NO)には、後述するステップS14に進む。一方、左側の車輪20a、20cだけが氷結部を走行する場合(S7:YES)には、ステップS8に進む。
ステップS8では、車両は、氷結部に到達するまでの時間が経過する直前、例えば0.1秒前になるまで、そのまま走行を続ける。ここで、0.1秒前としたのは、車両が氷結部を走行し始める前までに、次のステップS9〜ステップS11の動作の準備に0.1秒の時間が必要と考えたからである。したがって、この時間は必要に応じて適宜変更してもよい。
そして、氷結部に到達する0.1秒前になると、ステップS9で、スロットル制御ユニット31のスロットル開度を通常走行時よりも大幅に減少させる。この結果、エンジン30の出力は下がり、エンジンブレーキがかかった状態となる。これは、路面状態の変化によって車両姿勢が乱れたことを感じた運転者が、あわてたために誤ってアクセルペダルを踏み込み、車両姿勢がさらに乱れることを防止するためである。
次にステップS10では、ステップS6で読み出した路面摩擦係数μと各車輪速センサ25a〜25dから与えられる車輪速とに基づいて、制動圧制御ユニット40を制御することにより、右側の車輪20b、20dの車輪速を左側の車輪20a、20cの車輪速に比べて減速させる。そして、ステップS11では、ステップS6で読み出した路面摩擦係数μと転舵角センサ16から与えられる転舵角とに基づいて、前輪20a、20bの転舵角をアクティブステアリングユニット13により制御して、車両右方向にヨーモーメントを与える。
ステップS12では、車両が安定走行しているか否かを判定する。具体的には、右側の車輪20b、20dが氷結部を走行した後も、ヨーレートセンサ60bから与えられるヨーレート、操舵角センサ15から与えられる操舵角、各車輪速センサ25a〜25dから与えられる各車輪20a〜20dの車輪速が、それぞれに対して予め設定された閾値よりも小さいか否か判定する。判定の結果、車両が安定走行していない場合(S12:NO)には、ステップS10に戻り、車両が安定走行している場合(S12:YES)には、ステップS13に進む。ステップS13では、ステップS9〜ステップS12で行ったスロットル制御ユニット31、制動圧制御ユニット40、アクティブステアリングユニット13の制御を、それぞれ通常走行時の制御に戻した後、ステップS1に戻る。
ステップS7で、氷結部を走行するのが左側の車輪20a、20cだけではないと判定した場合(S7:NO)、ステップS14で、右側の車輪20b、20dだけが氷結部を走行するか否かを判定する。判定の結果、すべての車輪20a〜20dが氷結部を走行する場合のように、氷結部を走行するのが右側の車輪20b、20dだけではない場合(S14:NO)には、後述するステップS20に進む。一方、右側の車輪20b、20dだけが氷結部を走行する場合(S14:YES)には、ステップS15に進む。
ステップS15では、車両は、氷結部に到達するまでの時間が経過する直前、例えば0.1秒前になるまで、そのまま走行を続ける。ここで、0.1秒前としたのは、車両が氷結部を走行し始める前までに、次のステップS16〜ステップS18の動作の準備に0.1秒の時間が必要と考えたからである。したがって、この時間は必要に応じて適宜変更してもよい。
そして、氷結部に到達する0.1秒前になると、ステップS16で、スロットル制御ユニット31のスロットル開度を通常走行時よりも大幅に減少させる。この結果、エンジン30の出力は下がり、エンジンブレーキがかかった状態となる。
次にステップS17では、ステップS6で読み出した路面摩擦係数μと各車輪速センサ25a〜25dから与えられる車輪速とに基づいて、制動圧制御ユニットを制御することにより、左側の車輪20a、20cの車輪速を右側の車輪20b、20dの車輪速に比べて減速させる。そして、ステップS18では、ステップS6で読み出した路面摩擦係数μと転舵角センサ16から与えられる転舵角とに基づいて、前輪20a、20bの転舵角をアクティブステアリングユニット13によって制御し、車両左方向にヨーモーメントを与える。
ステップS19では、車両が安定走行しているか否かを判定する。具体的には、ヨーレートセンサ60bから与えられるヨーレート、操舵角センサ15から与えられる操舵角、各車輪速センサ25a〜25dから与えられる各車輪20a〜20dの車輪速に基づき、左側の車輪20a、20cが氷結部を走行した後も、それぞれに対して予め設定された閾値よりも小さいか否かを判定する。判定の結果、車両が安定走行していない場合(S19:NO)には、ステップS17に戻り、車両が安定走行している場合(S19:YES)には、ステップS13に戻る。
ステップS14で、氷結部を走行するのが右側の車輪20b、20dだけではないと判定した場合(S14:NO)、ステップS20で、すべての車輪20a〜20dが氷結部を走行するか否かを判定する。判定の結果、車輪20a〜20dのいずれもが氷結部を走行しない場合(S20:NO)には、ステップS1に戻って通常走行を続け、すべての車輪20a〜20dが氷結部を走行すると判定した場合(S20:YES)には、ステップS21に進む。
ステップS21では、車両は、氷結部に到達するまでの時間が経過する直前、例えば0.1秒前になるまで、そのまま走行を続ける。ここで、0.1秒前としたのは、車両が氷結部を走行し始める前までに、次のステップS22〜ステップS24の動作の準備に0.1秒の時間が必要と考えたからである。したがって、この時間は必要に応じて適宜変更してもよい。
そして、氷結部に到達する0.1秒前になると、ステップS22で、スロットル制御ユニット31のスロットル開度を通常走行時よりも大幅に減少させる。この結果、エンジン30の出力は下がり、エンジンブレーキがかかった状態となる。
次にステップS23では、ステップS6で読み出した路面摩擦係数μと各車輪速センサ25a〜25dから与えられる車輪速とに基づいて、制動圧制御ユニット40によって、左側の車輪20a、20cの車輪速と右側の車輪20b、20dの車輪速とが同じになるように制御する。そして、ステップS24では、ステップS6で読み出した路面摩擦係数μと転舵角センサ16から与えられる転舵角とに基づき、前輪20a、20bの転舵角をアクティブステアリングユニット13によって制御し、車両を直進させる。
ステップS25では、車両が安定走行しているか否かを判定する。具体的には、ヨーレートセンサ60bから与えられるヨーレート、操舵角センサ15から与えられる操舵角、各車輪速センサ25a〜25dから与えられる各車輪20a〜20dの車輪速に基づき、すべての車輪20a〜20dが氷結部を走行した後も、それぞれに対して予め設定された閾値よりも小さいか否かを判定する。判定の結果、車両が安定走行していない場合(S25:NO)には、ステップS22に戻り、車両が安定走行している場合(S25:YES)には、ステップS13に戻る。
<1.3 効果>
前方の路面にできた氷結部を予め検知して、車両が氷結部にさしかかる直前に、氷結部の路面摩擦係数μに基づいた車両姿勢の制御を開始することにより、車両姿勢を大きく乱すことなく、運転者の意図する方向に車両を走行させることができる。
<1.4 変形例>
なお、上記の実施形態では、氷結部にさしかかる直前に、まずスロットルの制御を行っているが、運転者が誤ってアクセルペダルを踏み込むおそれがなければ、スロットルの制御を省略してもよい。また、車輪速を制御した後にステアリングの制御を行っているが、ステアリングの制御を行った後に車輪速の制御を行ってもよい。また、路面の種類およびその表面状態によっては、車輪速とステアリングのいずれか一方だけを制御してもよい。
上記の実施形態では、ミリ波レーダ70から与えられるミリ波の発信時と受信時の強度変化から求めた路面の反射率に基づいて、走行路前方にある氷結部を発見している。しかし、氷結部だけではなく、水たまり、積雪のある路面、凹凸の激しい路面などにも、同様に適用することができる。
ミリ波レーダ70に代えて、またはミリ波レーダ70とともにステレオカメラを車両の前部に設置してもよい。ステレオカメラは、複数の異なる位置にそれぞれCCDカメラを配置し、同じ対象物を同時に撮影して、その奥行き方向の情報を記録することができる。このため、氷結部の奥行きをより高精度で検出することができる。また、例えば前方の路面上に濡れたマンホールがあるような場合には、撮影された画像の色彩および形状によって、濡れたマンホールであることを認識することができる。さらに、CCDカメラが赤外線を検出できる場合には、一部が凍結している路面を走行するとき、凍結している部分から発せられる赤外線を検出することによって、その場所が凍結していることを事前に知ることができる。
<2.第2の実施形態>
車両がμスプリット路を走行しているときに、搭載された各種センサから与えられた情報に基づいて車両の走行状態が不安定になったため、早急に車両を停止させる必要があると判断された場合、車両を可能な限り短い制動距離で停止させる必要がある。そこで、μスプリット路を走行中の車両を可能な限り短い制動距離で停止させるために必要な車両の制御について説明する。以下の説明では、路面摩擦係数μが高い路面を高μ路、路面摩擦係数μが低い路面を低μ路という。
図7は、本発明の第2の実施形態に係る車両制御装置を搭載する車両の概略構成を示すブロック図である。図7の各構成要素のうち、図1の構成要素に対応する構成要素には同じ参照符号を付して、その説明を省略する。第2の実施形態の車両制御装置は、第1の実施形態の車両制御装置の構成要素に加えて、走行路の路面摩擦係数μを推定するために路面の状態を撮影するカメラ71、およびカメラ71で撮影された画像を解析してその色彩、明度および彩度を求める画像解析ユニット72を備えている。画像解析ユニット72で解析された画像は、ECU50に与えられる。また、ECU50内のRAMには、路面の画像を解析して求めた路面の色彩、明度および彩度と、路面の組成および表面状態との関係を示すテーブル、および路面の組成および表面状態と路面摩擦係数μとの関係を示すテーブルがそれぞれ予め書き込まれている。
<2.1 車両制御装置の動作>
図8は、μスプリット路を走行中の車両を高μ路に移動させて停止させる場合と、そのまま直進させてμスプリット路上で停止させる場合との制動距離の差を示す図である。図8に示すように、車両が、左側の車輪20a、20cを路面の左側の低μ路に、右側の車輪20b、20dを右側の高μ路にそれぞれのせた状態で走行中に、車両の挙動が不安定になったために、緊急に停止しなければならなくなったとき、次の3つの場合が考えられる。すなわち、車両をそのまま直進させて停止させる場合、高μ路に移動させて停止させる場合、低μ路に移動させて停止させる場合である。高μ路上を走行する車輪に最も大きな制動力が作用するので、車両を高μ路に移動させて停止させる場合に最も制動距離を短くすることができ、μスプリット路をそのまま直進させる場合、車両を低μ路に移動させて停止させる場合の順に制動距離が長くなる。 このうち、μスプリット路を走行中の車両を高μ路に移動させて停止させる場合とμスプリット路を直進させて停止させる場合の制動距離の差を図8に示した。
図9および図10は、μスプリット路を走行中の車両を右側の高μ路に移動させて停止させるためのECU50の動作を示すフローチャートである。ここで、車両を左側の低μ路に移動させて停止させることも考えられるが、上述のように制動距離が最も長くなる。このため、以下の説明では、走行中の車両を低μ路に移動させて停止させることは除外して考える。
まずステップS31で、車両を停止させる必要があるか否かを判定する。この判定は、搭載されたGセンサ60aから与えられる加速度、ヨーレートセンサ60bから与えられるヨーレートなどが、車両を安定して走行させるために予め決められている閾値よりも大きいか否かによって行われ、大きい場合には、車両の挙動が不安定になっているため停止させる必要があると判定される。
判定の結果、車両を停止させる必要がない場合(S31:NO)には、ステップS31に戻り、停止させる必要がある場合(S31:YES)には、ステップS32に進む。ステップS32では、ミリ波レーダ70からの情報に基づき、右側の高μ路の前方から対向車が来るか否かを判定する。判定の結果、対向車が来る場合(S32:YES)には、高μ路に移動させると対向車と衝突するので、後述するステップS39に進む。一方、対向車が来ない場合(S32:NO)には、高μ路に移動しても安全であるので、ステップS33に進む。
ステップS33では、μスプリット路を走行していた車両が、高μ路に移動して走行しているのか、それとも高μ路と低μ路に跨って走行しているのかを判定する。この判定は、例えば次のような公知の方法によって行われる。すなわち、まずカメラ71によって撮影された画像を画像解析ユニット72で解析して、路面の色彩、彩度を求め、ECU50に出力する。ECU50は、RAMに予め書き込まれている路面の色彩、彩度と路面の組成および表面状態との関係を示すテーブルから、与えられた路面の色彩、彩度に相当する路面の組成および表面状態を選択する。次に、ECU50は、予めRAMに予め書き込まれている路面の組成およびその表面状態と、路面摩擦係数μとの関係を示すテーブルから、選択された路面の組成およびその表面状態に相当する路面摩擦係数μを読み出す。そして、読み出した路面摩擦係数μが高い路面摩擦係数のみならば、車両は高μ路を走行していると判定する。一方、読み出した路面摩擦係数μが高い路面摩擦係数と低い路面摩擦係数を含んでいれば、車両は高μ路と低μ路に跨って走行していると判定する。
判定の結果、車両が高μ路を走行している場合(S33:YES)には、後述するステップS38に進み、車両が高μ路と低μ路に跨って走行している場合(S33:NO)には、ステップS34に進む。
ステップS34では、車両を高μ路に移動させるために必要な目標ヨーレートを算出する。そして、ステップS35で、ヨーレートセンサ60bから与えられた実ヨーレートと目標ヨーレートとを比較して、偏差があるか否かを判定する。判定の結果、偏差がない場合(S35:NO)には、車両は目標ヨーレートと同じヨーレートで高μ路に向かって移動中であるため、ステップS33に戻る。一方、偏差がある場合(S35:YES)には、ステップS36で、実ヨーレートを目標ヨーレートに収束させるために、必要な操舵量を算出する。そして、ステップS37で、算出された操舵量に基づき、アクティブステアリングユニット13により前輪20a、20bの転舵角をアクティブ制御した後、ステップS33に戻る。
ステップS33で、車両が高μ路を走行している場合(S33:YES)には、ステップS38で、車速センサ60cから与えられる車速に基づいて車両が停止するまで待ち、車両が停止した後に処理を終了する。
また、ステップS32で、高μ路の前方から対向車が来ると判定された場合(S32:YES)、ステップS39に進み、車両が直進走行しているか否かを判定する。具体的には、ヨーレートセンサ60bから与えられる実ヨーレートに基づき、車両が直進しているか否かを判定する。判定の結果、車両が直進している場合(S39:YES)には、後述するステップS44に進み、車両が右側または左側に寄りながら走行している場合(S39:NO)には、ステップS40に進む。
ステップS40で、車両を直進走行させるために、目標ヨーレートを「0」に設定する。そして、ステップS41で、ヨーレートセンサ60bから与えられた実ヨーレートとステップS40で設定された目標ヨーレートとを比較し、偏差があるか否かを判定する。判定の結果、偏差がない場合(S41:NO)場合には、車両は直進走行しているため、ステップS39に戻る。一方、偏差がある場合(S41:YES)には、ステップS42で、車両を直進走行させるため、実ヨーレートを目標ヨーレートに収束させるのに必要な操舵量を算出する。そして、ステップS43で、算出された操舵量に基づいて、アクティブステアリングユニット13により前輪20a、20bの転舵角をアクティブ制御した後、ステップS39に戻る。
ステップS39で、車両が直進している場合(S39:YES)には、ステップS44に進む。ステップS44では、車速センサ60cから与えられる車速に基づいて車両が停止するまで待ち、車両が停止した後に処理を終了する。
<2.2 効果>
μスプリット路を走行中の車両の挙動が不安定になり、早急に停止させる必要が生じた場合、高μ路に移動させても対向車と衝突しないことを確認した後に、高μ路上に移動させて停止させるので、μスプリット路上で停止させる場合よりも、車両の制動距離を短くすることができる。
<2.3 変形例>
上述の実施形態では、車両を高μ路に移動させるために、ヨーレートセンサ60bから与えられた実測ヨーレートが目標ヨーレートに収束するように、アクティブステアリングユニット13によって、操舵輪である前輪20a、20bの転舵角をアクティブ制御している。しかし、走行中の車両の方向を変更する方法はこれに限られず、各車輪速センサ25a〜25dから与えられた車輪速に基づいて、制動圧制御ユニット40を制御することにより、各車輪20a〜20dに加える制動力を個別に制御してもよい。また、各車輪20a〜20dに与える駆動力を個別に制御してもよい。さらに、上述の3つの方法のうち、いずれか2つの方法を組み合わせて制御してもよく、あるいは3つの方法を組み合わせて制御してもよい。
本発明の第1の実施形態に係る車両制御装置を搭載する車両の構成を示すブロック図である。 上記実施形態において、路面の氷結部を車両の左側の車輪が走行した後の、車両の走行軌跡を示す図である。 上記実施形態において、車両が路面氷結部を走行するときのECUの動作の一部を示すフローチャートである。 上記実施形態において、車両が路面氷結部を走行するときのECUの動作の一部を示すフローチャートである。 上記実施形態において、車両が路面氷結部を走行するときのECUの動作の一部を示すフローチャートである。 上記実施形態において、車両が路面氷結部を走行するときのECUの動作の一部を示すフローチャートである。 本発明の第2の実施形態に係る車両制御装置を搭載する車両の構成を示すブロック図である。 上記実施形態において、μスプリット路を走行中の車両を高μ路に移動させて停止させる場合と、そのまま直進させてμスプリット路上で停止させる場合との制動距離の差を示す図である。 上記実施形態において、μスプリット路を走行中の車両を高μ路に移動させて停止させるときのECUの動作の一部のを示すフローチャートである。 上記実施形態において、μスプリット路を走行中の車両を高μ路に移動させて停止させるときのECUの動作の一部を示すフローチャートである。
符号の説明
13…アクティブステアリングユニット、16…転舵角センサ、20a〜20d…車輪、25a〜25d…車輪速センサ、40…制動圧制御ユニット、41a〜41d…制動力センサ、50…ECU、60b…ヨーレートセンサ、70…ミリ波レーダ

Claims (2)

  1. 車両の挙動を制御する車両制御装置であって、
    路面状態を検出する路面状態検出手段と、
    前記車両に設けられた車輪の転舵角をアクティブ制御するアクティブステアリング手段と、
    前記車輪の制動力を個別に制御する制動圧制御手段と、
    路面状態の変化に応じて前記アクティブステアリング手段および前記制動圧制御手段の少なくともいずれか一方を作動させて前記車両の挙動を安定化させる安定化手段とを備え、
    前記安定化手段は、前記路面状態検出手段によって走行路前方の路面状態が変化していることが検出された路面に前記車両がさしかかる前から作動することを特徴とする、車両制御装置。
  2. 前記路面状態検出手段は、前記車両が走行している路面の路面摩擦係数を検出する摩擦係数検出手段を含み、
    前記車両は、第1の路面と該第1の路面よりも路面摩擦係数が高い第2の路面に跨って走行しているのか、または前記第2の路面を走行しているのかのいずれであるかを、前記摩擦係数検出手段によって検出された路面摩擦係数に基づいて判定する判定手段と、
    前記車両が前記第1の路面と前記第2の路面に跨って走行していると前記判定手段によって判定された場合に、前記車両は前記第2の路面に向かって走行するように前記車両の走行方向を変更する方向変更手段とをさらに備え、
    前記制動圧制御手段は、前記車両が前記第2の路面を走行していると前記判定手段によって判定された場合に、前記車両を前記第2の路面に停止させることを特徴とする、請求項1に記載の車両制御装置。
JP2007258643A 2007-10-02 2007-10-02 車両制御装置 Expired - Fee Related JP5104175B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007258643A JP5104175B2 (ja) 2007-10-02 2007-10-02 車両制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007258643A JP5104175B2 (ja) 2007-10-02 2007-10-02 車両制御装置

Publications (2)

Publication Number Publication Date
JP2009083765A true JP2009083765A (ja) 2009-04-23
JP5104175B2 JP5104175B2 (ja) 2012-12-19

Family

ID=40657734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007258643A Expired - Fee Related JP5104175B2 (ja) 2007-10-02 2007-10-02 車両制御装置

Country Status (1)

Country Link
JP (1) JP5104175B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066785A (ja) * 2010-09-27 2012-04-05 Fuji Heavy Ind Ltd 車両の統合制御装置
DE102009024924B4 (de) * 2009-06-05 2013-04-18 TAKATA Aktiengesellschaft Gassackanordnung für ein Fahrzeuginsassenrückhaltesystem
JP2014512291A (ja) * 2011-02-14 2014-05-22 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング 3dカメラによる摩擦係数推定
CN106573617A (zh) * 2014-08-28 2017-04-19 罗伯特·博世有限公司 自适应电子稳定性控制
CN110356406A (zh) * 2018-03-26 2019-10-22 沃尔沃汽车公司 用于处理车辆行驶其上的道路的状况的方法和系统
JP2020090108A (ja) * 2018-12-03 2020-06-11 トヨタ自動車株式会社 車両制御装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022122197A (ja) * 2021-02-09 2022-08-22 株式会社アイシン 物体検出装置及び移動体制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041741A (ja) * 1999-07-30 2001-02-16 Fuji Heavy Ind Ltd ステレオ式車外監視装置
JP2002019489A (ja) * 2000-07-04 2002-01-23 Nissan Motor Co Ltd 車速制御装置
JP2002127882A (ja) * 2000-10-26 2002-05-09 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置
JP2005145358A (ja) * 2003-11-19 2005-06-09 Daihatsu Motor Co Ltd 制動方法及び制動装置
JP2005189983A (ja) * 2003-12-24 2005-07-14 Denso Corp 車両運転支援装置
WO2005075959A1 (ja) * 2004-02-10 2005-08-18 Nihon University 摩擦係数推定方法及び装置
JP2007030631A (ja) * 2005-07-25 2007-02-08 Advics:Kk 車両用ブレーキ制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041741A (ja) * 1999-07-30 2001-02-16 Fuji Heavy Ind Ltd ステレオ式車外監視装置
JP2002019489A (ja) * 2000-07-04 2002-01-23 Nissan Motor Co Ltd 車速制御装置
JP2002127882A (ja) * 2000-10-26 2002-05-09 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置
JP2005145358A (ja) * 2003-11-19 2005-06-09 Daihatsu Motor Co Ltd 制動方法及び制動装置
JP2005189983A (ja) * 2003-12-24 2005-07-14 Denso Corp 車両運転支援装置
WO2005075959A1 (ja) * 2004-02-10 2005-08-18 Nihon University 摩擦係数推定方法及び装置
JP2007030631A (ja) * 2005-07-25 2007-02-08 Advics:Kk 車両用ブレーキ制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009024924B4 (de) * 2009-06-05 2013-04-18 TAKATA Aktiengesellschaft Gassackanordnung für ein Fahrzeuginsassenrückhaltesystem
JP2012066785A (ja) * 2010-09-27 2012-04-05 Fuji Heavy Ind Ltd 車両の統合制御装置
JP2014512291A (ja) * 2011-02-14 2014-05-22 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング 3dカメラによる摩擦係数推定
CN106573617A (zh) * 2014-08-28 2017-04-19 罗伯特·博世有限公司 自适应电子稳定性控制
JP2017526578A (ja) * 2014-08-28 2017-09-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 適応電子安定制御
CN110356406A (zh) * 2018-03-26 2019-10-22 沃尔沃汽车公司 用于处理车辆行驶其上的道路的状况的方法和系统
JP2020090108A (ja) * 2018-12-03 2020-06-11 トヨタ自動車株式会社 車両制御装置
JP7155964B2 (ja) 2018-12-03 2022-10-19 トヨタ自動車株式会社 車両制御装置

Also Published As

Publication number Publication date
JP5104175B2 (ja) 2012-12-19

Similar Documents

Publication Publication Date Title
KR102000823B1 (ko) 차량 제어 장치
US10377366B2 (en) Vehicle control device
JP5104175B2 (ja) 車両制御装置
US9671782B2 (en) Autonomous driving device
US8560175B2 (en) Method and device for assisting a driver of a vehicle in exiting from a parking space
US9296418B2 (en) Vehicle control device
US8680977B2 (en) Alarm system and alarm method for vehicle
JP4870813B2 (ja) 車両の速度を制御する方法、及び、車両の速度を制御するための装置
US20170029026A1 (en) Driving support device
EP1275573B1 (en) Lane-keep control system for vehicle
JP4470986B2 (ja) 走行制御装置及び車両
US9592852B2 (en) Parking assist system and parking assist method
US9783231B2 (en) Orientation of the extent of a vehicle in the direction of the roadway in a parked end position with a parking assistance system for transverse parking
US10569781B2 (en) Traveling assistance apparatus
US20150151750A1 (en) Vehicle behavior control device and vehicle behavior control system
US20150329108A1 (en) Driving assistance device and driving assistance method
US20150151749A1 (en) Vehicle behavior control device and vehicle behavior control system
WO2008020290A1 (en) Braking control system and braking control method
JP4277907B2 (ja) 自動車の走行制御装置
JP3913911B2 (ja) 車両の障害物検知装置
JP2009280102A (ja) 4輪操舵機構を搭載した車両の操舵制御装置
JP4628848B2 (ja) 車両の走行制御装置
JP2004338635A (ja) 車両用走行支援装置
JP2005145403A (ja) 車間距離制御装置
KR101245100B1 (ko) 스마트 크루즈 컨트롤 시스템 및 그 제어방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees