JP2009081405A - ステージ装置及びその制御方法、露光装置及び方法、並びにデバイス製造方法 - Google Patents

ステージ装置及びその制御方法、露光装置及び方法、並びにデバイス製造方法 Download PDF

Info

Publication number
JP2009081405A
JP2009081405A JP2007251474A JP2007251474A JP2009081405A JP 2009081405 A JP2009081405 A JP 2009081405A JP 2007251474 A JP2007251474 A JP 2007251474A JP 2007251474 A JP2007251474 A JP 2007251474A JP 2009081405 A JP2009081405 A JP 2009081405A
Authority
JP
Japan
Prior art keywords
stage
thrust
main body
axis direction
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007251474A
Other languages
English (en)
Inventor
成孝 ▲柳▼屋
Shigetaka Yanagiya
Noriaki Kasai
紀昭 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007251474A priority Critical patent/JP2009081405A/ja
Publication of JP2009081405A publication Critical patent/JP2009081405A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】駆動時に発生する漏れ推力の影響を低減して高い制御精度を維持することができるステージ装置及び露光装置等を提供する。
【解決手段】露光装置EXは、6自由度を有するよう支持されたウェハステージWST及び計測ステージMSTからなるステージ装置ST、及びステージ装置STを制御する主制御系MCを備える。ウェハステージWSTは、X方向の推力が与えられた場合に、ウェハステージWSTのX方向の位置に応じて大きさが変化する漏れ推力(例えば、Z方向の推力:Zサイドフォース)を生ずる。主制御系MCは、ウェハステージMCのZ方向の位置、X軸周りの回転、Y軸周りの回転、及びZ軸周りの回転の少なくとも1つを制御するための推力を、ウェハステージWSTの漏れ推力の大きさに応じて補正する。
【選択図】図1

Description

本発明は、マスク(レチクル)、基板(ウェハ又はプレート)等の移動対象物を載置した状態で移動可能に構成されたステージの動作を制御するステージ装置及びその制御方法、当該装置を備える露光装置及び当該制御方法を用いる露光方法、並びに当該露光装置又は露光方法を用いてデバイスを製造するデバイス製造方法に関する。
半導体素子、液晶表示素子、CCD(Charge Coupled Device)等の撮像素子、薄膜磁気ヘッド、その他の各種デバイスの製造工程の1つとして設けられるフォトリソグラフィ工程では、マスクに形成されたパターンを、投影光学系を介して基板ステージ上に載置された基板上に転写する露光装置が用いられている。この露光装置としては、例えばステップ・アンド・リピート方式の縮小投影型露光装置(所謂ステッパ)や、ステップ・アンド・スキャン方式の露光装置等が挙げられる。
近年においては、高い制御精度を維持しつつスループット(単位時間に露光処理することができる基板の枚数)を向上させるために、露光装置は6自由度を有する基板ステージを備えている。この基板ステージは、基板を載置するステージ本体が所定の支持機構によって6自由度を有するように支持されており、所定の基準面(ベース盤の上面)に含まれて互いに交差する2軸(X軸、Y軸)と基準面に交差する軸(Z軸)に沿って移動可能であるとともに、これらの軸の周りで回転可能に構成されている。尚、この基板ステージの詳細については以下の特許文献1を参照されたい。
特開2006−253572号公報
ところで、一般的にリニアモータの移動方向(例えば、X方向)に推力を発生させると、リニアモータの特性上、僅かではあるが他の方向(例えば、Y方向及びZ方向)に漏れ推力(サイドフォース)が発生する。従来の基板ステージは、自由度が低いが故にリニアモータで発生する漏れ推力の影響を無視することができた。
しかしながら、上記の特許文献1に開示された基板ステージは、従来の基板ステージよりも高い制御精度が実現できるものの、従来の基板ステージよりも自由度が高いためリニアモータ駆動時の漏れ推力が外乱として大きく影響してしまい、却って基板ステージの制御精度が悪化する虞があるという問題がある。つまり、6自由度を有する基板ステージにおいては、上記の漏れ推力によってX軸周りの回転(ピッチング)、Y軸周りの回転(ローリング)、及びZ軸周りの回転(ヨーイング)が生じてしまい、これが制御精度に悪影響を及ぼす虞がある。
本発明は上記事情に鑑みてなされたものであり、駆動時に発生する漏れ推力の影響を低減して高い制御精度を維持することができるステージ装置及びその制御方法、当該装置を備える露光装置及び当該制御方法を用いる露光方法、並びに当該露光装置又は露光方法を用いてデバイスを製造するデバイス製造方法を提供することを目的とする。
本発明は、実施の形態に示す各図に対応付けした以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定するものではない。
上記課題を解決するために、本発明のステージ装置は、少なくとも第1軸方向及び前記第1軸方向と異なる第2軸方向に対する自由度を有して移動可能に支持されたステージ本体(24)と、当該ステージ本体を駆動する駆動装置(31、32a、32b)とを備えるステージ装置(WST、ST)であって、前記駆動装置で発生する前記第1軸方向の推力を、前記ステージ本体の位置に応じて変化する前記駆動装置の前記第2軸方向の推力の漏れ推力の大きさに応じて補正する補正部(60b)を備えることを特徴としている。
本発明のステージ装置の制御方法は、少なくとも第1軸方向及び前記第1軸方向と異なる第2軸方向に対する自由度を有して移動可能に支持されたステージ本体(24)と、当該ステージ本体を駆動する駆動装置(31、32a、32b)とを備えるステージ装置(WST、ST)の制御方法であって、前記第2軸方向における前記ステージ本体の位置を測定し、前記測定の結果に応じた前記駆動装置の前記第2軸方向の推力の漏れ推力の大きさを求め、前記駆動装置で発生する前記第1軸方向の推力を前記漏れ推力の大きさに応じて補正することを特徴としている。
本発明の第1の観点による露光装置は、基板(W)を保持する基板ステージ(WST)を備え、マスク(R)に形成されたパターンを前記基板上に転写する露光装置(EX)であって、前記基板ステージが上記のステージ装置であることを特徴としている。
本発明の第2の観点による露光装置は、マスク(R)に形成されたパターンを、基板ステージ(WST)上に保持された基板(W)上に転写する露光方法であって、上記のステージ装置の制御方法を用いて前記基板ステージを制御することを特徴としている。
本発明のデバイス製造方法は、リソグラフィ工程を含むデバイスの製造方法であって、前記リソグラフィ工程において上記の露光方法を用いて露光を行う露光工程(S14)を含むことを特徴としている。
本発明によれば、駆動装置で発生する第1軸方向の推力を、ステージ本体の位置に応じて変化する駆動装置の第2軸方向の推力の漏れ推力の大きさに応じて補正しているため、駆動時に発生する漏れ推力の影響が低減されて高い制御精度を維持することができるという効果がある。
以下、図面を参照して本発明の一実施形態によるステージ装置及びその制御方法、露光装置及び方法、並びにデバイス製造方法について詳細に説明する。図1は、本発明の一実施形態による露光装置の概略構成を示す側面図である。図1に示す露光装置EXは、図1中の投影光学系PLに対してマスクとしてのレチクルRと基板としてのウェハWとを相対的に移動させつつ、レチクルRに形成されたパターンをウェハWに逐次転写するステップ・アンド・スキャン方式の走査露光型の露光装置である。
尚、以下の説明においては、必要であれば図中にXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。図1に示すXYZ直交座標系は、X軸及びY軸がウェハWの移動面に平行な面に含まれるよう設定され、Z軸が投影光学系PLの光軸AXに沿う方向に設定されている。また、本実施形態ではレチクルR及びウェハWを同期移動させる方向(走査方向)をY方向に設定している。
図1に示す通り、本実施形態の露光装置EXは、照明光学系ILS、レチクルRを保持するレチクルステージRST、投影ユニットPU、ウェハWを保持するウェハステージWST(基板ステージ)と計測ステージMSTとを有するステージ装置ST、及び主制御系MCを備える。照明光学系ILSは、不図示のレチクルブラインドで規定されたレチクルR上のスリット状の照明領域を露光光ILによってほぼ均一な照度で照明する。ここで、露光光ILとしては、一例としてArFエキシマレーザ光(波長193nm)が用いられる。
レチクルステージRST上には、パターン面(図1における−Z側の面)にパターンが形成されたレチクルRが、例えば真空吸着により保持されている。レチクルステージRSTは、例えばリニアモータを含むレチクルステージ駆動装置(図示省略)によって、照明光学系ILSの光軸(後述する投影光学系PLの光軸AXに一致)に垂直なXY平面内で微小駆動可能であるとともに、走査方向(Y方向)に指定された走査速度で駆動可能に構成されている。
レチクルステージRSTのステージ移動面内の位置(Z軸周りの回転を含む)は、レーザ干渉計(以下、レチクル干渉計という)11によって、移動鏡12(実際にはY軸に直交する反射面を有するY移動鏡とX軸に直交する反射面を有するX移動鏡とが設けられている)を介して、例えば0.5〜1nm程度の分解能で常時検出される。このレチクル干渉計11の計測値は主制御系MCに出力されており、主制御系MCはレチクル干渉計11の計測値に基づいてレチクルステージRSTのX方向、Y方向、及びθZ方向(Z軸周りの回転方向)の位置を算出するとともに、この算出結果に基づいてレチクルステージ駆動装置を制御することで、レチクルステージRSTの位置(及び速度)を制御する。
投影ユニットPUは、鏡筒13と、鏡筒13内に所定の位置関係で保持された複数の光学素子を含む投影光学系PLと備えている。投影光学系PLとしては、例えばZ方向の共通の光軸AXを有する複数のレンズ(レンズエレメント)からなる屈折光学系が用いられている。
また、本実施形態の露光装置EXは、液浸法を適用した露光を行うため、投影光学系PLを構成する最も像面側(ウェハW側)のレンズ(以下、先玉ともいう)GLの近傍には、液浸装置14を構成する液体供給ノズル15aと、液体回収ノズル15bとが設けられている。液体供給ノズル15aは液体供給管を介して液体供給装置(何れも図示省略)に接続されており、液体回収ノズル15bは液体回収管を介して液体回収装置(何れも図示省略)に接続されている。
上記の液体としては、ここではArFエキシマレーザ光(波長193nmの光)が透過する超純水(以下、特に必要な場合を除いて、単に「水」と記述する)を用いるものとする。超純水は、半導体製造工場等で容易に大量に入手できるとともに、ウェハW上に塗布されたフォトレジスト及び光学レンズ等に対する悪影響を及ぼさないという利点がある。ここで、水の屈折率nはほぼ1.44であり、この水の中では露光光ILの波長は193nm×1/n=約134nmに短波長化される。
上記の液体供給装置は、主制御系MCからの指示に応じて液体供給管に接続されたバルブを所定開度で開き、液体供給ノズル15aを介して先玉GLとウェハWとの間に水を供給する。また、上記の液体回収装置は、主制御系MCからの指示に応じて液体回収管に接続されたバルブを所定開度で開き、液体回収ノズル15bを介して先玉GLとウェハWとの間から液体回収装置(液体のタンク)の内部に水を回収する。このとき、主制御系MCは、先玉GLとウェハWとの間に液体供給ノズル15aから供給される水の量と、液体回収ノズル15bを介して回収される水の量とが常に等しくなるように、液体供給装置及び液体回収装置に対して指令を与える。従って、先玉GLとウェハWとの間に一定量の水Lq(図1参照)が保持される。尚、先玉GLとウェハWとの間に保持される水Lqは、常に入れ替わることになる。
以上説明した通り、本実施形態の露光装置が備える液浸装置14は、図示しない液体供給装置、液体回収装置、供給管、及び回収管と、図1に示す液体供給ノズル15a及び液体回収ノズル15b等とを有する局所液浸装置である。尚、投影ユニットPUの下方に計測ステージMSTが位置する場合にも、上記と同様に計測テーブルMTBと先玉GLとの間に水を満たすことが可能である。
ステージ装置STは、例えば半導体工場の床面FL上に配置されたフレームキャスタFC、フレームキャスタFC上に設けられたベース盤(定盤)21、ベース盤21の上方に配置されベース盤21の上面(所定平面)21aに沿って移動するウェハステージWST及び計測ステージMST、これらのステージWST,MSTの位置を検出する干渉計22,23、並びにステージWST,MSTを駆動する駆動装置(図1では図示省略)を備える。
上記のウェハステージWSTは、ベース盤21上に配置されたウェハステージ本体24とウェハステージ本体24上に搭載されたウェハテーブルWTBとを備えており、レチクルRのパターンをウェハWに露光転写するためにウェハWを保持して移動するものである。ウェハステージ本体24は、断面矩形枠状でX方向に延びる中空部材によって構成されている。このウェハステージ本体24の下面には、ベース盤21上においてウェハステージ本体24が6自由度を有するよう支持する支持機構としての自重キャンセラ25が設けられている。尚、本明細書にいう6自由度とは、X方向、Y方向、及びY方向への移動による3自由度、並びに、X軸、Y軸、及びZ軸周りの回転による3自由度である。
一方、計測ステージMSTは、計測ステージ本体26と、計測ステージ本体26上に搭載された計測テーブルMTBとを備えており、ウェハステージWSTがウェハWの交換のためにローディングポジションに位置している間に投影光学系PLの下方に位置して各種の計測を行うものである。計測ステージ本体26はウェハステージ本体24と同様の構成であり、またその下面にはベース盤21上において計測ステージ本体26が6自由度を有するよう支持する支持機構としての自重キャンセラ機構27が設けられている。
主制御系MCは、露光装置EXの動作を統括的に制御する。例えば、レチクル干渉計11の計測値に基づいてレチクルステージRSTの位置、姿勢、及び速度を制御し、干渉計22,23の計測値に基づいてステージ装置ST(ウェハステージWST及び計測ステージMST)の位置、姿勢、及び速度を制御する。また、液浸装置14を制御して、投影光学系PLの先玉GLとウェハWとの間に一定量の水Lqを保持する。
次に、ステージ装置STの構成について詳細に説明する。図2は、ステージ装置STの構成を示す斜視図である。図2に示す通り、フレームキャスタFCは、X方向の一側と他側との端部近傍にY方向を長手方向として上方に突出した突部FCa,FCbが一体的に形成された概略平板状からなるものである。ベース盤21は、フレームキャスタFCの突部FCa,FCbに挟まれた領域上に配置されている。ベース盤21の上面21aは平坦度が極めて高く仕上げられ、ウェハステージWST及び計測ステージMSTのXY平面に沿った移動の際のガイド面とされている。
ウェハステージWSTは、ウェハステージ本体24をX方向にロングストロークで駆動するとともに、Y方向、Z方向、θx(X軸周りの回転方向)、θy(Y軸周りの回転方向)、θz(Z軸周りの回転方向)に微小駆動する第1駆動系31と、ウェハステージ本体24及び第1駆動系31をY方向にロングストロークで駆動する第2駆動系32a,32bとを備えている。更に、ウェハステージWSTは、X方向に等速運動をするチューブキャリアTCと、真空又はエア等の用力をチューブキャリアTCからウェハステージ本体24に非接触で伝達する不図示の6自由度パイプを備えている。
ウェハステージ本体24の+X側の側面及び−X側の側面には、それぞれ3つの開口が形成されている。これらの開口のうちの各々の側面のほぼ中央部に形成された開口を介してウェハステージ本体24を貫通するように、複数のコイルを備えるY軸用固定子33が設けられている。また、各々の側面に形成された3つの開口のうち、Y軸用固定子33が貫通している開口をY方向に挟むように形成された2つの開口の各々を介してウェハステージ本体24を貫通するように、2つのX軸用固定子34a,34bが設けられている。これらX軸用固定子34a,34bの各々には、X方向に配列された複数のコイルがそれぞれ設けられている。更に、Y軸用固定子33が貫通している開口には永久磁石35が設けられており、X軸用固定子34a,34bが貫通している開口には永久磁石36a,36bがそれぞれ設けられている。これらの永久磁石33及び永久磁石36a,36bは、ウェハステージ本体24の重心に対して対称に配置されている。
上記のY軸用固定子33は、それが貫通している開口に設けられた永久磁石35と協働してウェハステージ本体24をY方向に微小駆動する。これにより、6自由度のうちの1つ目の自由度が実現される。尚、第2駆動系32a,32bによるY方向へのロングストロークの駆動によっても1つ目の自由度が実現される。また、上記の2つのX軸用固定子34a,34bは、それぞれが貫通している開口に設けられた永久磁石36a,36bとそれぞれ協働してウェハステージ本体24をX方向に長いストロークで駆動する。これにより、6自由度のうちの2つ目の自由度が実現される。ここで、各々のX軸用固定子34a,34bの駆動量を異ならせることにより、ウェハステージ本体24をθz方向に回転させることができる。これにより、6自由度のうちの3つ目の自由度が実現される。
即ち、第1駆動系31は、Y軸用固定子33と永久磁石35とからなるムービングマグネット型のリニアモータと、X軸用固定子34a,34bと永久磁石36a,36bとからなるムービングマグネット型のリニアモータとを備えている。尚、ここではムービングマグネット型のリニアモータを備える場合を例に挙げて説明するが、ムービングコイル型のリニアモータを備えていても良い。また、以上の通り、ウェハステージWSTは、X方向の移動に関して、その移動をガイドするガイド部材を有さないガイドレスステージである。
また、ウェハステージ本体24の下方にはX方向に延びる2つのZ軸固定子(図示省略)が設けられており、これらのZ軸固定子に対応してウェハステージ本体24の底面にはZ軸用の可動子として4つの永久磁石37a〜37d(図3参照)が設けられている。尚、このZ軸固定子及び永久磁石37a〜37dは第1駆動系31の一部をなすものである。図3は、ウェハステージ本体24の底面斜視図である。一方のZ軸固定子には図3に示す2つの永久磁石37a,37bが対応して設けられており、他方のZ軸固定子には図3に示す残りの2つの永久磁石37c,37dが対応して設けられている。これらの永久磁石37a〜37dもウェハステージ本体24の重心に対して対称に配置されている。
2つのZ軸固定子の各々にはコイルが設けられており、これらのコイルに供給する電流を制御することにより、対応する永久磁石37a〜37dとの間で発生するZ方向の推力を変化させることができるため、ウェハステージ本体24をZ方向、θx、θy方向に駆動することができる。これにより、6自由度のうちの残りの3つの自由度が実現される。また、チューブキャリアTCをX方向に駆動するために、図1に示す通り、X方向に延びる固定子TXも設けられている。尚、上記のY軸用固定子33、X軸用固定子34a,34b、不図示の2つのZ軸固定子、及び固定子TXの各々は両端が第2駆動系32a,32bを構成する可動子39a,39bにそれぞれ固定されている。
フレームキャスタFCの突部FCa,FCbの上方には、第2駆動系32a,32bを構成するY方向に延びるY軸用の固定子38a,38bがそれぞれ配設されている。これらのY軸用の固定子38a,38bは、それぞれの下面に設けられた不図示の気体静圧軸受、例えばエアベアリングによって突部FCa,FCbの上方において所定のクリアランスを介して浮上支持されている。これはウェハステージWSTや計測ステージMSTのY方向の移動により発生した反力により、固定子38a,38bがY方向のYカウンタマスとして逆方向に移動して、この反力を運動量保存の法則により相殺するためである。
これらの固定子38a,38bの間には上述したウェハステージ本体24等が配置されており、Y軸用固定子33、X軸用固定子34a,34b、Z軸固定子、及び固定子TXの各々の両端に固定された可動子39a,39bが固定子38a,38bの内側からそれぞれ挿入されている。固定子38a,38bはY方向に沿って配列された永久磁石を備えており、可動子39a,39bはY方向に沿って配列されたコイルを備えている。即ち、第2駆動系32a,32bは、ウェハステージWSTをY方向に駆動するムービングコイル型のリニアモータを備えている。尚、ここではムービングコイル型のリニアモータを備える場合を例に挙げて説明するが、ムービングマグネット型のリニアモータを備えていても良い。
ウェハステージWSTは、Y方向の移動に関して、固定子38aと可動子39aとの電磁的結合、及び固定子38bと可動子39bとの電磁的結合を除いて、その移動をガイドするガイド部材を有さないガイドレスステージである。尚、ウェハステージWSTをX方向に駆動した際の反力は、第2駆動系32a,32bに設けられる固定子38a,38bと可動子39a,39bとの間の電磁的な結合を介して不図示のXカウンタマスに伝わる。このXカウンタマスは、フレームキャスタFCの突部FCa,FCbと固定子38a,38bとの間に設けられており、Y方向のカウンタマスとして用いられる固定子38a,38bを支持してX方向に移動可能に構成され、ウェハステージWSTや計測ステージMSTのX方向の移動とは逆方向に移動してウェハステージWSTをX方向に駆動した際の反力を相殺する。
ウェハテーブルWTB上には、ウェハWを保持するウェハホルダ40が設けられている。ウェハホルダ40は、板状の本体部と、この本体部の上面に固定されその中央にウェハWの直径よりも大きな円形開口が形成された撥液性(撥水性)を有する補助プレートとを備えている。また、図2に示す通り、ウェハテーブルWTBのX方向の一端(+X側端)には、X方向に直交する(Y方向に延在する)反射面41Xが鏡面加工により形成されており、Y方向の一端(+Y側端)には、Y方向に直交する(X方向に延在する)反射面41Yが同様に鏡面加工により形成されている。これらの反射面41X,41Yには、X軸干渉計42、Y軸干渉計44からの干渉計ビーム(ビーム)がそれぞれ投射される。尚、図2に示すX軸干渉計42及びY軸干渉計44は、図1においてはまとめて干渉計22として図示している。X軸干渉計42はウェハテーブルWTB又は計測テーブルMTBのX方向の位置、Y軸周りの回転方向の位置、及びZ軸周りの回転方向の位置を検出する。また、Y軸干渉計44はウェハテーブルWTBのY方向の位置、及びX軸周りの回転方向の位置を検出する。
計測ステージMSTは、チューブキャリアTC及び不図示の6自由度パイプを除いてほぼウェハステージWSTと同様の構成である。つまり、図2に示す通り、ベース盤21上に配置された計測ステージ本体26と、計測ステージ本体26上に搭載された計測テーブルMTBとを備えている。また、計測ステージ本体26をX方向にロングストロークで駆動するとともに、Y方向、Z方向、θx、θy、θzに微小駆動する第1駆動系51と、計測ステージ本体26及び第1駆動系51をY方向にロングストロークで駆動する第2駆動系52a,52bとを備えている。
以上説明したウェハステージWSTを駆動する第1駆動系31及び第2駆動系32a,32b、並びに計測ステージMSTを駆動する第1駆動系51及び第2駆動系52a,52bによってステージ装置STの駆動装置が構成されている。この駆動装置は、前述した主制御系MCによって制御され、例えばウェハWの露光前における計測ステージMSTの移動、及び露光時におけるウェハステージWSTの移動が制御される。
計測テーブルMTBは、その上面が撥液性(撥水性)を有しており、例えば真空吸着によって計測ステージ本体26上に保持されている。この計測テーブルMTBのX方向の一端(+X側端)には、X方向に直交する(Y方向に延在する)反射面53Xが鏡面加工により形成されており、Y方向の一端(−Y側端)には、Y方向に直交する(X方向に延在する)反射面53Yが同様に鏡面加工により形成されている。これら反射面53X,53Yには、X軸干渉計42及びY軸干渉計54からの干渉計ビーム(ビーム)がそれぞれ投射される。尚、図2に示すX軸干渉計42及びY軸干渉計54は、図1においてはまとめて干渉計23として図示している。また、計測ステージMSTは、露光に関する各種計測を行うための計測器群を備えている。この計測器群としては、例えば空間像計測装置、波面収差測定装置、及び露光検出装置等がある。
次に、ステージ装置STの制御系について詳細に説明する。この制御系は、主制御系MCに設けられており、干渉計22,23(干渉計42,44,54)の計測結果に基づいてステージ装置ST(ウェハステージWST及び計測ステージMST)の位置、姿勢、及び速度の制御を行う。尚、以下では、説明を簡単にするために、ステージ装置STのうちのウェハステージWSTに関する制御についてのみ説明する。
図4は、ステージ装置STを駆動する制御系のブロック線図である。図4に示す通り、ステージ装置ST(ウェハステージWST)に関する制御系は、フィードバック制御部60aと推力補正部60b(補正部)とに大別される。フィードバック制御部60aは、目標位置発生器61、演算器62、PI(Proportional Integral:比例積分)コントローラ63、演算器64、P(Proportional:比例)コントローラ65、演算器66、及びハイパスフィルタ67を備える。
目標位置発生器61は、ウェハステージWSTの位置(X方向、Y方向、及びZ方向の位置)、並びに姿勢(X軸、Y軸、及びZ軸周りの回転)の目標値を与える基準信号を出力する。演算器62は目標位置発生器61から出力される信号とセンサ(以下、干渉計22,23(干渉計42,44,54)をまとめて「干渉計IF」という)からの帰還信号との差分に応じた誤差信号を演算する。PIコントローラ63は演算器62から出力される制御信号に基づいて、ウェハステージWSTの駆動装置(第1駆動系31及び第2駆動系32a,32b)を駆動するための制御信号を生成する。
演算器64はPIコントローラ63で生成された制御信号と、干渉計IFからの帰還信号をハイパスフィルタ67でフィルタリングして得られた信号との差分を演算する。Pコントローラ65は演算器64から出力される制御信号を所定の増幅率で増幅してウェハステージWSTの駆動装置を駆動するための制御信号を生成する。演算器66はPコントローラ65で生成された制御信号に対して推力補正部60bから出力される補正信号を加算した制御信号を演算する。この演算器66から出力される制御信号がウェハステージWSTの駆動装置に印加される。以上のように、フィードバック制御部60aは二重のフィードバックループを用いてフィードバック制御を行う。
推力補正部60bは、メモリ71(記憶部)、推力点距離算出部72、及び補正量算出部73を備えており、ウェハステージWSTの駆動装置で発生する漏れ推力(サイドフォース)の悪影響を防止するための補正信号を生成する。具体的には、例えば、ウェハステージ本体24をX方向に移動させるために第1駆動系31の一部をなすX軸用固定子34a,34bと永久磁石36a,36bとからなるリニアモータにX方向の推力を与えた場合に生ずるZ方向の推力(Zサイドフォース)を補正する補正信号を生成する。この補正信号は、フィードバック制御部60aが備える演算器66によって、Pコントローラ65から出力される制御信号にフィードフォワード量として加算され、これによりウェハステージWSTはフィードフォワード制御される。
漏れ推力が生ずると、Z方向の位置誤差に加えて図5に示すX軸、Y軸、及びZ軸周りの回転誤差が生ずる。図5は、漏れ推力により生ずるX軸、Y軸、及びZ軸周りの回転誤差の一例を示す図である。尚、図5に示す各グラフの横軸はウェハステージ本体24の位置をとってあり、縦軸は回転誤差の大きさ(各グラフの縦軸のスケールは異なる)をとってある。図5に示す各グラフを参照すると、漏れ推力により生ずるX軸、Y軸、及びZ軸周りの回転誤差は、所定のピッチPtを周期として大きさが変化するものであることが分かる。上述した推力補正部60bで生成される補正信号は、Z方向の位置誤差、X軸周りの回転誤差、Y軸周りの回転誤差、及びZ軸周りの回転誤差の少なくとも1つをフィードフォワード制御により補正するための信号である。尚、何れを補正するかは何れを補正するかはウェハステージWSTに要求される精度に応じて任意に選択することができる。
メモリ71は、ウェハステージ本体24のX方向における位置と、ウェハステージWSTの駆動装置で発生する漏れ推力の大きさとの関係を示す推力補正マップを記憶し、干渉計IF(干渉計42)からの帰還信号で示されるX方向の位置に応じた漏れ推力を出力する。図6は、推力補正マップの一例を示す図である。尚、図6に示す推力補正マップは、X方向におけるウェハステージ本体24の位置を横軸にとり、X方向の推力を発生させたときの漏れ推力(Zサイドフォース)を縦軸にとっている。尚、縦軸は所定の値をもって正規化している。
図6を参照すると、X方向におけるウェハステージ本体24の位置に応じて漏れ推力の大きさが大きく変化することが分かる。この推力補正マップは、ステージ装置STが組み上がった段階で、第1駆動系31(X軸用固定子34a,34bと永久磁石36a,36bとからなるリニアモータ)にX方向の推力を与えて実際にウェハステージ本体24をX方向に移動させつつリニアモータをなすコイルに流れる電流を測定し、ウェハステージ本体24の位置に応じた漏れ推力を第1駆動系31の構造を考慮して求めることにより作成される。尚、図4においては、説明を簡単にするために、干渉計IFからの帰還信号がメモリ71に直接入力され、メモリ71の出力が補正量算出部73に直接出力される構成を図示している。しかしながら、メモリ71とは別に干渉計IFからの帰還信号に基づいてメモリ71の読み出し制御を行って補正量算出部73に出力する読み出し制御部を設けた構成であっても良い。
推力点距離算出部72は、ウェハステージ本体24の重心点と第1駆動系31のX軸用固定子34a,34bと永久磁石36a,36bとからなるリニアモータにおける最大推力点との距離(以下、推力点距離という)を算出する。ここで、ウェハステージ本体24の重心点に対する最大推力点の位置は通常は変わることはないが、リニアモータの励磁法によっては変化することがある。例えば、連続する3つのコイルに電流を順次供給する3極励磁の場合には最大推力点の位置は変わることはないが、連続する2つのコイルに電流を順次供給する2極励磁の場合には最大推力点の位置は変わってしまう。
図7は、最大推力点の位置変化を説明するための平面図である。図7において、符号P1を付した点はウェハステージ本体24の重心点を示している。また、符号C1〜C7を付した部材は、X軸用固定子34a内に設けられた複数のコイルを示している。いま、コイルC4のみに電流を供給したとすると、X軸用固定子34aと永久磁石36a(図2参照)とからなるリニアモータの最大推力点は図7中の位置P11になる。この状態でコイルC5にも電流を供給したとすると、コイルC4で発生するX方向の推力とコイルC5で発生するX方向の推力とが合成され、X軸用固定子34aと永久磁石36aとからなるリニアモータの最大推力点は図7中の位置P12に変化する。これは、X軸用固定子34bと永久磁石36b(図2参照)とからなるリニアモータについても同様である。
最大推力点はウェハステージ本体24とX軸用固定子34a,34bが備えるコイル(例えば、コイルC1〜C7)との相対的な位置関係によって決まり、ウェハステージ本体24をX方向に一定速度で移動させた場合には推力点距離はコイルのX方向における配列ピッチPtで変化する。ここで、コイルC1〜C7のX方向における配列ピッチPtと、図5に示した回転誤差の大きさが変化する周期であるピッチPtとは等しい。このため、推力点距離の変化が回転誤差に影響を与えていると考えられ、推力点距離算出部72は、推力点距離の変化が回転誤差に与える影響を排除するために設けられている。
図8は、推力点距離の変動量の一例を示す図である。尚、図8に示すグラフは、X方向におけるウェハステージ本体24の位置を横軸にとり、推力点距離の変動量を縦軸にとっている。図8を参照すると、推力点距離はウェハステージ本体24のX方向における位置に応じて三角波状に変化することが分かる。また、コイルの配列ピッチPtで変動量が変化することも分かる。推力点距離算出部72は、干渉計IF(干渉計42)からの帰還信号で示されるX方向の位置に応じて図8に示すような三角波状に変化する推力点距離を算出する。
補正量算出部73は、メモリ71から出力される漏れ推力と推力点距離算出部72で算出された推力点距離とを用いて、漏れ推力を補正する補正信号を生成する。漏れ推力及び推力点距離はウェハステージ本体24のX方向の位置に応じて変化するため、補正量算出部73は、これらによって変動するトルク量を補償するべく、メモリ71から出力される漏れ推力と推力点距離算出部72で算出された推力点距離とを乗算して補正すべきトルク量(補正信号)を求めて出力する。
次に、露光時の動作について簡単に説明する。露光処理が開始されると、主制御系MCはウェハステージWSTをXY平面内で移動させ、最初に露光すべきショット領域を移動開始位置に配置する。これと同時に、主制御系MCはレチクルステージRSTも制御して移動開始に配置する。以上の配置が完了すると、主制御系MCはレチクルステージRST及びウェハステージWSTの移動を開始させる。例えば、レチクルステージRSTは+Y方向に加速され、ウェハステージWSTは−Y方向に加速される。
ここで、図4に示す制御系で行われる制御について説明する。ウェハステージWSTの移動開始と同時に、主制御系MCに設けられた目標位置発生器61(図4参照)はウェハWのY方向の位置及び姿勢の目標値を与える基準信号を出力する。目標位置発生器61から出力された基準信号は演算器62に入力され、干渉計IF(干渉計44)からの帰還信号との差分に応じた誤差信号が演算される。
演算器62で得られた誤差信号はPIコントローラ63へ出力されて、第2駆動系32a,32bを駆動するための制御信号が生成される。PIコントローラ63で生成された制御信号は演算器64に入力されて干渉計IF(干渉計44)からの帰還信号をハイパスフィルタ67でフィルタリングして得られた信号との差分が演算される。この演算により得られた制御信号は、Pコントローラ65において所定の増幅率で増幅されて第2駆動系32a,32bに供給され、供給された制御信号に応じた推力(Y方向の推力)が発生し、ウェハステージWSTY方向の位置及び姿勢が制御される。
レチクルステージRST及びウェハステージWSTの加速が終了して、レチクルステージRSTとウェハステージWSTとが同期した状態になると、スリット状の露光光ILをレチクルRに照射しつつ、ウェハステージWSTを−Y方向に速度Vw(=β・Vm)で移動させるとともに、レチクルステージRSTを+Y方向に速度Vmで走査移動させつ、レチクルRに形成されたパターンを、投影光学系PLを介してウェハW上に設定されたショット領域に転写する。
レチクルRのパターンの転写が終了すると、主制御系MCはレチクルステージRSTを減速させて停止させる。一方、主制御系MCはウェハステージWSTを減速させた後で一時停止させずにX方向にステップ移動させ、次の移動開始位置に配置する。ここで、ウェハステージMCをX方向にステップ移動させる場合には、主制御系MCに設けられた目標位置発生器61はウェハWのX方向の位置及び姿勢の目標値を与える基準信号を出力する。目標位置発生器61から出力された基準信号は演算器62に入力され、干渉計IF(干渉計42)からの帰還信号との差分に応じた誤差信号が演算される。
演算器62で得られた誤差信号はPIコントローラ63へ出力されて、第1駆動系31(X軸用固定子34a,34bと永久磁石36a,36bとからなるリニアモータ)を駆動するための制御信号が生成される。PIコントローラ63で生成された制御信号は演算器64に入力されて干渉計IFからの帰還信号をハイパスフィルタ67でフィルタリングして得られた信号との差分が演算される。この演算により得られた制御信号は、Pコントローラ65において所定の増幅率で増幅されて演算器66に出力される。
また、干渉計IF(干渉計42)からの帰還信号は推力補正部60bに入力されてメモリ71及び推力点距離算出部72にそれぞれ入力される。干渉計IF(干渉計42)からの帰還信号が入力されると、メモリ71は帰還信号で示されるウェハステージ本体24のX方向の位置に応じた漏れ推力を補正量算出部73に出力する。また、推力点距離算出部72は、帰還信号で示されるウェハステージ本体24のX方向の位置に応じた推力点距離を算出して補正量算出部73に出力する。補正量算出部73は、メモリ71から出力される漏れ推力と推力点距離算出部72で算出された推力点距離とを用いて、漏れ推力を補正する補正信号を生成して出力する。
尚、推力補正部60bで生成される補正信号は、Z方向の位置誤差、X軸周りの回転誤差、Y軸周りの回転誤差、及びZ軸周りの回転誤差の少なくとも1つをフィードフォワード制御により補正するための信号である。推力補正部60bで生成された補正信号はフィードバック制御部60aが備える演算器66に入力されてPコントローラ65から出力される制御信号にフィードフォワード量として加算されて第1駆動系31に供給される。これにより、ウェハステージWSTのZ方向の位置誤差、X軸周りの回転誤差、Y軸周りの回転誤差、及びZ軸周りの回転誤差の少なくとも1つがフィードフォワード制御される。
以上の制御は露光処理が行われている間継続され、これにより、ウェハステージWSTをX方向にステップ移動させたときに発生する漏れ推力の影響が低減されて高い制御精度を維持することができる。ステップ移動が完了すると、主制御系MCはウェハステージWSTを一時停止させずにY方向の加速を開始させるとともに、レチクルステージRSTの加速を開始させて、他のショット領域に対する露光を開始する。以上の動作がウェハW上の他のショットの全てで行われる。
図9は、漏れ推力の補正を行った場合と行わない場合とで生ずるY軸周りの回転誤差の一例を示す図である。尚、図9に示すグラフは、X方向におけるウェハステージ本体24の位置を横軸にとり、Y軸周りの回転誤差を縦軸にとっている。また、図9中において、符号E1を付した曲線が漏れ推力の補正を行った場合のY軸周りの回転誤差を示しており、符号E2を付した曲線が漏れ推力の補正を行わない場合のY軸周りの回転誤差を示している。図9を参照すると、漏れ推力の補正を行うことで、Y軸周りの回転誤差が大幅に小さくなることが分かる。つまり、ウェハステージWSTをX方向にステップ移動させたときに、ウェハステージ本体24のY軸周りの振られ量が極めて小さくなり、これにより高い制御精度を維持することが可能となる。
以上、本発明の実施形態について説明したが、本発明は上記実施形態に制限されず、本発明の範囲内で自由に変更が可能である。例えば、上記実施形態では本発明のステージ装置を露光装置のステージ装置STに適用した場合を例に挙げて説明したが、露光装置のステージ装置STのみならず、少なくとも互いに異なる2軸方向に自由度を有するステージ装置一般に適用することができる。
また、上記実施形態では露光光ILとしてArFエキシマレーザ光を用いる場合を例に挙げて説明したが、これ以外に、例えばg線(波長436nm)、i線(波長365nm)、又はKrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、Fエキシマレーザ(波長157nm)、Krレーザ(波長146nm)、YAGレーザの高周波発生装置、若しくは半導体レーザの高周波発生装置から射出されるレーザ光を用いることができる。
また、上記実施形態では、ウェハステージWSTの制御を中心に説明したが、計測ステージMSTについてもウェハステージWSTと同様の制御を行っても良い。また、上記実施形態では、メモリ71、推力点距離算出部72、及び補正量算出部73を備える構成であったが、推力点距離はリニアモータ及びウェハステージ本体24の構造によって一義的に決まってしまうため、メモリ71に補正すべきトルクを記憶しておき、推力点距離算出部72及び補正量算出部73を省略した構成であっても良い。更に、上記実施形態では、推力補正部60bにおいて、メモリ71から出力される漏れ推力と推力点距離算出部72で算出された推力点距離とを用いて漏れ推力を補正する補正信号を生成する場合について説明したが、推力点距離算出部72を省略した構成にしてメモリ71から出力される漏れ推力のみを用いて補正信号を生成しても良い。
図10は、マイクロデバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造工程の一例を示すフローチャートである。半導体デバイス等のマイクロデバイスは、図12に示す通り、マイクロデバイスの機能・性能設計を行うステップS11、この設計ステップに基づいたマスク(レチクル)を製作するステップS12、デバイスの基材である基板(ウェハ)を製造するステップS13、前述した実施形態の露光装置EXによりマスクのパターンを基板に転写する露光処理ステップS14、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)S15、検査ステップS16等を経て製造される。
本発明の一実施形態による露光装置の概略構成を示す側面図である。 ステージ装置STの構成を示す斜視図である。 ウェハステージ本体24の底面斜視図である。 ステージ装置STを駆動する制御系のブロック線図である。 漏れ推力により生ずるX軸、Y軸、及びZ軸周りの回転誤差の一例を示す図である。 推力補正マップの一例を示す図である。 最大推力点の位置変化を説明するための平面図である。 推力点距離の変動量の一例を示す図である。 漏れ推力の補正を行った場合と行わない場合とで生ずるY軸周りの回転誤差の マイクロデバイスの製造工程の一例を示すフローチャートである。
符号の説明
21a ベース盤の上面
24 ウェハステージ本体
26 計測ステージ本体
31 第1駆動系
32a,32b 第2駆動系
51 第1駆動系
52a,52b 第2駆動系
60b 推力補正部
71 メモリ
EX 露光装置
MST 計測ステージ
P1 重心点
P11,P12 最大推力点
R レチクル
ST ステージ装置
W ウェハ
WST ウェハステージ

Claims (11)

  1. 少なくとも第1軸方向及び前記第1軸方向と異なる第2軸方向に対する自由度を有して移動可能に支持されたステージ本体と、当該ステージ本体を駆動する駆動装置とを備えるステージ装置であって、
    前記駆動装置で発生する前記第1軸方向の推力を、前記ステージ本体の位置に応じて変化する前記駆動装置の前記第2軸方向の推力の漏れ推力の大きさに応じて補正する補正部を備えるステージ装置。
  2. 前記補正部は、前記ステージ本体の位置と、前記駆動装置で発生する漏れ推力の大きさとの関係を示す推力補正マップを記憶する記憶部を備える請求項1記載のステージ装置。
  3. 前記補正部は、前記ステージ本体の重心点と前記駆動装置における最大推力点との距離を加味して前記駆動装置で発生する推力を補正する請求項2記載のステージ装置。
  4. 前記ステージ本体は、所定平面上で支持され、前記第1軸方向は前記所定平面に交差する方向、前記第2軸方向は前記所定平面内に含まれる方向であり、該ステージ本体は前記第1軸方向、前記第2軸方向及び前記所定平面内で前記第2軸方向に交差する第3軸方向への移動による3自由度、並びに当該第1,第2,第3軸周りの回転による3自由度を有しており、
    前記補正部は、前記推力補正マップから読み出した前記ステージ本体の位置に応じた前記駆動装置の漏れ推力の大きさと、前記ステージ本体の位置に応じた前記ステージ本体の重心点と前記駆動装置における前記第2軸方向に対する推力の最大推力点との距離とに基づいて前記第1軸方向に対する前記駆動装置の推力の補正量を求め、当該補正量を用いて前記第1軸方向への移動及び前記第2,第3軸周りの回転の少なくとも1つをフィードフォワード制御する請求項3記載のステージ装置。
  5. 少なくとも第1軸方向及び前記第1軸方向と異なる第2軸方向に対する自由度を有して移動可能に支持されたステージ本体と、当該ステージ本体を駆動する駆動装置とを備えるステージ装置の制御方法であって、
    前記第2軸方向における前記ステージ本体の位置を測定し、
    前記測定の結果に応じた前記駆動装置の前記第2軸方向の推力の漏れ推力の大きさを求め、
    前記駆動装置で発生する前記第1軸方向の推力を前記漏れ推力の大きさに応じて補正する、ステージ装置の制御方法。
  6. 前記駆動装置で前記ステージ本体を駆動して、前記ステージ本体の位置と前記駆動装置で発生する漏れ推力の大きさとの関係を示す推力補正マップを予め作成しておく請求項5記載のステージ装置の制御方法。
  7. 前記補正の際は、前記漏れ推力の大きさに加えて、前記ステージ本体の重心点と前記駆動装置における最大推力点との距離の変動量を加味して前記駆動装置で発生する推力を補正する請求項6記載のステージ装置の制御方法。
  8. 前記ステージ本体は、所定平面上で支持され、前記第1軸方向は前記所定平面に交差する方向、前記第2軸方向は前記所定平面内に含まれる方向であり、該ステージ本体は前記第1軸方向、前記第2軸方向及び前記所定平面内で前記第2軸方向に交差する第3軸方向への移動による3自由度、並びに当該第1,第2,第3軸周りの回転による3自由度を有しており、
    前記補正の際は、前記推力補正マップから読み出した前記ステージ本体の位置に応じた前記駆動装置の漏れ推力の大きさと、前記ステージ本体の位置に応じた前記ステージ本体の重心点と前記駆動装置における前記第2軸方向に対する推力の最大推力点との距離に基づいて前記駆動装置の前記第1軸方向に対する推力の補正量を求め、当該補正量を用いて前記第1軸方向への移動及び前記第2,第3軸周りの回転の少なくとも1つをフィードフォワード制御する請求項7記載のステージ装置の制御方法。
  9. 基板を保持する基板ステージを備え、マスクに形成されたパターンを前記基板上に転写する露光装置であって、
    前記基板ステージが請求項1から請求項4の何れか一項に記載のステージ装置である露光装置。
  10. マスクに形成されたパターンを、基板ステージ上に保持された基板上に転写する露光方法であって、
    請求項5から請求項8の何れか一項に記載のステージ装置の制御方法を用いて前記基板ステージを制御する露光方法。
  11. リソグラフィ工程を含むデバイスの製造方法であって、
    前記リソグラフィ工程において請求項9記載の露光装置又は請求項10記載の露光方法を用いて露光を行う露光工程を含むことを特徴とするデバイス製造方法。
JP2007251474A 2007-09-27 2007-09-27 ステージ装置及びその制御方法、露光装置及び方法、並びにデバイス製造方法 Pending JP2009081405A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007251474A JP2009081405A (ja) 2007-09-27 2007-09-27 ステージ装置及びその制御方法、露光装置及び方法、並びにデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007251474A JP2009081405A (ja) 2007-09-27 2007-09-27 ステージ装置及びその制御方法、露光装置及び方法、並びにデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2009081405A true JP2009081405A (ja) 2009-04-16

Family

ID=40655898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007251474A Pending JP2009081405A (ja) 2007-09-27 2007-09-27 ステージ装置及びその制御方法、露光装置及び方法、並びにデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2009081405A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103186058A (zh) * 2013-02-06 2013-07-03 清华大学 一种具有六自由度粗动台的掩膜台系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103186058A (zh) * 2013-02-06 2013-07-03 清华大学 一种具有六自由度粗动台的掩膜台系统

Similar Documents

Publication Publication Date Title
JP5309565B2 (ja) ステージ装置、露光装置、方法、露光方法、及びデバイス製造方法
KR102027589B1 (ko) 노광 장치 및 디바이스 제조 방법
JP4613910B2 (ja) 露光装置及びデバイス製造方法
WO2008026732A1 (fr) Système d'entraînement de corps mobile et procédé d'entraînement de corps mobile, appareil et procédé de mise en forme de motif, appareil et procédé d'exposition, procédé de fabrication de dispositif et procédé de décision
JPWO2007097466A1 (ja) 測定装置及び方法、処理装置及び方法、パターン形成装置及び方法、露光装置及び方法、並びにデバイス製造方法
US20020075467A1 (en) Exposure apparatus and method
JP2022133345A (ja) 露光装置、露光方法、フラットパネルディスプレイの製造方法、及びデバイス製造方法
JP2009004771A (ja) 露光方法及び装置、並びにデバイス製造方法
KR102130964B1 (ko) 노광 장치 및 디바이스 제조 방법
WO2005048325A1 (ja) ステージ駆動方法及びステージ装置並びに露光装置
TW200302507A (en) Stage device and exposure device
CN105493237B (zh) 移动体装置和曝光装置以及器件制造方法
JP4479911B2 (ja) 駆動方法、露光方法及び露光装置、並びにデバイス製造方法
US20110069291A1 (en) Physical sensor for autofocus system
JP2009088018A (ja) ステージ制御方法、ステージ制御装置、露光方法及び露光装置並びにデバイス製造方法
WO2007135998A1 (ja) 保持装置及び露光装置
JP2002343706A (ja) ステージ装置及びステージの駆動方法、露光装置及び露光方法、並びにデバイス及びその製造方法
JP2009081405A (ja) ステージ装置及びその制御方法、露光装置及び方法、並びにデバイス製造方法
JP2000269118A (ja) 露光方法及び露光装置
JP2007242707A (ja) 計測装置、パターン形成装置及びリソグラフィ装置
JP4626753B2 (ja) ステージ装置及び露光装置
JP2006203137A (ja) 位置決め方法、ステージ装置及び露光装置
JP2004349285A (ja) ステージ装置及び露光装置、並びにデバイス製造方法
JP2014003211A (ja) 移動体装置及び移動体駆動方法、露光装置及び露光方法、並びにデバイス製造方法
JP2001345256A (ja) ステージ装置および露光装置